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It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D C , has the shortest road distance

THE TRAVELING-SALESMAN PROBLEM might be described as
follows: Find the shortest route (tour) for a salesman starting from a

given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D={d,j), where du represents the 'distance' from / to J,
arrange the points in a cyclic order in such a way that the sum of the du
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 3>'2 (« —1)0 to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,''** little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one m each of the 48 states
and Washington, D. C, is best, the du used representing road distances as
taken from an atlas.

* HISTORICAL NOTE- The origin of this problem is somewhat obscure. It
appears to have been discussed informally among mathematicians at mathematics
meetings for many years. Surprisingly little in the way of results has appeared in
the mathematical literature.'" It may be that the minimal-distance tour problem
was stimulated by the so-called Hamiltonian game' which is concerned with finding
the number of different tours possible over a specified network The latter problem
is cited by some as the origin of group theory and has some connections with the
famou8 Four-Color Conjecture ' Merrill Flood (Columbia Universitj') should be
credited with stimulating interest in the traveling-salesman problem in many quar-
ters. As early as 1937, he tried to obtain near optimal solutions in reference to
routing of school buses. Both Flood and A W. Tucker (Princeton University) re-
call that they heard about the problem first in a seminar talk by Hassler Whitney
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall
the problem) The relations between the traveling-salesman problem and the
transportation problem of linear programming appear to have been first explored by
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and
H. Kuhn.»"
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394 DANTZIG, FULKERSON, AND JOHNSON

In order to try the method on a large problem, the following set of 49
cities, one in each state and the District of Columbia, was selected:

1. Manchester, N H.
2. Montpelier, Vt.
3. Detroit, Mich.
4. Cleveland, Ohio
5 Charleston, W Va
6. Louisville, Ky.
7. Indianapolis, Ind.
8. Chicago, 111
9. Milwaukee, Wis

10 Minneapolis, Minn.
11. Pierre, S. D.
12. Bismarck, N. D.
13 Helena, Mont.
14 Seattle, Wash.
15. Portland, Ore.
16. Boise, Idaho
17. Salt Lake City, Utah

18 Carson City, Nev.
19
20
21.

Los Angeles, Calif.
Phoenix, Ariz
Santa Fe, N M,

22 Denver, Colo.
23. Cheyenne, Wyo.
24 Omaha, Neb
25. Des Moines, Iowa
26. Kansas Cit^-, Mo.
27. Topeka, Kans.
28 Oklahoma City, Okla
29. Dallas, Tex.
30. Little Rock, Ark.
31. Memphis, Tenn.
32 Jackson, Miss.
33 New Orleans, La.

34 Birmingham, Ala.
35. Atlanta, Ga
36. Jacksonville, Fla.
37. Columbia, S C.
38 Raleigh, N C.
39. Richmond, Va
40. Washington, D. C.
41. Boston, Mass
42. Portland, Me.
A. Baltimore, Md.
B Wilmington, Del.
C Philadelphia, Penn.
D. Newark, N. J
E New York, N. Y
F Hartford, Conn.
G. Providence, R. I.

The reason for picking this particular set was that most of the road
distances between them were easy to get from an atlas. The triangular
table of distances between these cities (Table I) is part of the original one
prepared by Bernice Brown of The Rand Corporation. It gives dij =
Vii (c?jj —11),* (^,^ = 1, 2, • • •, 42), where d'u is the road distance in miles
between I and J. The du have been rounded to the nearest integer.
Certainly such a linear transformation does not alter the ordering of the
tour lengths, although, of course, rounding could cause a tour that was
not optimal in terms of the original mileage to become optimal in terms of
the adjusted units used in this paper.

We will show that the tour (see Fig. 16) through the cities 1,2, • • •, 42
in this order is minimal for this subset of 42 cities. Moreover, since in
driving from city40 (Washington, D. C.) to city41 (Boston, Massachusetts)
by the shortest road distance one goes through A, B, • • •, G, successively,
it follows that the tour through 49 cities 1, 2, • • •, 40, A, B, • • •, G, 41,
42 in that order is also optimal.

PRELIMINARY NOTIONS

Whenever the road from I to J (in that order) is traveled, the value
x',j = l is entered into the I,J element of a matrix; otherwise Xij=O is
entered. A (directed) tour through n cities can now be thought of as a
permutation matrix of order n which represents an n-cycle (we assume

* This particular transformation was chosen to make the djj of the original table
less than 256 which would permit compact storage of the distance table in binary
representation; however, no use was made of this.
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71 > 2 throughout). For example, for
low

= 5, the first matrix displayed be-

0
0
0
0
1

1
0
0
0
0

0
0
0
1
0

0
1
0
0
0

0
0
1
0
0

0
1
0
0
0

1
0
0
0
0

0
0
0
1
0

0
0
0
0
1

0
0
1
0
0

is a tour since it represents visiting the cities in the 5-cycle ( 1 2 4 3 5),
while the other matrix is not a tour since it represents visiting the cities by
means of two sub-cycles (1 2) and (3 5 4 ) .

It is clear that all representations for directed tours satisfy the relations

The matrix may be made into a triangular array by reflecting the numbers
above the diagonal in the diagonal. The sum of corresponding elements is
denoted by Xij=Xjj-^Xj,. Then the matrices above become

1 •
0 0 •
oil
1 0 1 0

2 •
0 0 •

0 0 1 -
0 0 1 1

Consequently, the sum along the Kih row plus the sum along the Kth
column must now be 2. This may be written

J<I=K I>J=K
>0) (l)

This device yields a representation for undirected tours and is the one used
throughout this paper. It will be noted that the second array above does
not represent a tour but nevertheless satisfies the relation (1).

For undirected tours, the symbol Xu will be treated identically with
Xj, so that we may rewrite (1) as

2lx,j = 2. ixij>0; 1 = 1,2, •••,n; l9^J; xjj^Xji) (2)

The problem is to find the minimum of the linear form

where the Xu = 0 or 1 and the Xu = 1 form a tour, and where the sum-
mation in (3) extends over all indices (/,./) such that I>J.

To make a linear programming problem out of this (see ref. 2) one
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needs, as we have observed, a way to describe tours by more linear re-
straints than that given by (2). This is extremely difficult to do as illus-
trated by work of I. Heller̂  and H. Kuhn.^ They point out that such
relations always exist. However, there seems to be no simple way to
characterize them and for moderate size n the number of such restraints
appears to be astronomical. In spite of these difficulties, this paper will
describe the techniques we have developed which have been successful in
solving all the problems we have tried by this approach. A surprising
empirical observation is the use of only a trivial number of the many
possible restraints to solve any particular problem. To demonstrate the
procedure, we shall attempt to use direct elementary proofs even though
they were originally motivated in many places by linear programming
procedures.

There are possibly four devices we have used which have greatly re-
duced the effort in obtaining solutions of the problems we have attempted.

First of all, we use undirected tours. This seems to simplify the char-
acterization of the tours when n is small and certainly cuts down the
amount of computation, even for large n. Secondly, and this is decisive,
we do not try to characterize the tours by the complete set of linear re-
straints, but rather impose, in addition to (2), just enough linear con-
ditions on the Xrj to assure that the minimum of the linear form (3) is
assumed by some tour. For the 49-city problem and also for all the
smaller problems we have considered, such a procedure has been relatively
easy to carry through by hand computation. This may be due in part to
the fact that we use a simple symbolism which permits direct representa-
tion of the algebraic relationships and manipulations on a map of the
cities. This third device speeds up the entire iterative process, makes it
easy to follow, and sometimes suggests new linear restraints that are not
likely to be obtained by less visual methods. Finally, once a tour has been
obtained which is nearly optimal, a combinatorial approach, using the
map and listing possible tours which have not yet been eliminated by the
conditions imposed on the problem, may be advantageous. This list can
be very much shorter than one would expect, due to the complex inter-
locking of the restraints. However, except for short discussion in the
section below, "An Estimation Procediire," this method will not be de-
scribed in detail although it has worked out well for all examples we have
studied.

An important class of conditions that tours satisfy, which excludes
many non-tour cases satisfying (2), are the 'loop conditions ' These are
linear inequality restraints that exclude subcycles or loops. Consider a
non-tour solution to (2) which has a subtour of ni<n cities; we note that
the sum of the Xu for those links (/,J) in the subtour is rii. Hence we can
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eliminate this type of solution by imposing the condition that the sum of
Xu over all links {I,J) connecting cities in the subset S of ni cities be less
than rii, i.e.,

l (4)

where the summation extends over all (/,J) with / and J in the ni cities (S.
From (2) we note that two other conditions, each equivalent to (4), are

2Z Xu<n — ni — \, (5)
s

where <§ means the summation extends over all (/,J) such that neither /
nor J is in S, and

(6)

where SS means that the summation extends over all (/,J) such that /
is in S and J not in S.

There are, however, other more complicated types of restraints which
sometimes must be added to (2) in addition to an assortment of loop con-
ditions in order to exclude solutions involving fractional weights Xu-
In the 49-city case we needed two such conditions. However, later when
we tried the combinatorial approach, after imposing a few of the loop
conditions, we found we could handle the 49-city problem without the use
of the special restraints and this would have led to a shorter proof of
optimality. In fact, we have yet to find an example which could not be
handled by using only loop conditions and combinatorial arguments.

THE METHOD

The technique will be illustrated by a series of simple examples.

Example 1
First consider a five-city map forming a regular pentagon of unit length

per side and with length }i ( \ / 5+ l ) = 1.7 on a diagonal (Fig. 1). Sup-
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pose that the problem is to minimize (3) subject only to (2) Start
with a tour which is conjectured to be optimal, obviously (12 3 4 5).
In this case the values of X7/, denoted by Xu, are .fi2=X23 = X34 = .f45 = :c6i = l
and all other Xjj = 0. The variables Xu corresponding to links on the tour
are called 'basic variables.' The length of the tour given by the linear
form (3) for x = x is D(x)=h. There are five equations in (2). Mul-
tiply each by a parameter TI to be determined, and then subtract the
sum from (3). Thus, we are led to

71 / n

D(x) =22 dijXij— S T; { 22 Xij—2
V

Denote the coefficients of x,j by bu so that

D{x) = - E buXu+2T. T,. {bu=it,-\-Kj-du) (7)

Now determine the five TTI values so that 5// correspondmg to basic vari-
ables vanish:

« = l) (8)

1 e., if the link (/,J) is on the tour in question. Note that to solve for the
•wi we have five linear equations in five unknowns.

If now we set xu =X/j in (7), then Xubu = 0 for all {I,J) and

D{x)=2T,w, = o. (9)

1

Subtracting (9) from (7) we have finally

D{x)-Dix) = -J^8uXsj. (10)
i>j

For the regular pentagon ri = }^i for 1 = 1, 2, 3, 4, 5 solves (8), and so
Sij = }4{l — V5)<0 on a diagonal, i.e., 5,j<0 for every {I,J). Thus,
the right side of (10) is always nonnegative or D{x)>D{x) for all x satis-
fying (2), and in particular all other tours are longer than the tour repre-
sented by X.

Example 2

Next, take another five-city problem whose map is not a regular
pentagon (Fig. 2). We start with the tour (1 2 3 4 5) of length D(.r) =32
where the basic variables take on the values XI2 = X23 = ^34 = .?4B = 56I = 1 and
all other X/j =0 . Repeat the steps in the previous problem leading to (10)
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1

2

D • 3

4

5

\
5

6

10

8

\
5

12

12

\
8

10

\

1 2 3 4 5

FIGURE 2

where, as before, calculate the TI by setting 5jj=0 for 5ij corresponding
to basic variables x,j. The five equations that the TI must satisfy are

By alternately subtracting and adding these equations one obtains.

or

The factors ir; which multiply equations (2) to form (10) are called
'potentials.'* There is one such potential associated with each city /,
and these are readily computed by working directly on the map of the
cities (see Fig. 3).

FIGURE 3

To form other 5^, add the x/ and wj of city / and city J and subtract
off the distance d,j between them. In this case we note that except for
531 = 5 + 5 - 6 = +4, all the other 5u are <0.

We see from (10) that if xn were to take on a positive value, a;3i = ff,
the other nonbasic variables remaining at zero, this may lead to a better
solution. We let 6 be the largest value consistent with (2). Thus, the
weights Xu must add up to 2 on links from each city and no weight is
negative. However, in setting Xn=S we adjust only the basic set of
variables, leaving all other nonbasic variables at zero value. This is

* The term potential is used by T. C. Koopmans in an analogous connection for
the transportation problem.'



THE TRAVELING-SALESMAN PROBLEM 401

worked out on the map shown in Fig. 4. Here the maximum value of 6 is
1, and this leads to a 3-cycle (1 2 3) and a 2-cycle (4 5) (Fig. 5).

This is not a tour, so we add a loop condition which excludes this
solution but which is satisfied by all tours. In this case X4i<i or

.r45+.V6—1=0, (,!/6>0) (11)

is such a condition. Accordingly, we start over again using the five
equations (2) and the sixth equation (11). This time we will need six
basic variables and it will be convenient to have xu (the one we set equal to
e previously) included with those associated with the tour. Thus, the

FIGURE 5 FIGURE 6

starting solution is as follows: The basic variables have values a: 12 =
X23 = x34 = X46 = X6i= 1, Xi3 = 0. All Other Xu=O. This solution is shown 111

Fig. 6. The presence of an upper bound on X46 or relation (11) is depicted
in Fig. 6 by a block symbol on (4, 5). Now we multiply equation

5 / 6 \

(11) by ire, add it to 23 x/ ( 23 Xi,—2 j , subtract the sum from

and collect terms in

23 di

23
as before. The result is

5

=— 23 (1 — (12)
/ = i

where hij = iri-\-Trj — du e x c e p t 646 = 5r44-^6 — (c?46 — ^e) .

Now determine the six values of ir/ by setting 5/j=0 corresponding to
basic variables xu:

5l2 = ^23 = 834 = ^46 = 561 = 613 = 0 , ( 1 3 )

from which it follows that

(14)

To evaluate TI we note that there are six equations in six unknowns.
These are shown on the map below (Fig. 7). The three conditions about
the triangular loop (1, 2, 3) pennit us to solve for TTI, r%, xj. Branching
out from the triangle we get next ir4 and TTS and finally •KI,. Thus, we
determine firstthat27ri=rfi2—(^23+^31 = 5 — 5-1-6 so that 5ri=3, ir2 = 2, ir3 = 3.
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Working down, ir4 = 5, 1^ = 5. Thus, X4+X6=—x6+6, so X6=—4. These
values are shown adjacent to each city in Fig. 7.

With these values of wi all remaining Su = (ir,+irj—d!j)<0; hence,
with X6<O we have the right side of (14) always positive, so the tour
(12 3 4 5) is minimal. This illustrates the use of the simplest of the loop
conditions, namely, an upper bound on the variable Xts.

Example 3

Here we consider a six-city case (Fig. 8) where the optimal tour is not
our initial choice. Let the starting tour be (1 2 3 4 5 6) of length D(x) =
23. If we proceed as before, relation (8) implies that the TT; satisfy the
relations shown in Fig. 8. In this case (and this is generally true for

1

2

^ 3
o 4

5

6

\

4

3

7

7

6

\
2

5

7

7

\
5

6

6

\
3

5
: \

3 | \

2 3 4
C i t y

5 6

FIGURE 8

loops with an even number of links) the sum of equations on links (1, 2),
(3, 4), (5, 6) is identical with the sum for (2, 3), (4, 5), (6, 1) except for
different constant terms, so that the system of equations in TTI is incon-
sistent.

This difficulty can be avoided if the following general rule is followed:
The set of basic variables must be so selected that when the remaining
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Xu are fixed, the values of the basic variables are uniquely determined.
This means the matrix of coefficients of the basic variables is nonsingular
(i.e., their determinant is non vanishing). Since the xj satisfy a system of
equations whose coefficient matrix is the transpose of this matrix, the x/
will be uniquely determined also. In the six-city case, one may augment
system (2) with the additional upper-bound condition

(y7>0) (15)2:45+2/7=1

and select 0:13 as a basic variable in addition to the basic variables X/j cor-
responding to (/, J) on the tour. Then, letting X7 be the weight associ-
ated with restriction (15), the x; satisfy relations in Fig. 9.

%

FIGURE 10 FIGURE 11

The value of xi = % can be determined from the odd loop (12 3)
by alternately adding and subtracting the equations around the loop.
The others can then be evaluated immediately. In this case, we have,
analogous to (14),

D(x)-D(x) = -J^8ijx,j-Tnyj, (16)

where 5/^=0 if Xu is a basic variable and 8ij = ir,+irj—dij otherwise.
Since §46 = 3, increasing the value of X46 to 6 (while all other nonbasic
variables remain zero), with corresponding adjustments m the basic
variables, will yield D(x)-D{x) = -3e<0. In Fig. 10 it is seen that
the largest value oi 6 = 1 and the resulting solution is Fig. 11, which is
not a new tour, but two loops. However, we can exclude this solution by
imposing the additional restriction satisfied by all tour solutions

Xu+X23+Xzi<2, or Xu+X23+Xn+ys = 2, {ys>0) (17)

since in Fig. 11 the inadmissible solution has a;i2-|-a;23+a;3i = 3. We
now start all over again augmenting relations (2) by (15) and (17). Let



404 DANTZIG, FULKERSON, AND JOHNSON

the basic variables be the same as before but include X46 (i.e., the one we set
equal to d in Fig. 10). Let x/ for 1, 2, • • •, 8 be the weights assigned
to these relations respectively in forming D{x)—D{x); then the x/ satisfy
the relations shown in Fig. 12, where the loop condition (17) is symbolized
by the dotted loop in the figure.

FIGURE 13

The value of xe = 2 may be evaluated from the odd loop ( 6 4 3 2 1)
by alternately adding and subtracting the equations in x/ shown on this
loop. The other xj can then be immediately determined. This time

D{x) -D{x) = - E djjXrj—rm—^m (18)

where 6//=0 for Xjj a basic variable and 8ij = iri+Trj — du otherwise.
Since «24 = 1 while all other 81,<0, we set Xu=d; then the adjustments
in the values of the basic variables necessary to satisfy (2), (15), (17) are

FIGURE 14
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shown in Fig. 13 and the new solution ior 6 = 1 is a new tour x with length
D{x)=D{x) — l=22, Fig. 14. We may now drop Xu = O from the
basic set of variables (or alternatively Xn) and replace it by xu as a new
basic variable. This yields the relations for w, of Fig. 15. The expression
for D(x)—D{x) is similar to (18). It can now be tested that all 57/<0
corresponding to non-basic xu, and the coefficients of yi and y^ are X7<O,
ir8<0, so that the new tour is established as optimal.

AN ESTIMATION PROCEDURE

In any linear programming problem with bounded variables, an es-
timate is available of how much a basic solution differs from an optimal
solution. Let D{x) represent a linear form to be minimized and D{x) be
the value for some basic solution x where variables {xi,X2, •••,Xn'),
represented by the symbol x, satisfy a system of equations as well as
bounds 0<Xj<rj. If the equations are multiplied by weights x/ and
substracted from Dix), then (as we have noted earlier)

D{x)-D{x) = -J^djxj ixj>0) (19)

where x/ are chosen such that 5̂  = 0 if the corresponding Xj is a basic
variable. We may now split the right side of (19) into positive and
negative parts and obtain a lower bound for the difference by dropping the
positive part, i.e.,

Dix)-D{x) = -J2SjXj-T5jXj, (xj>0) (20)
8j>0 6j<0

D{x)-D{x)>-J^djXj>-E, {E>0) (21)

where —E is some estimate for the negative part. By setting Xj = r
we obtain in particular

For the traveling-salesman problem the variables Xu must be either
0 or 1 if a; represents a tour. From (20), no link (/, J ) can occur in an
optimal tour if

5u<-E, (23)

hence all corresponding variables X[j can be dropped from further con-
sideration.

During the early stages of the computation, E may be quite large and
very few links can be dropped by this rule; however, in the latter stages
often so many links are eliminated that one can list all possible tours that
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use the remaining admissible links. By extending this type of combin-
atorial argument to the range of values of the 'slack' variables j/jc, it is
often possible at an earlier stage of the iterative algorithm to rule out so
many of the tours that direct examination of the remaining tours for
minimum length is a feasible approach.

THE 49-CITY PROBLEM*

The optimal tour x is shown in Fig. 16. The proof that it is optimal is
given in Fig. 17. To make the correspondence between the latter and its
programming problem clear, we will write down in addition to 42 relations
in non-negative variables (2), a set of 25 relations which suffice to prove
that D{x) is a minimum for x. We distinguish the following subsets of the
42 cities:

Si=
S2 =
S3 =
S4 =

U,
13,
11,
(11

2,41,
4, •••

2, •
,12, •

421
,91
, 9, 29, 30,
••,231

• ,42|

S.,=
S6 =
S7 =

113,
(13,
124,

14,
14,
25,

15,
26,

,231
16, 171
271.

Except for two inequalities which we will discuss in a moment, the pro-
gramming problem may now be written as the following 65 relations :t

2 x / / = 2 (/•=!, ••• ,42), X4i..<l, X4,<1, X7.6<1,

^33,32^ 1, X) j ,34^1j X37,36^1, 2 XlJ^2, Zr XlJ^2,

2 xij>2, 2 xjj>2, 2 xjj>2, S xij<4y 2

The remaining two relations (66 and 67) are perhaps most easily described
verbally.

66: xu.tb minus the sum of all other x/j on links out of 15, 16, 19, except for Xis.is,
Xi8.i6, XI7.16, X19.18, and x^.w, is not positive

67: 'ZaijXu<i2, where 023.22=2, 026.25=0, all other o/y=l except o/^ = 0 if
XIJ is a non-basic variable and either (a) / is in S3, J not in S3, or (b) I or
J is 10, 21, 25, 26, 27, or 28.t

These two inequalities are satisfied by all tours. For example, if a
tour were to violate the first one, it must have successively Xi6,i4 = l,

* As indicated earlier, it was possible to treat this as a 42-city problem.

t "Ls.S XIJ means the sum of all variables where only one of the subscripts 7 or •/ is
in S. 2s XIJ means the sum of all variables such that / and J are in S—see relations
(4), (5), (6).

% We are indebted to I Glicksberg of Rand for pointing out relations of this
kind to us.
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.^18,15=1, Xi8,io = l , but also a;i9,i8=l, a contradiction. The argument
that each tour satisfies the second inequality is similar. If a tour x exists
with Sa , jX7j>42, then clearly ^2^,22=1, and also Xio,q = J'2'»,28= 1, since by
(a) these are the only links connecting 83 and S3 having non-zero a,j. (See
Fig. 17 to distinguish between basic and non-basic variables.) More-
over, since a26,26 = O, it follows from (b) that .r26,io = 3-26,24 = a-27,26 = X28,2-. = l.
Again, (b) and the fact that a^ 21 = 0 imply 0-2120 = 3-22,21 = 1 Now look at
city 27. There are three possibilities: X27 24 = 1, "̂27 22 = 1, or a-28 27 = 1 But
each of these contradicts the assumption that i is a tour.

These relations were imposed to cut out fractional solutions which
satisfy all the conditions (2) and (4). A picture of such a fractional
solution, which gives a smaller value for the minimizing form than does
any tour, is shown in Fig. 18. Notice that it does not satisfy relation 67.

FIG 18. A fractional solution x satisfying all loop conditions with

We assert that if the weights x/ are assigned to these restraints in the
order presented above, then the values as given in Fig. 17 satisfy 8ij=0
for all variables Xu in the basis. With these values of x; in the expression
for D(x)—D{x), all Sij<0 corresponding to variables Xu and X43, X44,
• • •, xe7 correspondmg to variables y^^, • • •, j/67 are appropriately positive
or negative (positive if its y occurs with a minus sign in the relation, nega-
tive otherwise) with the exception of X62 = ^^ where a'25,24+y62 = l.
This proves, since £' = H and all the du are integers, that x is minimal.
The length D{x) is 699 units, or 12,345 miles except for rounding errors.
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It can be shown by introducing all links for which 5//> —3'̂  that x
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as x.

CONCLUDING REMARK

It is clear that we have left unanswered practically any question one
might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.
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