
Solving the Assembly Line Balancing
Problem with LocalSolver

Léa Blaise
lblaise@localsolver.com

www.localsolver.com

OR 2023



Presentation of LocalSolver

“Model and run” optimization solver
• Simple non-linear and set-based formalism
• High quality solutions in short running times, even on large instances
• Combinatorial, continuous and mixed problems

Global solver: efficient and reliable optimization techniques
• Simplex algorithm, interior points algorithm, branch and bound, propagation...
• Local search, constructive algorithms, ...

|2 23



LocalSolver model

for the Assembly Line Balancing Problem

|3 23



Description of the Assembly Line Balancing Problem (SALB-1)

• n tasks to assign, n possible workstations
• Precedence relations between the tasks
• Station time must not exceed cycle time c
• Objective = minimize the number of used workstations

S0 S1
S2

S3
S4

t0 t1

t2 t3 t4 t5

t6

t7 t8 t9

36 36

30 30 24 30

24

12 54 12

n = 10, c = 66

Credit: Armin Scholl (https://assembly-line-balancing.de)

|4 23



Set variables

Set variable of domain size n = subset of { 0, 1, ..., n-1 }
1 mySetVariable <- set(n);

Characteristics:
• Value ̸= single number
• Value = set of numbers
• Each element is unique
• Variable size
• Unordered

Operators:
• count
• contains
• partition
• find
• lambda-functions

Examples for n=5:
• { }
• { 1 }
• { 0, 1, 4 }
• { 0, 1, 2, 3, 4 }

|5 23



LSP model for the Assembly Line Balancing Problem

1 function model() {
2 stations[s in 0..maxNbStations-1] <- set(nbTasks);
3 constraint partition(stations);
4 chosenStation[t in 0..nbTasks-1] <- find(stations, t);
5 for [t in 0..nbTasks-1][succ in successors[t]] {
6 constraint chosenStation[t] <= chosenStation[succ];
7 }
8 for [s in 0..maxNbStations-1] {
9 stationTime[s] <- sum(stations[s], t => duration[t]);
10 constraint stationTime[s] <= cycleTime;
11 }
12 stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
13 nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
14 minimize nbStations;
15 }

|6 23



LSP model for the Assembly Line Balancing Problem

1 function model() {
2 stations[s in 0..maxNbStations-1] <- set(nbTasks);
3 constraint partition(stations);
4 chosenStation[t in 0..nbTasks-1] <- find(stations, t);
5 for [t in 0..nbTasks-1][succ in successors[t]] {
6 constraint chosenStation[t] <= chosenStation[succ];
7 }
8 for [s in 0..maxNbStations-1] {
9 stationTime[s] <- sum(stations[s], t => duration[t]);
10 constraint stationTime[s] <= cycleTime;
11 }
12 stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
13 nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
14 minimize nbStations;
15 }

Set variables: set of tasks assigned to each station

|6 23



LSP model for the Assembly Line Balancing Problem

1 function model() {
2 stations[s in 0..maxNbStations-1] <- set(nbTasks);
3 constraint partition(stations);
4 chosenStation[t in 0..nbTasks-1] <- find(stations, t);
5 for [t in 0..nbTasks-1][succ in successors[t]] {
6 constraint chosenStation[t] <= chosenStation[succ];
7 }
8 for [s in 0..maxNbStations-1] {
9 stationTime[s] <- sum(stations[s], t => duration[t]);
10 constraint stationTime[s] <= cycleTime;
11 }
12 stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
13 nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
14 minimize nbStations;
15 }

Each task is assigned to exactly one workstation

|6 23



LSP model for the Assembly Line Balancing Problem

1 function model() {
2 stations[s in 0..maxNbStations-1] <- set(nbTasks);
3 constraint partition(stations);
4 chosenStation[t in 0..nbTasks-1] <- find(stations, t);
5 for [t in 0..nbTasks-1][succ in successors[t]] {
6 constraint chosenStation[t] <= chosenStation[succ];
7 }
8 for [s in 0..maxNbStations-1] {
9 stationTime[s] <- sum(stations[s], t => duration[t]);
10 constraint stationTime[s] <= cycleTime;
11 }
12 stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
13 nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
14 minimize nbStations;
15 }

chosenStation[t] is the index of the workstation executing task t

Each task must be scheduled before its successors

|6 23



LSP model for the Assembly Line Balancing Problem

1 function model() {
2 stations[s in 0..maxNbStations-1] <- set(nbTasks);
3 constraint partition(stations);
4 chosenStation[t in 0..nbTasks-1] <- find(stations, t);
5 for [t in 0..nbTasks-1][succ in successors[t]] {
6 constraint chosenStation[t] <= chosenStation[succ];
7 }
8 for [s in 0..maxNbStations-1] {
9 stationTime[s] <- sum(stations[s], t => duration[t]);
10 constraint stationTime[s] <= cycleTime;
11 }
12 stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
13 nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
14 minimize nbStations;
15 }

Cycle time constraints (using a lambda-function)⇐⇒ ∀S,
∑
t∈S

dt ≤ c

|6 23



LSP model for the Assembly Line Balancing Problem

1 function model() {
2 stations[s in 0..maxNbStations-1] <- set(nbTasks);
3 constraint partition(stations);
4 chosenStation[t in 0..nbTasks-1] <- find(stations, t);
5 for [t in 0..nbTasks-1][succ in successors[t]] {
6 constraint chosenStation[t] <= chosenStation[succ];
7 }
8 for [s in 0..maxNbStations-1] {
9 stationTime[s] <- sum(stations[s], t => duration[t]);
10 constraint stationTime[s] <= cycleTime;
11 }
12 stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
13 nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
14 minimize nbStations;
15 }

Minimize the number of used workstations

|6 23



Packing move

based on ejection chains

|7 23



Principle of the local move

Local move respecting the capacity constraints on the set variables (cycle time constraints on the
workstations)
• Applicable to any problem with a packing structure

1 stationTime[s] <- sum(stations[s], t => duration[t]);
2 constraint stationTime[s] <= cycleTime;

|8 23



Principle of the local move

Based on ejection chains
• Series of elementary transformations: move

elements from one set variable to another

Goal of the move
• Reorganize the elements present inside k

set variables so as to empty one of them
• Help LocalSolver get out of local minima

bins0 1 2 3 4

weight

1

0

2
3

4

5

6

7

|9 23



Description of the local move

• Select a subset of non empty set variables

• Let S be the selected set variable with the lowest weight

• A random element t is ejected from S

• If there exists S′ ̸= S in which t can be inserted : success

• Otherwise, let t′ be the smallest element smaller than t that can be replaced by t
• If t′ exists, it is ejected from its set variable, t is inserted in its place, and we can start over
• Otherwise, the move fails

|10 23



Application of the local move on a small example

bins0 1 2 3 4

weight

1000

1
(408)

0
(499)

2
(631)

3
(501)

4
(419)

5
(579)

6
(336)

7
(549)

Figure 1: Initial solution

|11 23



Application of the local move on a small example

bins0 1 2 3 4

weight

1000

1
(408)

0
(499)

2
(631)

3
(501)

4
(419)

5
(579)

6
(336) 7

(549)

ejected element

Figure 1: Element 7 is ejected from bin 4

|11 23



Application of the local move on a small example

bins0 1 2 3 4

weight

1000

1
(408)

7
(549)

2
(631)

3
(501)

4
(419)

5
(579)

6
(336)

0
(499)

ejected element

Figure 1: Element 0 is ejected from bin 0 to insert element 7

|11 23



Application of the local move on a small example

bins0 1 2 3 4

weight

1000

1
(408)

7
(549)

2
(631)

3
(501)

0
(499)

5
(579)

6
(336)

4
(419)

ejected element

Figure 1: Element 4 is ejected from bin 2 to insert element 0

|11 23



Application of the local move on a small example

bins0 1 2 3 4

weight

1000

1
(408)

7
(549)

2
(631)

3
(501)

0
(499)

5
(579)

4
(419)

6
(336)

ejected element

Figure 1: Element 6 is ejected from bin 3 to insert element 4

|11 23



Application of the local move on a small example

bins0 1 2 3 4

weight

1000

1
(408)

7
(549)

2
(631)

6
(336)

3
(501)

0
(499)

5
(579)

4
(419)

Figure 1: Element 6 is inserted into bin 1

|11 23



Efficiency

Most combinatorial instances (known to be difficult)
• Few elements in each set variable
• Particularly efficient: the move often improves the solution when it is successful

Goal of the move: help LocalSolver get out of local minima (many set variables must be modified)
Tested on small random instances:
• Generated 50K instances/solutions
• Solutions with 10 set variables, 1 or 2 elements in each set variable
• Improvable solutions, but with no “obvious” improvements

⇒ Found 99.98% improvements

|12 23



Efficiency

Other instances
• Widens the gap between the set variables’ weights when it is successful
• Easier to find improvements in the next iterations of the search

Assembly Line Balancing
• Apply the move to consecutive set variables to avoid violating precedence relations

|13 23



Numerical results

|14 23



Numerical results – 100 tasks Assembly Line Balancing instances

“large” benchmark from [1]

LocalSolver 12.0 CP Optimizer 20.1.0 Gurobi 9.1
60s 600s 60s 600s 60s 600s

Nb, % feasible 525 525 525 525 459 510
instances 100% 100% 100% 100% 87% 97%

Nb, % instances 487 497 447 492 326 406
< 1% gap 93% 95% 85% 94% 62% 77%

Table 1: Numerical results – 100 tasks benchmark

[1] A. Otto, C. Otto, and A. Scholl. Systematic data generation and test design for solution
algorithms on the example of salbpgen for assembly line balancing. European Journal
of Operational Research, 228(1) :33–45, 2013.

|15 23



Numerical results – 1000 tasks Assembly Line Balancing instances

“very large” benchmark from [1] – improvement of the literature’s best known solution on 59% of
the instances

LocalSolver 12.0 CP Optimizer 20.1.0 Gurobi 9.1
60s 600s 60s 600s 600s

Nb, % feasible 525 525 525 525 0
instances 100% 100% 100% 100% 0%

Nb, % instances 500 521 310 338 0
< 1% gap 95% 99% 59% 64% 0%
Avg gap 0.4% 0.1% 2.1% 1.7% /

Table 2: Numerical results – 1000 tasks benchmark

[1] A. Otto, C. Otto, and A. Scholl. Systematic data generation and test design for solution
algorithms on the example of salbpgen for assembly line balancing. European Journal

of Operational Research, 228(1) :33–45, 2013. |16 23



Numerical results – 1000 tasks Assembly Line Balancing instances

“very large” benchmark from [1] – improvement of the literature’s best known solution on 59% of
the instances

LocalSolver 12.0 CP Optimizer 20.1.0 Gurobi 9.1 Moves deactivated
60s 600s 60s 600s 600s 60s 600s

Nb, % feasible 525 525 525 525 0 525 525
instances 100% 100% 100% 100% 0% 100% 100%

Nb, % instances 500 521 310 338 0 97 209
< 1% gap 95% 99% 59% 64% 0% 18% 40%
Avg gap 0.4% 0.1% 2.1% 1.7% / 3.0% 1.9%

Table 3: Numerical results – 1000 tasks benchmark

[1] A. Otto, C. Otto, and A. Scholl. Systematic data generation and test design for solution
algorithms on the example of salbpgen for assembly line balancing. European Journal

of Operational Research, 228(1) :33–45, 2013. |17 23



Numerical results – 1000 tasks Assembly Line Balancing instances

0%

1%

2%

3%

4%

5%

6%

Ga
p

12
0s

0 100 200 300 400 500 600
Best known solution

LS 12.0 (avg gap 0.3%) CPO 20.1.0 (avg gap 1.9%)

Figure 2: Gap to the best known solution in 120s
|18 23



Numerical results – Bin Packing instances

Performance improvements due to the move on LocalSolver 12.0 on the very hard Bin Packing
instances from [2] :
• Gap to the best known lower bound : 0.44%→ 0.36% in 60s
• Improvements on 58% of the 240 instances

[2] T. Gschwind and S. Irnich. Dual inequalities for stabilized column generation revisited.
INFORMS Journal on Computing, 28(1) :175–194, 2016.

|19 23



Conclusion

|20 23



Conclusion

Local move based on ejection chains
• Applicable to any problem with a packing structure
• Helps LocalSolver get out of local minima
• Particularly efficient on combinatorial instances

Great performance improvements
• 0.4% gap on the Assembly Line Balancing Problem (60s)
• 0.36% gap on the Bin Packing Problem (60s)

|21 23



Perspectives

Adapt our packing local move to apply it to more generalized packing problems
• Different set capacities
• Groups of elements
• Mandatory or forbidden assignments
• Bin-dependant element weights

|22 23



Thank you for your attention

|23 23


	LocalSolver model for the Assembly Line Balancing Problem
	Packing move based on ejection chains
	Numerical results

