

Solving the Capacitated Arc Routing Problem with LocalSolver in an industrial context

Bienvenu Bambi

September 2023 - OR Hamburg

www.localsolver.com

LocalSolver

Optimization & Decision-Making Tool

LEBOY ARALIN	ZONTIVA	DENSO		P&G	CEZ GROUP	FM >LOGISTIC
AIRBUS		Tetra Pak	JCDecaux	(*) ТОУОТА	THALES	COLAS
Air Liquide	SONY	edf	SITA	HITACHI	engie	FUJITSU
Beiersdorf	france	PUBLICIS GROUPE	SNCF			<mark>groupe</mark> Renault
BOSCH	TFI	O NTT	SIEMENS	SINDALL	bouygues	chewy
Pasco	life.augmented	🗢 REPJOL	SoftBank	★macy's	Microsoft	amazon

> A generic, powerful solver

> 200 customers, 10,000 users, 25 countries

> Linear, non-linear and collection modeling

> Exact and heuristic techniques

> Quality solutions in seconds

Business problem Public Asset Maintenance

Business problem : public asset maintenance

- Client's Goal: Efficient public asset maintenance.
 - Traverse entire road network within a specified area.
 - Service each road segment once.
- Constraints & Objectives:
 - Minimize total travel time and operational costs.
 - Navigate through various factors:
 - Traffic direction.
 - Speed limits.
- Desired Outcome:
 - Optimized route selection.
 - Boosted productivity and reduced overheads.

Arc routing: the underpinning concept

- Defining Arc Routing:
 - Routes are designed on arcs (or edges) rather than vertices (or nodes).
 - Ideal for problems where service is needed on roads/lanes, not at specific points.
- Ubiquity in the Industry:
 - Chinese Postman Problem (Classic example).
 - Other applications include snow removal, street cleaning, and mail delivery.
- Why It Matters:
 - CARP (Capacitated Arc Routing Problem) is NP-hard.
 - Solutions are computationally intensive and time-consuming.
 - The state-of-the-art usually involves heuristics like tabu search.
- Our Challenge:
 - Mapping the business problem to CARP.
 - Seeking optimal routes that fulfill constraints and minimize costs.

Our approach Problem resolution

LocalSolver set modelling

Set

x : subset of {0, 1, ..., n-1}

- unicity
- Variable size

List

y : permutation of a subset of {0, 1, ..., n-1}

- unicity
- Variable size
- order

LocalSolver set modelling: TSP example

<pre>function model() { // A list variable cities <- list(nbCities);</pre>	PS C:\localsolver_11_0\examples\tsp> <mark>localsolver</mark> .\tsp.lsp inFileName= LocalSolver 11.0.20220214-Win64. All rights reserved. Load .\tsp.lsp Run input Run model Run param
<pre>// All cities must be visited constraint count(cities) == nbCities;</pre>	Run solver <u>Model</u> : expressions = 495, decisions = 1, constraints = 1, objectives <u>Param</u> : time limit = 60 sec, no iteration limit
<pre>// Minimize the total distance obj <- sum(1nbCities-1, i =></pre>	<pre>[objective direction]: minimize [0 sec, 0 itr]: No feasible solution found (infeas = 2) [1 sec, 40639 itr]: 3036 [2 sec, 105606 itr]: 2835 [3 sec, 161355 itr]: 2787 [4 sec, 223548 itr]: 2751 [5 sec, 223548 itr]: 2751 [6 sec, 342635 itr]: 2725 [7 sec, 342635 itr]: 2725 [7 sec, 404510 itr]: 2720 [optimality gap]: 0%</pre>
$\sum_{i=1}^{n-1} distance[C_{i-1}][C_i]$	404510 iterations performed in 7 seconds Optimal solution: obj = 2720 gap = 0% bounds = 2720

LocalSolver set modelling: VRP example

```
Multiple trucks available:
  tours[k] <- list(nbClients);
  constraint partition(tours);
```

```
Capacity constraint for each tour k
sum(tours[k], c => quantity[c]) <= capa;</pre>
```


Variadic number of elements in the sum

LocalSolver set modelling: CARP

- Duplicate edges of the graph and associate a unique number
 - Only one direction of the edge can be serviced
- List variable to model vehicles

LSP model overview

// Sequence of edges visited and "serviced" by each truck
// A sequence can contain an edge in one direction or its reverse
edgesSequences[k in 0..nbTrucks-1] <- list(2 * nbRequiredEdges);</pre>

```
// An edge must be serviced by at most one truck
constraint disjoint(edgesSequences);
```

```
// An edge can be travelled in both directions, but its demand must be satisfied only once
for [i in 0..nbRequiredEdges-1] {
  constraint contains(edgesSequences, 2 * i) + contains(edgesSequences, 2 * i + 1) == 1;
}
```


LSP model overview

```
for [k in 0..nbTrucks-1] {
    local sequence <- edgesSequences[k];
    local c <- count(sequence);</pre>
```

```
// Quantity in each truck
routeQuantity <- sum(0..c-1, i => requiredEdgesDemands[sequence[i]]);
```

```
// Capacity constraint : a truck must not exceed its capacity
constraint routeQuantity <= truckCapacity;</pre>
```

}

LSP model overview

// Total distance travelled

totalDistance <- sum[k in 0..nbTrucks-1](routeDistance[k]);</pre>

// Objective: minimize the distance travelled

minimize totalDistance;

Results obtained

Numeric results

- J. Brandão, et R. Eglese. A Deterministic Tabu Search Algorithm for the Capacitated Arc Routing Problem (CARP), Computers & Operations Research., 2008
- 34 instances of 3 categories
 - 98 edges
 - 190 edges
 - 375 edges

Results

Instance 🔽	Gap to BK in 60 sec	Gap to BK in 600 sec
⊟ 98	0.27%	-0.19%
egl-e1-A	0.00%	0.00%
egl-e1-B	0.60%	0.00%
egl-e1-C	0.32%	0.00%
egl-e2-A	0.00%	0.00%
egl-e2-B	0.11%	-0.36%
egl-e2-C	0.55%	-0.71%
egl-e3-A	0.00%	0.00%
egl-e3-B	0.18%	-0.22%
egl-e3-C	-0.33%	-0.58%
egl-e4-A	0.05%	0.05%
egl-e4-B	0.81%	0.18%
egl-e4-C	0.93%	-0.65%

Results

Instance 🔽	Moyenne de Gap to BK en 60 sec	Moyenne de Gap to BK en 600 sec	
H 98	0.27%	-0.19%	
	1.25%	0.03%	
egl-s1-A	0.00%	0.00%	
egl-s1-B	-0.73%	-0.73%	
egl-s1-C	0.76%	0.00%	
egl-s2-A	2.29%	0.07%	
egl-s2-B	4.86%	2.85%	
egl-s2-C	0.18%	-1.09%	
egl-s3-A	0.83%	0.09%	
egl-s3-B	-0.52%	-1.43%	
egl-s3-C	1.76%	0.31%	
egl-s4-A	1.01%	-0.44%	
egl-s4-B	-0.33%	-0.93%	
egl-s4-C	4.89%	1.68%	

Results

Instance	*	Moyenne de Gap to BK en 60 sec	Moyenne de Gap to BK en 600 sec	
H 98		0.27%	-0.19%	
H 190		1.25%	0.03%	
		0.32%	-0.45%	
egl-g1-A		-0.30%	-0.81%	
egl-g1-B		1.84%	0.84%	
egl-g1-C		-0.01%	-0.38%	
egl-g1	-D	0.94%	0.28%	
egl-g1	-E	2.33%	0.94%	
egl-g2	-A	0.54%	-0.54%	
egl-g2	-B	-0.46%	-1.01%	
egl-g2	-C	-2.32%	-2.63%	
egl-g2	-D	0.18%	-0.84%	
egl-g2-E		0.50%	-0.34%	

LocalSolver

Capacitated Arc Routing

Bienvenu Bambi bbambi@localsolver.com September 2023 - OR Hamburg

www.localsolver.com