
1

Solving the Assembly Line Balancing Problem with
LocalSolver

Léa Blaise1,2, Thierry Benoist2 and Christian Artigues1

1 LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France
2 LocalSolver, 24 Avenue Hoche, Paris, France

lblaise@localsolver.com

Keywords: local search, ejection chains, packing, solver.

1 Introduction and context

This paper introduces two algorithms implemented in LocalSolver, yielding great results
on problems that present an ordering structure or a packing structure, such as the Assembly
Line Balancing Problem.

LocalSolver is a global mathematical programming solver, whose goal is to offer a
model-and-run approach to optimization problems, including combinatorial, continuous,
and mixed problems, and to offer high quality solutions in short running times, even on
large instances. It allows OR practitioners to focus on the modeling of the problem using
a simple formalism, and then to defer its actual resolution to a solver based on efficient
and reliable optimization techniques, including local search, but also linear, non-linear,
and constraint programming. The local search algorithms implemented in LocalSolver are
described in Gardi et al. (2014).

We focus here on the Assembly Line Balancing Problem, and we show how the algo-
rithms implemented in LocalSolver produce excellent results on this problem. The Assembly
Line Balancing Problem is described as follows. We consider a set of n tasks, of fixed dura-
tion, that are partially ordered by precedence relations. The problem consists in assigning
the tasks to n workstations, while ensuring that the total duration of a workstation’s tasks
does not exceed the cycle time c. The precedence relations between the tasks impose that a
task can be assigned to the same workstation as its predecessors, or to a later workstation,
but cannot be assigned to an earlier workstation. The objective is to minimize the number
of workstations used.

The LocalSolver model for the Assembly Line Balancing Problem is straightforward,
written using set variables. In LocalSolver’s formalism, a set variable of domain n is a deci-
sion variable whose value can be any (unordered) subset of {0, ..., n−1}. Each workstation
S is then modeled using a set variable of domain n, whose value is equal to the set of tasks
it contains. Since each task must be assigned to exactly one workstation, we constrain the
set variables to form a partition of {0, ..., n− 1}.

2 Greedy algorithm

In this Section, we introduce a greedy algorithm, working both as an initialization
algorithm and as a “destroy and repair” local move, taking the capacity and precedence
constraints into account. The implementation of this algorithm being as generic as possible,
it is not only applicable to the Assembly Line Balancing Problem, but to any problem
presenting an ordering structure and a packing structure on its set variables.



2

2.1 Building an initial feasible solution

In the LocalSolver model for the Assembly Line Balancing Problem, the precedence
constraint between two tasks t1 and t2 is written:

constraint find(stations, t1) <= find(stations, t2); (1)

The find operator takes two arguments: an array of set variables of domain n and an
integer expression between 0 and n − 1, and returns the index of the set variable which
contains the requested element (or -1 if none of the set variables contain the element). The
constraint written above then reads “The chosen workstation for task t1 must be lower or
equal to the chosen workstation for task t2”.

When such precedence constraints are detected in the model, an ordering on the set
variables can be deduced. We can then build an initial solution verifying the precedence
constraints between the tasks, as well as the capacity constraints on the workstations. The
initialization algorithm is as follows. Let S0, ..., Sn−1 be the set variables of the model
(in increasing order). Each set variable is initially empty. An element 0 ≤ t ≤ n − 1
(representing a task in the case of the Assembly Line Balancing Problem) is said to be
eligible for insertion into a set variable S if all of its predecessors have already been assigned
to a set variable, and if its weight (the task’s duration) is lower than the remaining space
in S (its capacity minus the total weight of the elements it already contains). Let E be the
set of eligible elements. The first set to be filled is S = S0. While the set of eligible elements
is non empty, an element t ∈ E is randomly chosen, and inserted into S. The set of eligible
elements is then updated accordingly. When there is no eligible element anymore, we move
on to the next set variable, until every element has been assigned to a set variable. The
complexity of this algorithm is O(n2).

This algorithm allows LocalSolver to immediately obtain a first feasible solution for
any instance of the Assembly Line Balancing Problem. This is particularly useful on the
large instances, for which finding a feasible solution from a random assignment of the set
variables’ elements could take several seconds.

2.2 “Destroy and repair” local move

The greedy algorithm described in 2.1 can be adapted to be integrated into LocalSolver’s
local search component as a “destroy and repair” local move. Indeed, we can choose to apply
it to fill a subset of the model’s set variables rather than all of them. For example, in the
case of the Assembly Line Balancing Problem, we can choose to apply it not to distribute
the whole set of tasks into the different workstations, but to reorganize the tasks already
assigned to a subset of workstations only. When applying this local move, the current
solution is re-optimized by destroying and then rebuilding part of the solution.

To further diversify the explored solutions, the algorithm can either by applied by
increasing order of the set variables (as in the initialization algorithm described in 2.1), or
by decreasing order of the set variables.

3 Packing move based on ejection chains

In this Section, we describe another local move implemented inside LocalSolver’s local
search component, which makes use of the packing structure detected in the model (the
total duration of a workstation’s tasks must be lower than the cycle time). This local
move is based on ejection chains: it consists in a series of element movements from one set
variable to another. The move is similar to one of the algorithms described by Capua et al.
(2018) to solve the Bin Packing Problem with Conflicts. The authors also describe a local



3

move based on ejection chains, with several differences. In their algorithm, all the sets and
elements of the problem are considered, and a random ordering of the sets is imposed (an
element can only be moved from its current set to another set of higher index). On the
contrary, our local move only focuses on a subset of unordered set variables.

The local move’s procedure is as follows. We start by choosing a random subset of the
model’s set variables. Let S be the set variable with the smallest weight among all chosen
sets. An element t ∈ S is randomly chosen to be ejected from S. The goal of the local
move is to reorganize the other selected set variables’ elements, so that t can be inserted
into one of them. If t can be inserted into a new set variable S? without violating the
capacity constraint on S?, t is assigned to S?. The move is successful. If not, we try to
swap it with another, strictly smaller element. In order to do this, we consider the smallest
element t′ /∈ S that can be replaced by t. If no such element exists, or if the weight of t′ is
larger than that of t, the local move results in failure, and we revert back to the previous
solution. Otherwise, t′ is ejected from its current set variable S′, so that t can be inserted
in its place. The same procedure is then repeated, with t′ as the new current element, until
the move ends in either success or failure. Since the weights of the ejected elements are
strictly decreasing, the move ends in at most N steps, where N is the total number of
elements in the selected subset of set variables. The complexity of each step is O(N).

Figure 1 illustrates the local move’s procedure on a small example with eight elements
distributed into five set variables. The first element to be moved is 7, then 0, then 4, and
finally 6.

Sk0 1 2 3 4

capacity

1

0

2
3

4

5

6

7

⇒

Sk0 1 2 3 4

capacity

1

7

2

6

3

0

5

4

Fig. 1. Example – Solutions before (left) and after the local move (right)

This local move is particularly effective on the most combinatorial instances, in which
each set variable contains very few elements. Indeed, if the smallest set variable selected
contains only one element, and if the move is successful, the solution is improved (assuming
that the number of used set variables is to be minimized). However, it is also useful on other
types of instances, since it increases the weight gaps between the different set variables,
which makes it easier to find improvements in the following iterations.

This local move can be applied to any problem presenting a packing structure. It im-
proves LocalSolver’s performance on various problems, such as the Bin Packing Problem,
and the Assembly Line Balancing Problem.

4 Numerical results

We compare the performance of LocalSolver 10.5, CP Optimizer 20.1.0, and Gurobi
9.1, on the Assembly Line Balancing Problem, in 60 and 600 seconds of running time. The
models we use to evaluate the performance of CP Optimizer and Gurobi are respectively
given by Laborie (2020) and Pastor et al. (2007). We use the instances of the “very large”
dataset proposed by Otto et al. (2013). The dataset includes 525 instances of 1000 tasks



4

to assign. The metric used is the gap to the best known solution, equal to the minimum
between the best known solution given in (Otto et al. 2013) and the value yielded by
LocalSolver after 10 minutes of running time. Indeed, LocalSolver improves the result given
by the authors of the article on 59% of the instances. In Table 1, we give the percentage
of feasible instances, the percentage of instances for which each solver reaches a solution
within 1% of the best known solution, as well as the average gap.

Table 1. Comparison of LocalSolver’s, CP Optimizer’s, and Gurobi’s performance – 1000 tasks

LocalSolver CP Optimizer Gurobi
60s 600s 60s 600s 60s 600s

Feasible instances 100% 100% 100% 100% 0% 0%
Instances w. gap < 1% 95% 99% 59% 64% 0% 0%

Average gap 0.4% 0.1% 2.1% 1.7% – –

We can see that LocalSolver’s performance is significantly better than that of the other
two solvers. The performance gap between LocalSolver and CP Optimizer is particularly
striking on the most combinatorial instances, which are considered to be the most difficult.

The algorithms we describe here are however not dedicated to the Assembly Line Bal-
ancing problem, and can improve LocalSolver’s performance on other problems as well. For
example, the integration of the local move described in 3 into LocalSolver’s local search
enables it to get strictly better results on 58% of the very hard Bin Packing instances pro-
posed by Gschwind and Irnich (2016), lowering the average gap to the best known lower
bound from 0.44% to 0.36%.

5 Conclusion

In this paper, we considered a family of problems presenting a packing structure, such as
the Bin Packing Problem, and an ordering structure, such as the Assembly Line Balancing
Problem. We introduced a greedy algorithm, making use of both kinds of structures to
build feasible solutions. We showed how it can be used both as an initialization algorithm
and as a “destroy and repair” local move. We also introduced a packing move based on
ejection chains, particularly efficient on the most combinatorial packing instances. Their
integration into LocalSolver enables it to obtain great results on the targeted problems.

References

Gardi F., T. Benoist, J. Darlay, B. Estellon, and R. Megel, 2014, Mathematical Programming
Solver Based on Local Search, Wiley.

Alena Otto and Christian Otto and Armin Scholl. Systematic data generation and test design for
solution algorithms on the example of SALBPGen for assembly line balancing, 2013, European
Journal of Operational Research.

Timo Gschwind and Stefan Irnich. Dual inequalities for stabilized column generation revisited,
2016, INFORMS Journal of Computing.

Renatha Capua, Yuri Frota, Luiz Satoru Ochi, and Thibaut Vidal. A study on exponential-size
neighborhoods for the bin packing problem with conflicts, 2018, Journal of Heuristics.

Philippe Laborie. Solving the Simple Assembly Line Balancing Problem with CP
Optimizer, 2020, https://www.linkedin.com/pulse/solving-simple-assembly-line-balancing-
problem-cp-philippe-laborie/.

Pastor, Rafael and Ferrer, Laia and García, Alberto. Evaluating optimization models to solve
SALBP, 2007, Lecture Notes in Computer Science.


