Flexible Job Shop Problem with Setup Times (FJSP-SDST)

Problem

In the Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times (FJSP-SDST), a set of jobs has to be processed on the machines in the shop. Each job consists of an ordered sequence of tasks (called operations): each operation can only start when the previous one has ended. Each operation has a set of compatible machines, and must be processed by one of them. The processing time of an operation depends on the machine processing it. The machines can only process one task at a time and must be set up between two consecutive tasks. These setup times depend both on the tasks and on the chosen machine. The objective is to minimize the makespan, which is the time when all jobs have ended.

Principles learned

Data

The instances we provide come from the Fattahi [1] dataset for the Flexible Job Shop Problem, with additional randomly generated setup times. Their format is as follows:

  • First line: number of jobs, number of machines, average number of machines per operation (not needed)
  • From the second line, for each job:
    • Number of operations in that job
    • For each operation:
      • Number of machines compatible with this operation
      • For each compatible machine: machine index and processing time on this machine
  • For each machine and each operation:
    • Setup time between this operation and every other operation on this machine.

Program

The Hexaly model for the Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times (FJSP-SDST) uses interval decision variables to model the time ranges of the operations, and list decision variables to represent the order of the tasks scheduled on each machine.

Using the ‘partition‘ operator, we ensure that each task is assigned to exactly one machine. For each operation, we filter out incompatible machines thanks to the ‘contains’ operator. Using the ‘find‘ operator, we can then retrieve the index of the machine that was chosen to process each task. This allows us to deduce the processing time of each operation, which depends on the chosen machine, and to constrain the length of each interval accordingly.

The precedence constraints are easily written: for each job, each operation of this job must start after the end of the previous operation. The disjunctive resource constraints can be formulated as follows: for all i, the task processed in position i+1 must start after the end of the task processed in position i plus the setup time between these two tasks. To model this constraint, we define a lambda function expressing the relationship between two consecutive activities. This function is then used within a variadic ‘and’ operator over all tasks processed processed by each machine. Note that the number of terms inside these ‘and’ expressions varies during the search, along with the size of the lists (the number of tasks assigned to each machine).

The objective consists in minimizing the makespan, which is the time when all the tasks have ended.

Execution
hexaly flexible_jobshop_setup.hxm inFileName=instances/Fattahi_setup_01.fjs [outFileName=] [hxTimeLimit=]
use io;

/* Read instance data */
function input() {
    local usage = "Usage: hexaly flexible_jobshop_setup.hxm inFileName=instanceFile"
            + " [outFileName=outputFile] [hxTimeLimit=timeLimit]";

    if (inFileName == nil) throw usage;

    // Constant for incompatible machines
    INFINITE = 1000000;

    inFile = io.openRead(inFileName);
    // Number of jobs
    nbJobs = inFile.readInt();
    // Number of machines
    nbMachines = inFile.readInt();
    inFile.readln(); // skip last number

    // Number of tasks
    nbTasks = 0;
    processingTime = {};
    // Processing time for each task, for each machine
    taskProcessingTime = {};
    // For each job, for each operation, the corresponding task id
    jobOperationTask = {};
    
    for [j in 0...nbJobs] {
        // Number of operations for each job
        nbOperations[j] = inFile.readInt();
        for [o in 0...nbOperations[j]] {
            local nbMachinesOperation = inFile.readInt();
            for [i in 0...nbMachinesOperation] {
                local machine = inFile.readInt() - 1;
                local time = inFile.readInt();
                processingTime[j][o][machine] = time;
                taskProcessingTime[nbTasks][machine] = time;
            }
            jobOperationTask[j][o] = nbTasks;
            nbTasks += 1;
        }
    }

    // Setup time between every two consecutive tasks, for each machine
    taskSetupTime[m in 0...nbMachines][i in 0...nbTasks][j in 0...nbTasks] = inFile.readInt();
    maxSetup = 0;
    for [m in 0...nbMachines][i in 0...nbTasks][j in 0...nbTasks] {
        if (taskSetupTime[m][i][j] != INFINITE && taskSetupTime[m][i][j] > maxSetup) {
            maxSetup = taskSetupTime[m][i][j];
        }
    }

    inFile.close();

    // Trivial upper bound for the start times of the tasks
    maxSumProcessingTimes = 0;
    for [j in 0...nbJobs][o in 0...nbOperations[j]] {
        local maxProcessingTime = 0;
        for [m in 0...nbMachines] {
            if (processingTime[j][o][m] == nil) {
                local task = jobOperationTask[j][o];
                taskProcessingTime[task][m] = INFINITE;
            } else if (processingTime[j][o][m] >= maxProcessingTime) {
                maxProcessingTime = processingTime[j][o][m];
            }
        }
        maxSumProcessingTimes += maxProcessingTime;
    }
    maxStart = maxSumProcessingTimes + nbTasks * maxSetup;
}

/* Declare the optimization model */
function model() {
    // Sequence of tasks on each machine
    jobsOrder[m in 0...nbMachines] <- list(nbTasks);

    // Each task is scheduled on a machine
    constraint partition[m in 0...nbMachines](jobsOrder[m]);

    // Only compatible machines can be selected for a task
    for [i in 0...nbTasks][m in 0...nbMachines : taskProcessingTime[i][m] == INFINITE]
        constraint !contains(jobsOrder[m], i);

    // For each task, the selected machine
    taskMachine[i in 0...nbTasks] <- find(jobsOrder, i);

    // Interval decisions: time range of each task
    tasks[i in 0...nbTasks] <- interval(0, maxStart);

    // The task duration depends on the selected machine
    duration[i in 0...nbTasks] <- taskProcessingTime[i][taskMachine[i]];
    for [i in 0...nbTasks]
        constraint length(tasks[i]) == duration[i];

    // Precedence constraints between the operations of a job
    for [j in 0...nbJobs][o in 0...nbOperations[j]-1] {
        local i1 = jobOperationTask[j][o];
        local i2 = jobOperationTask[j][o + 1];
        constraint tasks[i1] < tasks[i2];
    }

    // Disjunctive resource constraints between the tasks on a machine
    for [m in 0...nbMachines] {
        local sequence <- jobsOrder[m];
        constraint and(0...count(sequence)-1, i =>
        start(tasks[sequence[i + 1]]) >= end(tasks[sequence[i]])
                + taskSetupTime[m][sequence[i]][sequence[i + 1]]);
    }

    // Minimize the makespan: end of the last task
    makespan <- max[i in 0...nbTasks](end(tasks[i]));
    minimize makespan;
}

/* Parameterize the solver */
function param() {
    if (hxTimeLimit == nil) hxTimeLimit = 60;
}

/* Write the solution in a file with the following format:
 *  - for each operation of each job, the selected machine, the start and end dates */
function output() {
    if (outFileName != nil) {
        outFile = io.openWrite(outFileName);
        println("Solution written in file ", outFileName);
        for [j in 0...nbJobs][o in 0...nbOperations[j]] {
            local taskIndex = jobOperationTask[j][o];
            outFile.println(j + 1, "\t", o + 1, "\t", taskMachine[taskIndex].value + 1, 
                    "\t", tasks[taskIndex].value.start, "\t", tasks[taskIndex].value.end);
        }
    }
}
Execution (Windows)
set PYTHONPATH=%HX_HOME%\bin\python
python flexible_jobshop_setup.py instances\Fattahi_setup_01.fjs
Execution (Linux)
export PYTHONPATH=/opt/hexaly_13_0/bin/python
python flexible_jobshop_setup.py instances/Fattahi_setup_01.fjs
import hexaly.optimizer
import sys

# Constant for incompatible machines
INFINITE = 1000000


def read_instance(filename):
    with open(filename) as f:
        lines = f.readlines()

    first_line = lines[0].split()
    # Number of jobs
    nb_jobs = int(first_line[0])
    # Number of machines
    nb_machines = int(first_line[1])

    # Number of operations for each job
    nb_operations = [int(lines[j + 1].split()[0]) for j in range(nb_jobs)]

    # Number of tasks
    nb_tasks = sum(nb_operations[j] for j in range(nb_jobs))

    # Processing time for each task, for each machine
    task_processing_time = [[INFINITE for m in range(nb_machines)] for i in range(nb_tasks)]

    # For each job, for each operation, the corresponding task id
    job_operation_task = [[0 for o in range(nb_operations[j])] for j in range(nb_jobs)]

    # Setup time between every two consecutive tasks, for each machine
    task_setup_time = [[[-1 for r in range(nb_tasks)] for i in range(nb_tasks)] for m in range(nb_machines)]

    id = 0
    for j in range(nb_jobs):
        line = lines[j + 1].split()
        tmp = 0
        for o in range(nb_operations[j]):
            nb_machines_operation = int(line[tmp + o + 1])
            for i in range(nb_machines_operation):
                machine = int(line[tmp + o + 2 * i + 2]) - 1
                time = int(line[tmp + o + 2 * i + 3])
                task_processing_time[id][machine] = time
            job_operation_task[j][o] = id
            id = id + 1
            tmp = tmp + 2 * nb_machines_operation

    id_line = nb_jobs + 2
    max_setup = 0
    for m in range(nb_machines):
        for i1 in range(nb_tasks):
            task_setup_time[m][i1] = list(map(int, lines[id_line].split()))
            max_setup = max(max_setup, max(s if s != INFINITE else 0 for s in task_setup_time[m][i1]))
            id_line += 1

    # Trivial upper bound for the start times of the tasks
    max_sum_processing_times = sum(
        max(task_processing_time[i][m] for m in range(nb_machines) if task_processing_time[i][m] != INFINITE)
        for i in range(nb_tasks))
    max_start = max_sum_processing_times + nb_tasks * max_setup

    return nb_jobs, nb_machines, nb_tasks, task_processing_time, job_operation_task, \
        nb_operations, task_setup_time, max_start


def main(instance_file, output_file, time_limit):
    nb_jobs, nb_machines, nb_tasks, task_processing_time_data, job_operation_task, \
        nb_operations, task_setup_time_data, max_start = read_instance(instance_file)

    with hexaly.optimizer.HexalyOptimizer() as optimizer:
        #
        # Declare the optimization model
        #
        model = optimizer.model

        # Sequence of tasks on each machine
        jobs_order = [model.list(nb_tasks) for _ in range(nb_machines)]
        machines = model.array(jobs_order)

        # Each task is scheduled on a machine
        model.constraint(model.partition(machines))

        # Only compatible machines can be selected for a task
        for i in range(nb_tasks):
            for m in range(nb_machines):
                if task_processing_time_data[i][m] == INFINITE:
                    model.constraint(model.not_(model.contains(jobs_order[m], i)))

        # For each task, the selected machine
        task_machine = [model.find(machines, i) for i in range(nb_tasks)]

        task_processing_time = model.array(task_processing_time_data)
        task_setup_time = model.array(task_setup_time_data)

        # Interval decisions: time range of each task
        tasks = [model.interval(0, max_start) for _ in range(nb_tasks)]

        # The task duration depends on the selected machine
        duration = [model.at(task_processing_time, i, task_machine[i]) for i in range(nb_tasks)]
        for i in range(nb_tasks):
            model.constraint(model.length(tasks[i]) == duration[i])

        task_array = model.array(tasks)

        # Precedence constraints between the operations of a job
        for j in range(nb_jobs):
            for o in range(nb_operations[j] - 1):
                i1 = job_operation_task[j][o]
                i2 = job_operation_task[j][o + 1]
                model.constraint(tasks[i1] < tasks[i2])

        # Disjunctive resource constraints between the tasks on a machine
        for m in range(nb_machines):
            sequence = jobs_order[m]
            sequence_lambda = model.lambda_function(
                lambda i: model.start(task_array[sequence[i + 1]]) >= model.end(task_array[sequence[i]])
                + model.at(task_setup_time, m, sequence[i], sequence[i + 1]))
            model.constraint(model.and_(model.range(0, model.count(sequence) - 1), sequence_lambda))

        # Minimize the makespan: end of the last task
        makespan = model.max([model.end(tasks[i]) for i in range(nb_tasks)])
        model.minimize(makespan)

        model.close()

        # Parameterize the optimizer
        optimizer.param.time_limit = time_limit

        optimizer.solve()

        # Write the solution in a file with the following format:
        # - for each operation of each job, the selected machine, the start and end dates
        if output_file != None:
            with open(output_file, "w") as f:
                print("Solution written in file", output_file)
                for j in range(nb_jobs):
                    for o in range(0, nb_operations[j]):
                        taskIndex = job_operation_task[j][o]
                        f.write(str(j + 1) + "\t" + str(o + 1) + "\t" + str(task_machine[taskIndex].value + 1)
                                + "\t" + str(tasks[taskIndex].value.start())
                                + "\t" + str(tasks[taskIndex].value.end()) + "\n")


if __name__ == '__main__':
    if len(sys.argv) < 2:
        print("Usage: python flexible_jobshop_setup.py instance_file [output_file] [time_limit]")
        sys.exit(1)

    instance_file = sys.argv[1]
    output_file = sys.argv[2] if len(sys.argv) >= 3 else None
    time_limit = int(sys.argv[3]) if len(sys.argv) >= 4 else 60
    main(instance_file, output_file, time_limit)
Compilation / Execution (Windows)
cl /EHsc flexible_jobshop_setup.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.lib
flexible_jobshop_setup instances\Fattahi_setup_01.fjs
Compilation / Execution (Linux)
g++ flexible_jobshop_setup.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o flexible_jobshop_setup
./flexible_jobshop_setup instances/Fattahi_setup_01.fjs
#include "optimizer/hexalyoptimizer.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>

using namespace hexaly;

class FlexibleJobshopSetup {
  private:
    // Number of jobs
    int nbJobs;
    // Number of machines
    int nbMachines;
    // Number of tasks
    int nbTasks;
    // Processing time for each task, for each machine
    std::vector<std::vector<int>> taskProcessingTimeData;
    // Setup time between every two consecutive tasks, for each machine
    std::vector<std::vector<std::vector<int>>> taskSetupTimeData;
    // For each job, for each operation, the corresponding task id
    std::vector<std::vector<int>> jobOperationTask;
    // Number of operations for each job
    std::vector<int> nbOperations;
    // Trivial upper bound for the start times of the tasks
    int maxStart;
    // Constant for incompatible machines
    const int INFINITE = 1000000;

    // Hexaly Optimizer
    HexalyOptimizer optimizer;
    // Decision variables: time range of each task
    std::vector<HxExpression> tasks;
    // Decision variables: sequence of tasks on each machine
    std::vector<HxExpression> jobsOrder;
    // For each task, the selected machine
    std::vector<HxExpression> taskMachine;
    // Objective = minimize the makespan: end of the last task
    HxExpression makespan;

  public:
    FlexibleJobshopSetup() : optimizer() {}

    void readInstance(const std::string& fileName) {
        std::ifstream infile;
        infile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
        infile.open(fileName.c_str());

        infile >> nbJobs;
        infile >> nbMachines;
        infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n'); // skip last number

        nbTasks = 0;
        std::vector<std::vector<std::vector<int>>> processingTime = std::vector<std::vector<std::vector<int>>>(nbJobs);
        jobOperationTask.resize(nbJobs);
        nbOperations.resize(nbJobs);
        for (unsigned int j = 0; j < nbJobs; ++j) {
            infile >> nbOperations[j];
            jobOperationTask[j].resize(nbOperations[j]);
            processingTime[j].resize(nbOperations[j]);
            for (unsigned int o = 0; o < nbOperations[j]; ++o) {
                int nbMachinesOperation;
                infile >> nbMachinesOperation;
                taskProcessingTimeData.push_back(std::vector<int>(nbMachines, INFINITE));
                processingTime[j][o].resize(nbMachines, INFINITE);
                for (int m = 0; m < nbMachinesOperation; ++m) {
                    int machine;
                    int time;
                    infile >> machine;
                    infile >> time;
                    processingTime[j][o][machine - 1] = time;
                    taskProcessingTimeData[nbTasks][machine - 1] = time;
                }
                jobOperationTask[j][o] = nbTasks;
                nbTasks += 1;
            }
        }

        taskSetupTimeData = std::vector<std::vector<std::vector<int>>>(
            nbMachines, std::vector<std::vector<int>>(nbTasks, std::vector<int>(nbTasks)));
        int maxSetup = 0;
        for (unsigned int m = 0; m < nbMachines; m++) {
            for (unsigned int i = 0; i < nbTasks; i++) {
                for (unsigned int j = 0; j < nbTasks; j++) {
                    infile >> taskSetupTimeData[m][i][j];
                    if (taskSetupTimeData[m][i][j] != INFINITE && taskSetupTimeData[m][i][j] > maxSetup)
                        maxSetup = taskSetupTimeData[m][i][j];
                }
            }
        }

        infile.close();

        // Trivial upper bound for the start times of the tasks
        int maxSumProcessingTimes = 0;
        for (unsigned int j = 0; j < nbJobs; ++j) {
            for (unsigned int o = 0; o < nbOperations[j]; ++o) {
                int maxProcessingTime = 0;
                for (unsigned int m = 0; m < nbMachines; ++m) {
                    if (processingTime[j][o][m] != INFINITE && processingTime[j][o][m] > maxProcessingTime)
                        maxProcessingTime = processingTime[j][o][m];
                }
                maxSumProcessingTimes += maxProcessingTime;
            }
        }
        maxStart = maxSumProcessingTimes + nbTasks * maxSetup;
    }

    void solve(int timeLimit) {
        // Declare the optimization model
        HxModel model = optimizer.getModel();

        // Sequence of tasks on each machine
        jobsOrder.resize(nbMachines);
        HxExpression machines = model.array();
        for (unsigned int m = 0; m < nbMachines; ++m) {
            jobsOrder[m] = model.listVar(nbTasks);
            machines.addOperand(jobsOrder[m]);
        }

        // Each task is scheduled on a machine
        model.constraint(model.partition(machines));

        // Only compatible machines can be selected for a task
        for (int i = 0; i < nbTasks; ++i) {
            for (unsigned int m = 0; m < nbMachines; ++m) {
                if (taskProcessingTimeData[i][m] == INFINITE) {
                    model.constraint(!model.contains(jobsOrder[m], i));
                }
            }
        }

        taskMachine.resize(nbTasks);
        HxExpression taskProcessingTime = model.array();
        for (int i = 0; i < nbTasks; ++i) {
            // For each task, the selected machine
            taskMachine[i] = model.find(machines, i);
            taskProcessingTime.addOperand(
                model.array(taskProcessingTimeData[i].begin(), taskProcessingTimeData[i].end()));
        }

        HxExpression taskSetupTime = model.array();
        for (int m = 0; m < nbMachines; ++m) {
            HxExpression setupTimeMachine = model.array();
            for (int i = 0; i < nbTasks; ++i) {
                setupTimeMachine.addOperand(
                    model.array(taskSetupTimeData[m][i].begin(), taskSetupTimeData[m][i].end()));
            }
            taskSetupTime.addOperand(setupTimeMachine);
        }

        tasks.resize(nbTasks);
        std::vector<HxExpression> duration(nbTasks);
        for (int i = 0; i < nbTasks; ++i) {
            // Interval decisions: time range of each task
            tasks[i] = model.intervalVar(0, maxStart);

            // The task duration depends on the selected machine
            duration[i] = model.at(taskProcessingTime, i, taskMachine[i]);
            model.constraint(model.length(tasks[i]) == duration[i]);
        }
        HxExpression taskArray = model.array(tasks.begin(), tasks.end());

        // Precedence constraints between the operations of a job
        for (unsigned int j = 0; j < nbJobs; ++j) {
            for (unsigned int o = 0; o < nbOperations[j] - 1; ++o) {
                int i1 = jobOperationTask[j][o];
                int i2 = jobOperationTask[j][o + 1];
                model.constraint(taskArray[i1] < taskArray[i2]);
            }
        }

        // Disjunctive resource constraints between the tasks on a machine
        for (int m = 0; m < nbMachines; ++m) {
            HxExpression sequence = jobsOrder[m];
            HxExpression sequenceLambda = model.createLambdaFunction([&](HxExpression i) {
                return model.start(taskArray[sequence[i + 1]]) >=
                       model.end(taskArray[sequence[i]]) + model.at(taskSetupTime, m, sequence[i], sequence[i + 1]);
            });
            model.constraint(model.and_(model.range(0, model.count(sequence) - 1), sequenceLambda));
        }

        // Minimize the makespan: end of the last task
        makespan = model.max();
        for (int i = 0; i < nbTasks; ++i) {
            makespan.addOperand(model.end(tasks[i]));
        }
        model.minimize(makespan);

        model.close();

        // Parameterize the optimizer
        optimizer.getParam().setTimeLimit(timeLimit);

        optimizer.solve();
    }

    /* Write the solution in a file with the following format:
     *  - for each operation of each job, the selected machine, the start and end dates */
    void writeSolution(const std::string& fileName) {
        std::ofstream outfile(fileName.c_str());
        if (!outfile.is_open()) {
            std::cerr << "File " << fileName << " cannot be opened." << std::endl;
            exit(1);
        }
        std::cout << "Solution written in file " << fileName << std::endl;

        for (unsigned int j = 0; j < nbJobs; ++j) {
            for (unsigned int o = 0; o < nbOperations[j]; ++o) {
                int taskIndex = jobOperationTask[j][o];
                outfile << j + 1 << "\t" << o + 1 << "\t" << taskMachine[taskIndex].getValue() + 1 << "\t"
                        << tasks[taskIndex].getIntervalValue().getStart() << "\t"
                        << tasks[taskIndex].getIntervalValue().getEnd() << std::endl;
            }
        }
        outfile.close();
    }
};

int main(int argc, char** argv) {
    if (argc < 2) {
        std::cout << "Usage: flexible_jobshop_setup instanceFile [outputFile] [timeLimit]" << std::endl;
        exit(1);
    }

    const char* instanceFile = argv[1];
    const char* outputFile = argc > 2 ? argv[2] : NULL;
    const char* strTimeLimit = argc > 3 ? argv[3] : "60";

    FlexibleJobshopSetup model;
    try {
        model.readInstance(instanceFile);
        const int timeLimit = atoi(strTimeLimit);
        model.solve(timeLimit);
        if (outputFile != NULL)
            model.writeSolution(outputFile);
        return 0;
    } catch (const std::exception& e) {
        std::cerr << "An error occurred: " << e.what() << std::endl;
        return 1;
    }
}
Compilation / Execution (Windows)
copy %HX_HOME%\bin\Hexaly.NET.dll .
csc FlexibleJobshopSetup.cs /reference:Hexaly.NET.dll
FlexibleJobshopSetup instances\Fattahi_setup_01.fjs
using System;
using System.IO;
using System.Linq;
using Hexaly.Optimizer;

public class FlexibleJobshopSetup : IDisposable
{
    // Number of jobs
    private int nbJobs;

    // Number of machines
    private int nbMachines;

    // Number of tasks
    private int nbTasks;

    // Processing time for each task, for each machine
    private long[][] taskProcessingTimeData;

    // Setup time between every two consecutive tasks, for each machine
    private int[][][] taskSetupTimeData;

    // For each job, for each operation, the corresponding task id
    private int[][] jobOperationTask;

    // Number of operations for each job;
    private int[] nbOperations;

    // Trivial upper bound for the start times of the tasks
    private long maxStart;

    // Constant for incompatible machines
    private const long INFINITE = 1000000;

    // Hexaly Optimizer
    private HexalyOptimizer optimizer;

    // Decision variables: time range of each task
    private HxExpression[] tasks;

    // Decision variables: sequence of tasks on each machine
    private HxExpression[] jobsOrder;

    // For each task, the selected machine
    private HxExpression[] taskMachine;

    // Objective = minimize the makespan: end of the last task
    private HxExpression makespan;

    public FlexibleJobshopSetup()
    {
        optimizer = new HexalyOptimizer();
    }

    public void ReadInstance(string fileName)
    {
        using (StreamReader input = new StreamReader(fileName))
        {
            char[] separators = new char[] { '\t', ' ' };
            string[] splitted = input
                .ReadLine()
                .Split(separators, StringSplitOptions.RemoveEmptyEntries);
            nbJobs = int.Parse(splitted[0]);
            nbMachines = int.Parse(splitted[1]);

            nbTasks = 0;
            long[][][] processingTime = new long[nbJobs][][];
            jobOperationTask = new int[nbJobs][];
            nbOperations = new int[nbJobs];
            for (int j = 0; j < nbJobs; ++j)
            {
                splitted = input
                    .ReadLine()
                    .Split(separators, StringSplitOptions.RemoveEmptyEntries);
                nbOperations[j] = int.Parse(splitted[0]);
                jobOperationTask[j] = new int[nbOperations[j]];
                processingTime[j] = new long[nbOperations[j]][];
                int k = 1;
                for (int o = 0; o < nbOperations[j]; ++o)
                {
                    int nbMachinesOperation = int.Parse(splitted[k]);
                    k++;
                    processingTime[j][o] = Enumerable.Repeat((long)INFINITE, nbMachines).ToArray();
                    for (int m = 0; m < nbMachinesOperation; ++m)
                    {
                        int machine = int.Parse(splitted[k]) - 1;
                        long time = long.Parse(splitted[k + 1]);
                        processingTime[j][o][machine] = time;
                        k += 2;
                    }
                    jobOperationTask[j][o] = nbTasks;
                    nbTasks++;
                }
            }

            input.ReadLine();
            taskSetupTimeData = new int[nbMachines][][];
            int maxSetup = 0;
            for (int m = 0; m < nbMachines; ++m)
            {
                taskSetupTimeData[m] = new int[nbTasks][];
                for (int i = 0; i < nbTasks; ++i)
                {
                    taskSetupTimeData[m][i] = new int[nbTasks];
                    splitted = input.
                        ReadLine()
                        .Split(separators, StringSplitOptions.RemoveEmptyEntries);
                    for (int j = 0; j < nbTasks; ++j)
                    {
                        taskSetupTimeData[m][i][j] = int.Parse(splitted[j]);
                        if (
                            taskSetupTimeData[m][i][j] != INFINITE
                            && taskSetupTimeData[m][i][j] > maxSetup
                        )
                            maxSetup = taskSetupTimeData[m][i][j];
                    }
                }
            }

            // Trivial upper bound for the start times of the tasks
            long maxSumProcessingTimes = 0;
            taskProcessingTimeData = new long[nbTasks][];
            for (int j = 0; j < nbJobs; ++j)
            {
                long maxProcessingTime = 0;
                for (int o = 0; o < nbOperations[j]; ++o)
                {
                    int task = jobOperationTask[j][o];
                    taskProcessingTimeData[task] = new long[nbMachines];
                    for (int m = 0; m < nbMachines; ++m)
                    {
                        taskProcessingTimeData[task][m] = processingTime[j][o][m];
                        if (
                            processingTime[j][o][m] != INFINITE
                            && processingTime[j][o][m] > maxProcessingTime
                        )
                        {
                            maxProcessingTime = processingTime[j][o][m];
                        }
                    }
                    maxSumProcessingTimes += maxProcessingTime;
                }
            }
            maxStart = maxSumProcessingTimes + nbTasks * maxSetup;
        }
    }

    public void Dispose()
    {
        optimizer.Dispose();
    }

    public void Solve(int timeLimit)
    {
        // Declare the optimization model
        HxModel model = optimizer.GetModel();

        // Sequence of tasks on each machine
        jobsOrder = new HxExpression[nbMachines];
        HxExpression machines = model.Array();
        for (int m = 0; m < nbMachines; ++m)
        {
            jobsOrder[m] = model.List(nbTasks);
            machines.AddOperand(jobsOrder[m]);
        }

        // Each task is scheduled on a machine
        model.Constraint(model.Partition(machines));

        // Only compatible machines can be selected for a task
        for (int i = 0; i < nbTasks; ++i)
        {
            for (int m = 0; m < nbMachines; ++m)
            {
                if (taskProcessingTimeData[i][m] == INFINITE)
                    model.Constraint(!model.Contains(jobsOrder[m], i));
            }
        }

        // For each task, the selected machine
        taskMachine = new HxExpression[nbTasks];
        for (int i = 0; i < nbTasks; ++i)
        {
            taskMachine[i] = model.Find(machines, i);
        }

        tasks = new HxExpression[nbTasks];
        HxExpression[] duration = new HxExpression[nbTasks];
        HxExpression taskProcessingTime = model.Array(taskProcessingTimeData);
        for (int i = 0; i < nbTasks; ++i)
        {
            // Interval decisions: time range of each task
            tasks[i] = model.Interval(0, maxStart);

            // The task duration depends on the selected machine
            HxExpression iExpr = model.CreateConstant(i);
            duration[i] = model.At(taskProcessingTime, iExpr, taskMachine[i]);
            model.Constraint(model.Length(tasks[i]) == duration[i]);
        }
        HxExpression taskArray = model.Array(tasks);

        // Precedence constraints between the operations of a job
        for (int j = 0; j < nbJobs; ++j)
        {
            for (int o = 0; o < nbOperations[j] - 1; ++o)
            {
                int i1 = jobOperationTask[j][o];
                int i2 = jobOperationTask[j][o + 1];
                model.Constraint(tasks[i1] < tasks[i2]);
            }
        }

        HxExpression taskSetupTime = model.Array(taskSetupTimeData);

        // Disjunctive resource constraints between the tasks on a machine
        for (int m = 0; m < nbMachines; ++m)
        {
            HxExpression sequence = jobsOrder[m];
            HxExpression mexpr = model.CreateConstant(m);
            HxExpression sequenceLambda = model.LambdaFunction(
                i =>
                    model.Start(taskArray[sequence[i + 1]])
                    >= (model.End(taskArray[sequence[i]])
                        + model.At(taskSetupTime, mexpr, sequence[i], sequence[i + 1])));
            model.Constraint(model.And(model.Range(0, model.Count(sequence) - 1), sequenceLambda));
        }

        // Minimize the makespan: end of the last task
        makespan = model.Max();
        for (int i = 0; i < nbTasks; ++i)
        {
            makespan.AddOperand(model.End(tasks[i]));
        }
        model.Minimize(makespan);

        model.Close();

        // Parameterize the optimizer
        optimizer.GetParam().SetTimeLimit(timeLimit);

        optimizer.Solve();
    }

    /* Write the solution in a file with the following format:
     *  - for each operation of each job, the selected machine, the start and end dates */
    public void WriteSolution(string fileName)
    {
        using (StreamWriter output = new StreamWriter(fileName))
        {
            Console.WriteLine("Solution written in file " + fileName);
            for (int j = 1; j <= nbJobs; ++j)
            {
                for (int o = 1; o <= nbOperations[j - 1]; ++o)
                {
                    int taskIndex = jobOperationTask[j - 1][o - 1];
                    output.WriteLine(
                        j
                            + "\t"
                            + o
                            + "\t"
                            + taskMachine[taskIndex].GetValue()
                            + "\t"
                            + tasks[taskIndex].GetIntervalValue().Start()
                            + "\t"
                            + tasks[taskIndex].GetIntervalValue().End()
                    );
                }
            }
        }
    }

    public static void Main(string[] args)
    {
        if (args.Length < 1)
        {
            Console.WriteLine("Usage: FlexibleJobshopSetup instanceFile [outputFile] [timeLimit]");
            System.Environment.Exit(1);
        }

        string instanceFile = args[0];
        string outputFile = args.Length > 1 ? args[1] : null;
        string strTimeLimit = args.Length > 2 ? args[2] : "60";

        using (FlexibleJobshopSetup model = new FlexibleJobshopSetup())
        {
            model.ReadInstance(instanceFile);
            model.Solve(int.Parse(strTimeLimit));
            if (outputFile != null)
                model.WriteSolution(outputFile);
        }
    }
}
Compilation / Execution (Windows)
javac FlexibleJobshopSetup.java -cp %HX_HOME%\bin\hexaly.jar
java -cp %HX_HOME%\bin\hexaly.jar;. FlexibleJobshopSetup instances\Fattahi_setup_01.fjs
Compilation / Execution (Linux)
javac FlexibleJobshopSetup.java -cp /opt/hexaly_13_0/bin/hexaly.jar
java -cp /opt/hexaly_13_0/bin/hexaly.jar:. FlexibleJobshopSetup instances/Fattahi_setup_01.fjs
import java.util.*;
import java.io.*;
import com.hexaly.optimizer.*;

public class FlexibleJobshopSetup {
    // Number of jobs
    private int nbJobs;
    // Number of machines
    private int nbMachines;
    // Number of tasks
    private int nbTasks;
    // Processing time for each task, for each machine
    private long[][] taskProcessingTimeData;
    // Setup time between every two consecutive tasks, for each machine
    private int[][][] taskSetupTimeData;
    // For each job, for each operation, the corresponding task id
    private int[][] jobOperationTask;
    // Number of operations for each job;
    private int[] nbOperations;
    // Trivial upper bound for the start times of the tasks
    private long maxStart;
    // Constant for incompatible machines
    private final int INFINITE = 1000000;

    // Hexaly Optimizer
    final HexalyOptimizer optimizer;
    // Decision variables: time range of each task
    private HxExpression[] tasks;
    // Decision variables: sequence of tasks on each machine
    private HxExpression[] jobsOrder;
    // For each task, the selected machine
    private HxExpression[] taskMachine;
    // Objective = minimize the makespan: end of the last task
    private HxExpression makespan;

    public FlexibleJobshopSetup(HexalyOptimizer optimizer) throws IOException {
        this.optimizer = optimizer;
    }

    public void readInstance(String fileName) throws IOException {
        try (Scanner input = new Scanner(new File(fileName))) {
            nbJobs = input.nextInt();
            nbMachines = input.nextInt();
            input.next(); // skip last number

            nbTasks = 0;
            long[][][] processingTime = new long[nbJobs][][];
            jobOperationTask = new int[nbJobs][];
            nbOperations = new int[nbJobs];
            for (int j = 0; j < nbJobs; ++j) {
                nbOperations[j] = input.nextInt();
                jobOperationTask[j] = new int[nbOperations[j]];
                processingTime[j] = new long[nbOperations[j]][nbMachines];
                for (int o = 0; o < nbOperations[j]; ++o) {
                    int nbMachinesOperation = input.nextInt();
                    Arrays.fill(processingTime[j][o], INFINITE);
                    for (int m = 0; m < nbMachinesOperation; ++m) {
                        int machine = input.nextInt() - 1;
                        long time = input.nextLong();
                        processingTime[j][o][machine] = time;
                    }
                    jobOperationTask[j][o] = nbTasks;
                    nbTasks++;
                }
            }
            taskSetupTimeData = new int[nbMachines][nbTasks][nbTasks];
            int maxSetup = 0;
            for (int m = 0; m < nbMachines; ++m) {
                for (int i = 0; i < nbTasks; ++i) {
                    for (int j = 0; j < nbTasks; ++j) {
                        taskSetupTimeData[m][i][j] = input.nextInt();
                        if (taskSetupTimeData[m][i][j] != INFINITE && taskSetupTimeData[m][i][j] > maxSetup)
                            maxSetup = taskSetupTimeData[m][i][j];
                    }
                }
            }

            // Trivial upper bound for the start times of the tasks
            long maxSumProcessingTimes = 0;
            taskProcessingTimeData = new long[nbTasks][];
            for (int j = 0; j < nbJobs; ++j) {
                long maxProcessingTime = 0;
                for (int o = 0; o < nbOperations[j]; ++o) {
                    int task = jobOperationTask[j][o];
                    taskProcessingTimeData[task] = new long[nbMachines];
                    for (int m = 0; m < nbMachines; ++m) {
                        taskProcessingTimeData[task][m] = processingTime[j][o][m];
                        if (processingTime[j][o][m] != INFINITE && processingTime[j][o][m] > maxProcessingTime) {
                            maxProcessingTime = processingTime[j][o][m];
                        }
                    }
                    maxSumProcessingTimes += maxProcessingTime;
                }
            }
            maxStart = maxSumProcessingTimes + nbTasks * maxSetup;
        }
    }

    public void solve(int timeLimit) {
        // Declare the optimization model
        HxModel model = optimizer.getModel();

        // Sequence of tasks on each machine
        jobsOrder = new HxExpression[nbMachines];
        HxExpression machines = model.array();
        for (int m = 0; m < nbMachines; ++m) {
            jobsOrder[m] = model.listVar(nbTasks);
            machines.addOperand(jobsOrder[m]);
        }

        // Each task is scheduled on a machine
        model.constraint(model.partition(machines));

        // Only compatible machines can be selected for a task
        for (int i = 0; i < nbTasks; ++i) {
            for (int m = 0; m < nbMachines; ++m) {
                if (taskProcessingTimeData[i][m] == INFINITE) {
                    model.constraint(model.not(model.contains(jobsOrder[m], i)));
                }
            }
        }

        // For each task, the selected machine
        taskMachine = new HxExpression[nbTasks];
        for (int i = 0; i < nbTasks; ++i) {
            taskMachine[i] = model.find(machines, i);
        }

        HxExpression taskProcessingTime = model.array(taskProcessingTimeData);

        tasks = new HxExpression[nbTasks];
        HxExpression[] duration = new HxExpression[nbTasks];
        for (int i = 0; i < nbTasks; ++i) {
            // Interval decisions: time range of each task
            tasks[i] = model.intervalVar(0, maxStart);

            // The task duration depends on the selected machine
            HxExpression iExpr = model.createConstant(i);
            duration[i] = model.at(taskProcessingTime, iExpr, taskMachine[i]);
            model.constraint(model.eq(model.length(tasks[i]), duration[i]));
        }
        HxExpression taskArray = model.array(tasks);

        // Precedence constraints between the operations of a job
        for (int j = 0; j < nbJobs; ++j) {
            for (int o = 0; o < nbOperations[j] - 1; ++o) {
                int i1 = jobOperationTask[j][o];
                int i2 = jobOperationTask[j][o + 1];
                model.constraint(model.lt(tasks[i1], tasks[i2]));
            }
        }

        HxExpression taskSetupTime = model.array(taskSetupTimeData);

        // Disjunctive resource constraints between the tasks on a machine
        for (int m = 0; m < nbMachines; ++m) {
            HxExpression sequence = jobsOrder[m];
            HxExpression mExpr = model.createConstant(m);
            HxExpression sequenceLambda = model
                    .lambdaFunction(
                            i -> model.geq(model.start(model.at(taskArray, model.at(sequence, model.sum(i, 1)))),
                                    model.sum(model.end(model.at(taskArray, model.at(sequence, i))),
                                            model.at(taskSetupTime, mExpr,
                                                    model.at(sequence, i), model.at(sequence, model.sum(i, 1))))));
            model.constraint(model.and(model.range(0, model.sub(model.count(sequence), 1)), sequenceLambda));
        }

        // Minimize the makespan: end of the last task
        makespan = model.max();
        for (int i = 0; i < nbTasks; ++i) {
            makespan.addOperand(model.end(tasks[i]));
        }
        model.minimize(makespan);

        model.close();

        // Parameterize the optimizer
        optimizer.getParam().setTimeLimit(timeLimit);

        optimizer.solve();
    }

    /*
     * Write the solution in a file with the following format:
     * - for each operation of each job, the selected machine, the start and end
     * dates
     */
    public void writeSolution(String fileName) throws IOException {
        try (PrintWriter output = new PrintWriter(fileName)) {
            System.out.println("Solution written in file " + fileName);

            for (int j = 1; j <= nbJobs; ++j) {
                for (int o = 1; o <= nbOperations[j - 1]; ++o) {
                    int taskIndex = jobOperationTask[j - 1][o - 1];
                    output.write(j + "\t" + o + "\t" + taskMachine[taskIndex].getValue() + "\t"
                            + tasks[taskIndex].getIntervalValue().getStart()
                            + "\t" + tasks[taskIndex].getIntervalValue().getEnd() + "\n");
                }
            }
        }
    }

    public static void main(String[] args) {
        if (args.length < 1) {
            System.out.println("Usage: java FlexibleJobshopSetup instanceFile [outputFile] [timeLimit]");
            System.exit(1);
        }

        String instanceFile = args[0];
        String outputFile = args.length > 1 ? args[1] : null;
        String strTimeLimit = args.length > 2 ? args[2] : "60";

        try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
            FlexibleJobshopSetup model = new FlexibleJobshopSetup(optimizer);
            model.readInstance(instanceFile);
            model.solve(Integer.parseInt(strTimeLimit));
            if (outputFile != null) {
                model.writeSolution(outputFile);
            }
        } catch (Exception ex) {
            System.err.println(ex);
            ex.printStackTrace();
            System.exit(1);
        }
    }
}

[1] P. Fattahi, M.S. Mehrabad, F. Jolai. (2007). Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18(3), 331–342.