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It is shown that a certain tour of 49 cities, one in each of the 48 states and
Washington, D C, has the shortest road distance

HE TRAVELING-SALESMAN PROBLEM might be described as

follows: Find the shortest route (tour) for a salesman starting from a
given city, visiting each of a specified group of cities, and then returning to
the original point of departure. More generally, given an n by n sym-
metric matrix D= (d,;), where d,, represents the ‘distance’ from I to J,
arrange the points in a cyclic order in such a way that the sum of the d,
between consecutive points is minimal. Since there are only a finite
number of possibilities (at most 14 (n—1)") to consider, the problem is
to devise a method of picking out the optimal arrangement which is
reasonably efficient for fairly large values of n. Although algorithms have
been devised for problems of similar nature, e.g., the optimal assignment
problem,* ™ little is known about the traveling-salesman problem. We
do not claim that this note alters the situation very much; what we shall do
is outline a way of approaching the problem that sometimes, at least, en-
ables one to find an optimal path and prove it so. In particular, it will be
shown that a certain arrangement of 49 cities, one in each of the 48 states
and Washington, D. C,, is best, the d;, used representing road distances as
taken from an atlas.

* Historical. NoTe- The origin of this problem is somewhat obscure. It
appears to have been discussed informally among mathematicians at mathematics
meetings for many years. Surprisingly httle in the way of results has appeared in
the mathematical literature.’® It may be that the minimal-distance tour problem
wag stimulated by the so-called Hamiltonian game! which is concerned with finding
the number of different tours possible over a specified network The latter problem
is eited by some as the origin of group theory and has some connections with the
famous Four-Color Conjecture ® Merrill Flood (Columbia University) should be
credited with stimulating interest in the traveling-salesman problem in many quar-
ters. As early as 1937, he tried to obtain near optimal solutions in reference to
routing of school buses. Both Flood and A W. Tucker (Princeton University) re-
call that they heard about the problem first in a seminar talk by Hassler Whitney
at Princeton in 1934 (although Whitney, recently queried, does not seem to recall
the problem) The relations between the traveling-salesman problem and the
transportation problem of linear programming appear to have been first explored by
M. Flood, J. Robinson, T. C. Koopmans, M. Beckmann, and later by I. Heller and
H. Kuhn.45s
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394 DANTZIG, FULKERSON, AND JOHNSON

In order to try the method on a large problem, the following set of 49
cities, one in each state and the District of Columbia, was selected:

1. Manchester, N H. 18 Carson City, Nev. 34 Birmingham, Ala.
2. Montpelier, Vt. 19 Los Angeles, Calif. 35. Atlanta, Ga
3. Detroit, Mich. 20 Phoenix, Ariz 36. Jacksonville, Fla.
4. Cleveland, Ohio 21. Santa Fe, N M. 37. Columbia, § C.
5 Charleston, W Vs 22 Denver, Colo. 38 Raleigh, N C.
6. Lou.isville, Ky. 23. Cheyenne, Wyo. 39. Richmond, Va
7. Inc%lanapolis, Ind. 24 Omaha, Neb 40. Washington, D. C.
8. Ct}xcago, Iit . 25. Des Moines, Towa 41. Boston, Mass
9. Milwaukee, Wis 26. Kansas City, Mo 42. Portland, Me
10 Minneapolis, Minn. S ' s
11. Pierre, S. D. 27. Topeka, I\ar'xs. A. Bs‘,ltn.nore, Md.
12. Bismarck, N. D. 28 Oklahoma City,Okla B Wx}mlngton, Del.
13 Helena, Mont. 29. Dallas, Tex. C Philadelphia, Penn.
14 Seattle, Wash. 30. Little Rock, Ark. D. Newark, N. J
15. Portland, Ore. 31. Memphis, Tenn. E New York, N. Y
16. Boise, Idaho 32 Jackson, Miss. F Hartford, Conn.

G

17. Salt Lake City, Utah 33 New Orleans, La. . Providence, R. I.

The reason for picking this particular set was that most of the road
distances between them were easy to get from an atlas. The triangular
table of distances between these cities (Table I) is part of the original one
prepared by Bernice Brown of The Rand Corporation. It gives diy=
V{7 (dps—11)* (IJ=1,2, - -+, 42), where dy, is the road distance in miles
between I and J. The d;; have been rounded to the nearest integer.
Certainly such a linear transformation does not alter the ordering of the
tour lengths, although, of course, rounding could cause a tour that was
not optimal in terms of the original mileage to become optimal in terms of
the adjusted units used in this paper.

We will show that the tour (see Fig. 16) through the cities 1,2, -- -, 42
in this order is minimal for this subset of 42 cities. Moreover, since in
driving from city 40 (Washington, D. C.) to city 41 (Boston, Massachusetts)
by the shortest road distance one goes through A, B, - - -, G, successively,
it follows that the tour through 49 cities 1, 2, .-+, 40, A, B, -- -, G, 41,
42 in that order is also optimal.

PRELIMINARY NOTIONS

Whenever the road from I to J (in that order) is traveled, the value
zr;=1 is entered into the I,J element of a matrix; otherwise z;,=0 is
entered. A (directed) tour through n cities can now be thought of as a
permutation matrix of order n which represents an n-cycle (we assume

* This particular transformation was chosen to make the dj; of the original table
less than 256 which would permit compact storage of the distance table in binary
representation; however, no use was made of this.
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396 DANTZIG, FULKERSON, AND JOHNSON

n>2 throughout). For example, for n=5, the first matrix displayed be-
low

(0100 0| i’01000
, 0001 0] , j1o0000
lzzdl=]0 0 0 0 1], lzwll=110 0 0 0 1
00100 00100
110000 00010

is a tour since it represents visiting the cities in the 5-cycle (1 2 4 3 5),
while the other matrix is not a tour since it represents visiting the cities by
means of two sub-cycles (1 2) and (3 54 ).

It is clear that all representations for directed tours satisfy the relations
Yan=2 =1, au=0, 1,20
I J

The matrix may be made into a triangular array by reflecting the numbers
above the diagonal in the diagonal. The sum of corresponding elements is
denoted by 1, =x7,45;. Then the matrices above become

lzpsli= ) flzpll=

-

0
01
01

o= -

1 .
10 1

SOOI

Consequently, the sum along the Kth row plus the sum along the Kth
column must now be 2. 'This may be written
Z i+ E T =2, (K=1, RPN (S fEuZO) (1)
JSI=K I>J=K

This device yields a representation for undirected tours and is the one used
throughout this paper. It will be noted that the second array above does
not represent a tour but nevertheless satisfies the relation (1).

For undirected tours, the symbol x;, will be treated identically with
x;r S0 that we may rewrite (1) as

E 1311':2. (x”_>_0, I=1,2, R (1 I#J, a:”Ex") (2)
J=1

The problem is to find the minimum of the linear form
D (x) = E drs %1, (3)

I>J

where the x;;,=0 or 1 and the z,,=1 form a tour, and where the sum-
mation in (3) extends over all indices (I,J) such that I>J.
To make a linear programming problem out of this (see ref. 2) one
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needs, as we have observed, a way to describe tours by more linear re-
straints than that given by (2). This is extremely difficult to do as illus-
trated by work of 1. Heller' and H. Kuhn.® They point out that such
relations always exist. However, there seems to be no simple way to
characterize them and for moderate size n the number of such restraints
appears to be astronomical. In spite of these difficulties, this paper will
describe the techniques we have developed which have been successful in
solving all the problems we have tried by this approach. A surprising
empirical observation is the use of only a trivial number of the many
possible restraints to solve any particular problem. To demonstrate the
procedure, we shall attempt to use direct elementary proofs even though
they were originally motivated in many places by linear programming
procedures.

There are possibly four devices we have used which have greatly re-
duced the effort in obtaining solutions of the problems we have attempted.

First of all, we use undirected tours. This seems to simplify the char-
acterization of the tours when n is small and certainly cuts down the
amount of computation, even for large n. Secondly, and this 1s decisive,
we do not try to characterize the tours by the complete set of linear re-
straints, but rather impose, in addition to (2), just enough linear con-
ditions on the x;, to assure that the minimum of the linear form (3) is
assumed by some tour. For the 49-city problem and also for all the
smaller problems we have considered, such a procedure has been relatively
easy to carry through by hand computation. This may be due in part to
the fact that we use a simple symbolism which permits direct representa-
tion of the algebraic relationships and manipulations on a map of the
cities. 'This third device speeds up the entire iterative process, makes it
easy to follow, and sometimes suggests new linear restraints that are not
likely to be obtained by less visual methods. Finally, once a tour has been
obtained which is nearly optimal, a combinatorial approach, using the
map and listing possible tours which have not yet been eliminated by the
conditions imposed on the problem, may be advantageous. This list can
be very much shorter than one would expect, due to the complex inter-
locking of the restramnts. However, except for short discussion in the
section below, “An Estimation Procedure,” this method will not be de-
scribed in detail although it has worked out well for all examples we have
studied.

An important class of conditions that tours satisfy, which excludes
many non-tour cases satisfying (2), are the ‘loop conditions’ These are
linear inequality restraints that exclude subeycles or loops. Consider a
non-tour solution to (2) which has a subtour of n,<n cities; we note that
the sum of the z;; for those links (I,J) in the subtour is n;. Hence we can
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eliminate this type of solution by imposing the condition that the sum of
z1; over all links (7,J) connecting cities in the subset 8 of n; cities be less
than n,, ie.,

; x”Snl—l (4‘)

where the summation extends over all (I,J) with I and J in the n, cities S.
From (2) we note that two other conditions, each equivalent to (4), are

2=z <n—m—1, (5)

where § means the summation extends over all (7,J) such that neither /
nor J is in S, and

> au>2, (6)
88

where SS means that the summation extends over all (I,/) such that /
isin S and J not in S.

There are, however, other more complicated types of restraints which
sometimes must be added to (2) in addition to an assortment of loop con-
ditions in order to exclude solutions involving fractional weights .
In the 49-city case we needed two such conditions. However, later when
we tried the combinatorial approach, after imposing a few of the loop
conditions, we found we could handle the 49-city problem without the use
of the special restraints and this would have led to a shorter proof of
optimality. In fact, we have yet to find an example which could not be
handled by using only loop conditions and combinatorial arguments.

THE METHOD
The technique will be illustrated by a series of simple examples.

Ezample 1

First consider a five-city map gorming a regular pentagon of unit length
per side and with length 13 (v/5+1)=1.7 on a diagonal (Fig. 1). Sup-

Figure 1
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pose that the problem is to minimize (3) subject only to (2) Start
with a tour which is conjectured to be optimal, obviously (1234 5).
In this case the values of x;,, denoted by %, are Fn=In==Ty=Ts==Tn=1
and all other &,=0. The variables x;; corresponding to links on the tour
are called ‘basic variables.” The length of the tour given by the linear
form (3) for x=% 18 D(£)=35. There are five equations in (2). Mul-
tiply each by a parameter =; to be determined, and then subtract the
sum from (3). Thus, we are led to

D(T) =IZ drsxry— ZWI <ZIIIJ“2> (ZIJExJI; I?ét])
>J J=

I=1
n

=— 2 (m+m —di)zy+2 >

I>J 1

Denote the coefficients of x;, by &, so that

D(x) = _Z 511x11+2i . (511 =7f1+7f.1“du) (7)

I>J 1

Now determine the five n; values so that §;, corresponding to basic vari-
ables vanish:
611 - 0, (fOI‘ .f[_] - 1) (8)

1e., if the link (1,J) is on the tour in question. Note that to solve for the

7 we have five linear equations in five unknowns.
If now we set x;; =%, in (7), then £,,8;, =0 for all ({,J) and

D(®) =2 Z =3, ©)

Subtracting (9) from (7) we have finally
D(.’E) —D(.'f) = "—Z 611371J. (10)
I>J

For the regular pentagon =, =14 for I=1, 2, 3, 4, 5 solves (8), and so
8y=%%(1—4/5)<0 on a diagonal, i.e., 8,<0 for every (I,J). Thus,
the right side of (10) 1s always nonnegative or D(z) > D(Z) for all x satis-
fying (2), and in particular all other tours are longer than the tour repre-
sented by .

Example 2

Next, take another five-city problem whose map is not a regular
pentagon (Fig. 2). We start with the tour (123 4 3) of length D($)=32
where the basic variables take on the values fp=fyn=40u=FIs=3%n=1 and
all other £,,=0. Repeat the steps in the previous problem leading to (10)
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I
2
0=3|6|5
ANEBE
5|8 [izfi0]6 [\
I 2 3 45

FiGure 2
where, as before, calculate the m; by setting é,, =0 for §,, corresponding
to basic variables x;,. The five equations that the w, must satisfy are
m+me=3, met-my =5, m+ =8, m+m =6, ms+m=8
By alternately subtracting and adding these equations one obtains.

27!'1 =d12—d23+d34‘“d45+d51 =5"'5+8 "6+8 = 10,

or 1l'1=5, 7l'2=0, 7r3=5, 1l'4=3, 7I’5=3.

The factors w; which multiply equations (2) to form (10) are called
‘potentials.”®* There is one such potential associated with each city I,
and these are readily computed by working directly on the map of the
cities (see Fig. 3).

mF W5 e S=my+y

1+8

Figure 3 Ficure 4

To form other §,,, add the =, and =, of eity I and city J and subtract
off the distance d;; between them. In this case we note that execept for
831 =5+5—6=+4, all the other §;, are <0.

We see from (10) that if r; were to take on a positive value, z3 =6,
the other nonbasic variables remaining at zero, this may lead to a better
solution. We let 6 be the largest value consistent with (2). Thus, the
weights x;; must add up to 2 on links from each city and no weight is
negative. However, in setting r; =8 we adjust only the basic set of
variables, leaving all other nonbasic variables at zero value. This is

* The term potential is used by T. C. Koopmans in an analogous connection for
the transportation problem.$



THE TRAVELING-SALESMAN PROBLEM 401

worked out on the map shown in Fig. 4. Here the maximum value of 8 1s
1, and this leads to a 3-cycle (1 2 3) and a 2-cycle (4 5) (Fig. 5).

This is not a tour, so we add a loop condition which excludes this
solution but which is satisfied by all tours. In this case 24<1 or

Iistye—1=0, (ys20) (1)

is such a condition. Accordingly, we start over agamn using the five
equations (2) and the sixth equation (11). This time we will need six
basic variables and it will be convenient to have zy; (the one we set equal to
§ previously) included with those associated with the tour. Thus, the

Ficure 5 FicuRre 6

starting solution is as follows: The basic variables have values T1,=
Im=Fu=Zs==Fn=1, £13=0. All other Z,,=0. This solution is shown m
Fig. 6. The presence of an upper bound on x4 or relation (11) 1s depicted
n Fig. 6 by a block symbol on (4, 5). Now we multiply equation
5 5
(11) by s, add it to Z 1 <E 17 —2 ), subtract the sum from Z diy T4
I=1 J=1
and collect terms in z;, as before. The result is

5
D diy Try=— P T +22 mtms (L—ye) (12)
I>J I1>J 1=1
where 8;; =n;+Fm,—d;s except 85 =ms+ 15— (das—6).
Now determine the six values of =, by setting &, =0 corresponding to
basic variables x;,:

512=523:534=54s=551=513=0’ (13)
from which it follows that
D(IE)-—D(II—J)= ‘Z 815 Tyg— s Ye. (14)

To evaluate x; we note that there are six equations in six unknowns.
These are shown on the map below (Fig. 7). The three conditions about
the triangular loop (1, 2, 3) permit us to solve for my, m, m. Branching
out from the triangle we get next =, and ms and finally ms. Thus, we
determine first that 2m =dys—do+dy =5—5+6 so that = =3, m=2, m=3.



402 DANTZIG, FULKERSON, AND JOHNSON

Working down, m,=5, ms=>5. Thus, m+m=—ms+6, 50 ms==—4. These
values are shown adjacent to each city in Fig. 7.

With these values of n; all remaining &;, = (m;+m,—d;,) <0; hence,
with 7s<0 we have the right side of (14) always positive, so the tour
(12345) is minimal. This illustrates the use of the simplest of the loop
conditions, namely, an upper bound on the variable 4.

Ficure 7

Ezxample 8
Here we consider a six-city case (Fig. 8) where the optimal tour is not

our initial choice. Let the starting tour be (1 234 56) of length D(&)= -

23. If we proceed as before, relation (8) implies that the =, satisfy the
relations shown in Fig. 8. In this case (and this is generally true for

+ T,
P IN
N
2|4
>3132
D= -
© 41755
s{7{7161]3
sle|7]e]|s]3]\
i 2 3 4 5 6
City
Ficure 8

loops with an even number of links) the sum of equations on links (1, 2),
(3, 4), (5, 6) is identical with the sum for (2,3), (4, 5), (6, 1) except for
different constant terms, so that the system of equations in =, is incon-
sistent.

This difficulty can be avoided if the following general rule is followed:
The set of basic variables must be so selected that when the remaining

e o s
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1,y are fixed, the values of the basic variables are uniquely determined.

This means the matrix of coefficients of the basic variables is nonsingular

(i.e., their determinant is nonvanishing). Since the =, satisfy a system of

equations whose coefficient matrix is the transpose of this matrix, the =,

will be uniquely determined also. In the six-city case, one may augment
system (2) with the additional upper-bound condition

Totyr=1 (120) (15)

and select 33 as a basic variable in addition to the basic variables z;; cor-
responding to (I, J) on the tour. Then, letting = be the weight associ-
ated with restriction (15), the =, satisfy relations in Fig. 9.

%, T+ W,m4 3%,

7 9. I
72 (¢ 2 (9 evo
LS AT 3-Mp=Wet T, I !
(m72-1) ©
-2
FIGURE 9 Ficure 10 Ficure 11

The value of m =34 can be determined from the odd loop (12 3)
by alternately adding and subtracting the equations around the loop.
The others can then be evaluated immediately. In this case, we have,
analogous to (14),

D(x) —D(f) = "Z 615 T — 77 Vs, (16)

where 8;;=0 if z;; is a basic variable and &,=m+=,~d;, otherwise.
Since 84=3, increasing the value of rs to 6 (while all other nonbasic
variables remain zero), with corresponding adjustments in the basic
variables, will yield D(z)—D(#)=—36<0. In Fig. 10 it is seen that
the largest value of 6=1 and the resulting solution is Fig. 11, which is
not a new tour, but two loops. However, we can exclude this solution by
imposing the additional restriction satisfied by all tour solutions

x12+2723+1?31S2, or $12+1323+x31+y8=2, (ySZO) (17)

since in Fig. 11 the inadmissible solution has zp+zu+z,=3. We
now start all over again augmenting relations (2) by (15) and (17). Let
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the basic variables be the same as before but include x4 (i.e., the one we set
equal to 6 in Fig. 10). Let =, for 1, 2, ---, 8 be the weights assigned
to these relations respectively in forming D(z)—D(£); then the =, satisfy
the relations shown in Fig. 12, where the loop condition (17) is symbolized
by the dotted loop in the figure.

- i ~
/ 4 17'+1r2-4-1r5 30N
\ \
N 3 2Ty J
/
1rs=-3
m+T 26 Sz, + ,
2
Mg+ Me=3 3-1r,=7r4-4h'rr5
i (mp=-1)
Figure 12 Ficure 13

The value of ms=2 may be evaluated from the odd loop (6 43 2 1)
by alternately adding and subtracting the equations in x; shown on this
loop. The other m; can then be immediately determined. This time

D(x)—D(&) = —Z 010%rs — ™Y1 — WsYs (18)

where 6;;,=0 for a;; a basic vanable and &,=m+m;—di; otherwise.
Since 8, =1 while all other §,,<0, we set x.=8; then the adjustments
in the values of the basic variables necessary to satisfy (2), (15), (17) are

Figure 14 Figure 15
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shown in Fig. 13 and the new solution for §=1 is a new tour £ with length
D(&)=D(z)—1=22, Fig. 14. We may now drop ru=0 from the
basic set of variables (or alternatively 1) and replace it by zy as a new
basic variable. This yields the relations for =, of Fig. 15. The expression
for D(z)—D(Z) is similar to (18). It can now be tested that all §,,<0
corresponding to non-basic x5, and the coefficients of %7 and ys are =<0,
m <0, so that the new tour is established as optimal.

AN ESTIMATION PROCEDURE

In any linear programming problem with bounded variables, an es-
timate is available of how much a basie solution differs from an optimal
solution. Let D(z) represent a linear form to be minimized and D(Z) be
the value for some basic solution Z where variables (x3, 73, -+, Tn’),
represented by the symbol z, satisfy a system of equations as well as
bounds 0<xz,;<r,. If the equations are multiplied by weights =, and
substracted from D(z), then (as we have noted earlier)

D@ -D@) ==X oa (w20 (9)

where m; are chosen such that §,=0 if the corresponding z, is a basic
variable, We may now split the right side of (19) into positive and
negative parts and obtain a lower bound for the difference by dropping the
positive part, i.e.,
D(x)—D(x) = —620&@—2 8,25, {x;>0) (20)
J >

&y <0

D(x)=D(®)2 - X 8:5:2 ~E, (E20) (21)
§y>0
where —E is some estimate for the negative part. By setting x,=r,,
we obtain in particular

—-D(z)> — .

D@ =D@2~T b, 29)

For the traveling-salesman problem the variables x;;, must be either

0 or 1 if x represents a tour. From (20), no link (/, J) can occur in an
optimal tour if

oy < —E, (23)

hence all corresponding variables x;, can be dropped from further con-
sideration.

During the early stages of the computation, E may be quite large and
very few links can be dropped by this rule; however, in the latter stages
often so many links are eliminated that one can hst all possible tours that



SN0 ¢} JO 1noj jvwndo oy, 91 oIy

$9jiw U} pessaidxe 240 sijun pasnipo ayy
uaym sSo|lw GHE'2i 4O yibuae) O SDY AN0} SIYYL

62

02

82

92 L2

vz

Ge

Oi




Iz SolqBLIBA O1SR( [BUOIHIPPY 0} puodsadlod (f°f) squl pajjo fr-lu st (f4) auyg
U0 apis pusy-1Jef oy} ‘deuwr 9y} uo Umoys au¥ Tx Lq paysnes suolyenbs oy jo opIs puvy-1ydu eyl AuQ L] ‘OLY

2-: %% s91-="% z2-:%%
2-=%% G-z pi-s
_. 8§ . o8 _. 9",
w1 @// p-= ¥y S0 4 6-=3
<
9 //W/;mm poz Sy G9i-: 'Sy g9-:5%
4 291z 49,951 S o295y G- 05 oot
N 29, 62
“ 2 ss L6, ¢
5.0 |29 0y 2-= 92~ : " 2-:- %
€ 2y -2t 12
Y %69 & ~ 9, 19, ¥5
= s 63 4919, ¥y 3
ot mnd e VP L)
=) 19,5, g /AN e
29
w12/ [i9 P
8 -0z
i 4 éw,a
19, Se 29, 19 €S ™
11-6, 19, €5, - N
29,09, 19y -L 0 4 U i .&,,W;
s rL-a/ oy @\ —
19, 65 o]} 6 9 55 T~
RS IV \ b T
0y - 26 g
2 S
ENCEN
9,55 g/ / G n@% ~\ &
/ i %u-*%-2%-9 19, ¥9 y
o .29 N\ " u-sg,
/ g'9-:29 N
/ Jis, ss Lo ENCIRCN
8,9 \\ u-%-¢ ) 94 0 _Sh-mn
3 9.
5 2(i) Gy P oo ©) _ 9, Sy-c2 iy, 0
“u-o11) < Py 58 _
nm@ @ ¥ mw:mw ~
(1] 09 ~92 @
i9 2= 4 18
U4~ 9 G0="l ]
4-2)

Gyz:"u
s9

407



408 DANTZIG, FULKERSON, AND JOHNSON

use the remaining admissible links. By extending this type of combin-
atorial argument to the range of values of the ‘slack’ variables yg, it is
often possible at an earlier stage of the iterative algorithm to rule out so
many of the tours that direct examination of the remaining tours for
minimum length is a feasible approach.

THE 49-CITY PROBLEM*

The optimal tour £ is shown in Fig. 16. The proof that it is optimal is
given in Fig. 17. To make the correspondence between the latter and its
programming problem clear, we will write down in addition to 42 relations
in non-negative variables (2), a set of 25 relations which suffice to prove
that D(x) is a minimum for Z. We distinguish the following subsets of the
42 cities:

S:=1{1, 2, 41, 42} Ss=1{13, 14, - -, 23}

S:=(3,4, ---, 9} Se= {13, 14, 15, 16, 17}

Sa=1{1,2, -,9,29,30, - ,42]  S;=(24, 25, 26, 27}.

S¢={11,12, ---, 23}
Except for two inequalities which we will discuss in a moment, the pro-
gramming problem may now be written as the following 65 relations:t

? xry=2 (I=l; 742)v 1'41.1S1, Ty 331, 1‘7,551,

T9s%<1, reu<l, run<l, 1<, T20.851,

253,251, rnu<l, ra.2:<], 229,551, ran<l,

021, 755,34 %1, Zax<l, Z zn22, Z x22,
81.8; 82,8,

2 z22, Z 122, Z 22, Z <4, 2 rs<38.
83.8; 84,8, 85,85 8 87

The remaining two relations (66 and 67) are perhaps most easily described
verbally.

66: 4.5 minus the sum of all other z;; on links out of 15, 16, 19, except for x;5.15,
T18.165 T17.16, L1918y &Ild T20,19, iS not positlve

67: Zaryx1;<42, where an.»=2, az%.2:=0, all other ar;=1 except a;;=0 if
Zr7 i8 a non-basic variable and either (a) I'is in S;, J not in S;, or (b) I or
J is 10, 21, 25, 26, 27, or 28.1

These two inequalities are satisfied by all tours. For example, if a
tour were to violate the first one, it must have successively zi14=1,

* As indicated earlier, 1t was possible to treat this as a 42-city problem.

t Zs.5 177 means the sum of all variables where only one of the subscripts I or J is
in 8. g r;; means the sum of all variables such that I and J are in S—see relations
), (5), (6).

t We are indebted to I Glicksberg of Rand for pointing out relations of this
kind to us.
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rs=1, ri1,=1, but also x1s=1, a contradiction. The argument
that each tour satisfies the second inequality is similar. If a tour z exists
with 2 a;,01,>42, then clearly xp;00=1, and also rjp9=x0s=1, since by
(a) these are the only links connecting S; and S; having non-zero a,;. (See
Fig. 17 to distinguish between basic and non-basic variables.) More-
over, since ags 95=0, it follows from (b) that xe1s=mrws u==Te 20=2Lege;=1.
Again, (b) and the fact that 2 =0 Imply 25y w=22xn1=1 Now look at
city 27. There are three possibilities: xo =1, 2oy =1, or 155 r=1 But
each of these contradicts the assumption that r is a tour.

These velations were imposed to cut out fractional solutions which
satisfy all the conditions (2) and (4). A picture of such a fractional
solution, which gives a smaller value for the minimizing form than does
any tour, is shown in Fig. 18. Notice that it does not satisfy relation 67.

Fic 18. A fractional solution z satisfying all loop conditions with
E d[J .TIJ=698.

We assert that if the weights 7, are assigned to these restraints in the
order presented above, then the values as given in Fig. 17 satisfy 8,,=0
for all variables x;; in the basis. With these values of =, mn the expression
for D(x)—D(&), all 8,,<0 corresponding to variables x;; and g, 7,

-+, mer corresponding to variables y, - - -, ye are appropriately positive
or negative (positive if its y occurs with a minus sign in the relation, nega-
tive otherwise) with the exception of wp=14 where xy+yn=1.
This proves, since E=14 and all the d,, are integers, that £ is minimal.
The length D(Z) is 699 units, or 12,345 miles except for rounding errors.
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It can be shown by introducing all links for which 8,,> —14 that £
is the unique minimum. There are only 7 such links in addition to those
shown in Fig. 17, and consequently all possible tying tours were enumer-
ated without too much trouble. None of them proved to be as good as £.

CONCLUDING REMARK

It is clear that we have left unanswered practically any question one
might pose of a theoretical nature concerning the traveling-salesman
problem; however, we hope that the feasibility of attacking problems
involving a moderate number of points has been successfully demon-
strated, and that perhaps some of the ideas can be used in problems of
similar nature.
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