Solving the Assembly Line Balancing Problem with LocalSolver

Léa Blaise
Iblaise@localsolver.com
www.localsolver.com

OR 2023
"Model and run" optimization solver

- Simple non-linear and set-based formalism
- High quality solutions in short running times, even on large instances
- Combinatorial, continuous and mixed problems

Global solver: efficient and reliable optimization techniques

- Simplex algorithm, interior points algorithm, branch and bound, propagation...
- Local search, constructive algorithms, ...

LocalSolver model

for the Assembly Line Balancing Problem

Description of the Assembly Line Balancing Problem [SALB-1]

- n tasks to assign, n possible workstations
- Precedence relations between the tasks
- Station time must not exceed cycle time C
- Objective = minimize the number of used workstations

Set variables

Set variable of domain size $n=$ subset of $\{0,1, \ldots, n-1\}$
mySetVariable <- set(n);

Characteristics:

- Value \neq single number
- Value = set of numbers
- Each element is unique
- Variable size
- Unordered

Operators:

- count
- contains
- partition
- find
- lambda-functions

Examples for $\mathrm{n}=5$:

- \{ \}
- $\{1\}$
- $\{0,1,4\}$
- $\{0,1,2,3,4\}$

LSP model for the Assembly Line Balancing Problem

```
function model() {
    stations[s in O..maxNbStations-1] <- set(nbTasks);
    constraint partition(stations);
    chosenStation[t in 0..nbTasks-1] <- find(stations, t);
    for [t in 0..nbTasks-1][succ in successors[t]] {
    constraint chosenStation[t] <= chosenStation[succ];
    }
    for [s in O..maxNbStations-1] {
        stationTime[s] <- sum(stations[s], t => duration[t]);
        constraint stationTime[s] <= cycleTime;
    }
    stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
    nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
    minimize nbStations;
}
```


LSP model for the Assembly Line Balancing Problem

```
function model() {
    stations[s in 0..maxNbStations-1] <- set(nbTasks);
    constraint partition(stations);
    chosenStation[t in 0..nbTasks-1]
    for [t in 0..nbTasks-1][succ in
    Set variables: set of tasks assigned to each station
    constraint chosenStation[t] <= chosenStation[succ];
    }
    for [s in 0..maxNbStations-1] {
        stationTime[s] <- sum(stations[s], t => duration[t]);
        constraint stationTime[s] <= cycleTime;
    }
    stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
    nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
    minimize nbStations;
5 }
```


LSP model for the Assembly Line Balancing Problem

```
function model() {
    stations[s in 0..maxNbStations-1] <- set(nbTasks);
    constraint partition(stations);
    chosenStation[t in 0..nbTasks-1] <- find(stations. t.).
    for [t in 0..nbTasks-1][succ in su}\mp@code{Each task is assigned to exactly one workstation
    }
    for [s in 0..maxNbStations-1] {
        stationTime[s] <- sum(stations[s], t => duration[t]);
        constraint stationTime[s] <= cycleTime;
    }
    stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
    nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
    minimize nbStations;
}
```


LSP model for the Assembly Line Balancing Problem

```
function model() {
    stations[s in 0
    chosenStation [t] is the index of the workstation executing task t
    constraint partition(stations);
    chosenStation[t in O..nbTasks-1] <- find(stations, t);
    for [t in 0..nbTasks-1][succ in successors[t]] {
        constraint chosenStation[t] <= chosenStation[succ];
    }
for [s in 0..maxNbStations-1] {
        stationTime[s] <- sum(static
        constraint stationTime[s]
        Each task must be scheduled before its successors
    }
    stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
    nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
    minimize nbStations;
}
```


LSP model for the Assembly Line Balancing Problem

```
function model() {
    stations[s in O..maxNbStations-1] <- set(nbTasks);
    constraint par
    chosenStation[
    for [t in 0..n
        constraint
            Cycle time constraints (using a lambda-function) \Longleftrightarrow\forallS, \sum
    }
    for [s in 0..maxNbStations-1] {
        stationTime[s] <- sum(stations[s], t => duration[t]);
        constraint stationTime[s] <= cycleTime;
    }
    stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
    nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
    minimize nbStations;
}
```


LSP model for the Assembly Line Balancing Problem

```
function model() {
    stations[s in O..maxNbStations-1] <- set(nbTasks);
    constraint partition(stations);
    chosenStation[t in 0..nbTasks-1] <- find(stations, t);
    for [t in 0..nbTasks-1][succ in successors[t]] {
        constraint chosenStation[t] <= chosenStation[succ];
    }
    for [s in O..maxNbStations-1] {
        stationTime[s] <- sum(stations[s],
        constraint stationTime[s] <= cycle? Minimize the number of used workstations
    }
    stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
    nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
    minimize nbStations;
```

\}

Packing move

based on ejection chains

Principle of the local move

Local move respecting the capacity constraints on the set variables (cycle time constraints on the workstations)

- Applicable to any problem with a packing structure

```
stationTime[s] <- sum(stations[s], t => duration[t]);
constraint stationTime[s] <= cycleTime;
```


Principle of the local move

Based on ejection chains

- Series of elementary transformations: move elements from one set variable to another

Goal of the move

- Reorganize the elements present inside k set variables so as to empty one of them
- Help LocalSolver get out of local minima
weight

Description of the local move

- Select a subset of non empty set variables
- Let S be the selected set variable with the lowest weight
- A random element t is ejected from S
- If there exists $S^{\prime} \neq S$ in which t can be inserted : success
- Otherwise, let t^{\prime} be the smallest element smaller than t that can be replaced by t
- If t^{\prime} exists, it is ejected from its set variable, t is inserted in its place, and we can start over
- Otherwise, the move fails

LocalSolver

Application of the local move on a small example

Application of the local move on a small example

Figure 1: Element 7 is ejected from bin 4

Application of the local move on a small example

Figure 1: Element 0 is ejected from bin 0 to insert element 7

Application of the local move on a small example

Figure 1: Element 4 is ejected from bin 2 to insert element 0

Application of the local move on a small example

Figure 1: Element 6 is ejected from bin 3 to insert element 4

Application of the local move on a small example

Figure 1: Element 6 is inserted into bin 1

Efficiency

Most combinatorial instances (known to be difficult)

- Few elements in each set variable
- Particularly efficient: the move often improves the solution when it is successful

Goal of the move: help LocalSolver get out of local minima (many set variables must be modified) Tested on small random instances:

- Generated 50K instances/solutions
- Solutions with 10 set variables, 1 or 2 elements in each set variable
- Improvable solutions, but with no "obvious" improvements
\Rightarrow Found 99.98% improvements

Efficiency

Other instances

- Widens the gap between the set variables' weights when it is successful
- Easier to find improvements in the next iterations of the search

Assembly Line Balancing

- Apply the move to consecutive set variables to avoid violating precedence relations

Numerical results

Numerical results - 100 tasks Assembly Line Balancing instances

"large" benchmark from [1]

	LocalSolver 12.0		CP Optimizer 20.1.0		Gurobi 9.1	
	60 s	600 s	60 s	600 s	60 s	600 s
Nb, \% feasible	525	525	525	525	459	510
instances	100%	100%	100%	100%	87%	97%
Nb, \% instances	487	497	447	492	326	406
< 1\% gap	93%	95%	85%	94%	62%	77%

Table 1: Numerical results - 100 tasks benchmark
[1] A. Otto, C. Otto, and A. Scholl. Systematic data generation and test design for solution algorithms on the example of salbpgen for assembly line balancing. European Journal of Operational Research, 228(1):33-45, 2013.

Numerical results - 1000 tasks Assembly Line Balancing instances
"very large" benchmark from [1] - improvement of the literature's best known solution on 59\% of the instances

	LocalSolver 12.0		CP Optimizer 20.1.0		Gurobi 9.1
	60 s	600s	60 s	600s	600s
Nb \% feasible	525	525	525	525	0
instances	100%	100%	100%	100%	0%
Nb, \% instances	500	521	310	338	0
< 1\% gap	95%	99%	59%	64%	0%
Avg gap	0.4%	0.1%	2.1%	1.7%	$/$

Table 2: Numerical results - 1000 tasks benchmark
[1] A. Otto, C. Otto, and A. Scholl. Systematic data generation and test design for solution algorithms on the example of salbpgen for assembly line balancing. European Journal

Numerical results - 1000 tasks Assembly Line Balancing instances
"very large" benchmark from [1] - improvement of the literature's best known solution on 59\% of the instances

| | LocalSolver 12.0 | | CP Optimizer 20.1.0 | | Gurobi 9.1 | Moves deactivated | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 60 s | 600 s | 60 s | 600 s | 600 s | 60 s | 600 s |
| Nb, \% feasible | 525 | 525 | 525 | 525 | 0 | 525 | 525 |
| instances | 100% | 100% | 100% | 100% | 0% | 100% | 100% |
| Nb, \% instances | 500 | 521 | 310 | 338 | 0 | 97 | 209 |
| < 1\% gap | 95% | 99% | 59% | 64% | 0% | 18% | 40% |
| Avg gap | 0.4% | 0.1% | 2.1% | 1.7% | $/$ | 3.0% | 1.9% |

Table 3: Numerical results - 1000 tasks benchmark
[1] A. Otto, C. Otto, and A. Scholl. Systematic data generation and test design for solution algorithms on the example of salbpgen for assembly line balancing. European Journal

Numerical results - 1000 tasks Assembly Line Balancing instances

Figure 2: Gap to the best known solution in 120s

Numerical results - Bin Packing instances

Performance improvements due to the move on LocalSolver 12.0 on the very hard Bin Packing instances from [2]:

- Gap to the best known lower bound : $0.44 \% \rightarrow \mathbf{0 . 3 6 \%}$ in 60 s
- Improvements on $\mathbf{5 8 \%}$ of the 240 instances
[2] T. Gschwind and S. Irnich. Dual inequalities for stabilized column generation revisited. INFORMS Journal on Computing, 28(1):175-194, 2016.

LocalSolver

Conclusion

Conclusion

Local move based on ejection chains

- Applicable to any problem with a packing structure
- Helps LocalSolver get out of local minima
- Particularly efficient on combinatorial instances

Great performance improvements

- 0.4% gap on the Assembly Line Balancing Problem (60s)
- 0.36% gap on the Bin Packing Problem (60s)

LocalSolver

Perspectives

Adapt our packing local move to apply it to more generalized packing problems

- Different set capacities
- Groups of elements
- Mandatory or forbidden assignments
- Bin-dependant element weights

Thank you for your attention

