‘LocalSolver

Solving the Assembly Line Balancing
Problem with LocalSolver

Léa Blaise

Iblaise@localsolver.com

www.localsolver.com

0R 2023

Presentation of LocalSolver

“Model and run” optimization solver
e Simple non-linear and set-based formalism
e High quality solutions in short running times, even on large instances

e Combinatorial, continuous and mixed problems

Global solver: efficient and reliable optimization techniques
e Simplex algorithm, interior points algorithm, branch and bound, propagation...

® Local search, constructive algorithms, ...

@] ocalSolver 2123

L ocalSolver model

for the Assembly Line Balancing Problem

@] ocalSolver 3123

Description of the Assembly Line Balancing Problem (SALB-1)

® 1 tasks to assign, n possible workstations
e Precedence relations between the tasks
e Station time must not exceed cycle time ¢

e (Objective = minimize the number of used workstations

n =10, c = 66

Credit: Armin Scholl (https:/assembly-line-balancing.de)
@l ocalSolver

4123

Set variables

Set variable of domain size n = subset of { 0,1, ... n-1}

[
|| mySetVariable <- set(n);
L

Characteristics: Operators: Examples for n=5:
e Value # single number e count e {}
e Value = set of numbers e contains e {1}
e Fach element is unique e partition e {014}
e Variable size e find e {01234}

e Unordered lambda-functions

@] ocalSolver 5123

LSP model for the Assembly Line Balancing Problem

1| function model() {

2 stations[s in 0..maxNbStations-1] <- set(mbTasks);

3 constraint partition(stations);

4 chosenStation[t in 0..nbTasks-1] <- find(stations, t);
5 for [t in O..nbTasks-1] [succ in successors[t]] {

6 constraint chosenStation[t] <= chosenStation[succ];
7

8

9

}
for [s in 0..maxNbStations-1] {
stationTime[s] <- sum(stations([s], t => duration[t]);

10 constraint stationTime[s] <= cycleTime;
1 }
° stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
3 nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
1 minimize nbStations;
5| }

@] ocalSolver 6123

LSP model for the Assembly Line Balancing Problem

stations[s in 0..maxNbStations-1] <- set(nbTasks);

Set variables: set of tasks assigned to each station

1
2
3
4
5
6
7
8
9

&l ocalSolver

LSP model for the Assembly Line Balancing Problem

constraint partition(stations);

Each task is assigned to exactly one workstation

1
2
3
4
5
6
7
8
9

&l ocalSolver

LSP model for the Assembly Line Balancing Problem

chosenStation[t] is the index of the workstation executing task t

chosenStation[t in 0..nbTasks-1] <- find(stations, t);
for [t in O..nbTasks-1] [succ in successors[t]] {
constraint chosenStation[t] <= chosenStation[succ];

Each task must be scheduled before its successors

}

1
2
3
4
5
6
7
8
9

6123

LSP model for the Assembly Line Balancing Problem

Cycle time constraints (using a lambda-function) <= VS, Z di<c
teS

for [s in 0..maxNbStations-1] {
stationTime[s] <- sum(stations[s], t => duration[t]);
constraint stationTime[s] <= cycleTime;

1
2
3
4
5
6
7
8
9

2l ocalSolver 6123

LSP model for the Assembly Line Balancing Problem

1
2
3
4
5
6
7
8
9

Minimize the number of used workstations

stationUsed[s in 0..maxNbStations-1] <- count(stations[s]) > 0;
nbStations <- sum[s in 0..maxNbStations-1] (stationUsed[s]);
minimize nbStations;

&l ocalSolver

Packing move

based on ejection chains

@] ocalSolver 7123

Principle of the local move

Local move respecting the capacity constraints on the set variables (cycle time constraints on the
workstations)

e Applicable to any problem with a packing structure

|
i stationTime[s] <- sum(stations[s], t => duration[t]); ‘
constraint stationTime[s] <= cycleTime; ‘

J

N

@] ocalSolver 8123

Principle of the local move

Based on ejection chains L

® Series of elementary transformations: move
elements from one set variable to another 4 6

Goal of the move

® Reorganize the elements present inside k 2 S
set variables so as to empty one of them 1 3

e Help LocalSolver get out of local minima

1 2 3 4 bins

@] ocalSolver 9123

Description of the local move

Select a subset of non empty set variables

Let S be the selected set variable with the lowest weight

A random element tis ejected from S

If there exists S” = S in which t can be inserted : success

Otherwise, let t’ be the smallest element smaller than t that can be replaced by t

o [ft exists, it is ejected from its set variable, tis inserted in its place, and we can start over
® QOtherwise, the move fails

@] ocalSolver 10123

Application of the local move on a small example

weight
0l R R T T TS ———
0 4|8
(336)
(499) Ll
2
1| w30 3112117
(579)] |(549)
408) (500

@ 1 2 3 4 bins
Figure I: Initial solution

@] ocalSolver 123

Application of the local move on a small example

weight
1000 4o
0 4| 8
(336)
(499) @9)
(549)
2
11 |30 3|2
- sen| (79 ejected element

6 1 2 3 4 bins
Figure I: Element 7 is ejected from bin 4

@] ocalSolver 123

Application of the local move on a small example

weight
1000 ~f-=--=-==="-~“ oo
4 || 6
ug) | 238 0
(499)
I [sin 3 [559] .
%08) (501 ejected element

6 1 2 3 4 bins
Figure I: Element O is ejected from bin O to insert element 7

@] ocalSolver 123

Application of the local move on a small example

weight
610/ JR S
0 6
(499)| |(336)
4
9
2 3|5
1
uss) (esi) san| |79 ejected element

6 1 2 3 4 bins
Figure I: Element 4 is ejected from bin 2 to insert element 0

@] ocalSolver 123

Application of the local move on a small example

weight

1000 ~ f- ==~~~ - - g gy - - - -

499) (419)

2 5

630} sop| |©679 ejected element

6 1 2 3 4 bins
Figure I: Element B is ejected from bin 3 to insert element 4

@] ocalSolver 123

Application of the local move on a small example

weight
1000 - 1

6 1 2 3 4 bins
Figure I: Element 6 is inserted into bin 1

@] ocalSolver 123

Efficiency

Most combinatorial instances (known to be difficult)
e Few elements in each set variable

e Particularly efficient: the move often improves the solution when it is successful

Goal of the move: help LocalSolver get out of local minima (many set variables must be modified)
Tested on small random instances:

® (Generated 50K instances/solutions
e Solutions with 10 set variables, 1 or 2 elements in each set variable
¢ Improvable solutions, but with no “obvious” improvements

= Found 99.98% improvements

@] ocalSolver 12123

Efficiency

Other instances
e Widens the gap between the set variables’ weights when it is successful

e [Fasier to find improvements in the next iterations of the search

Assembly Line Balancing

® Apply the move to consecutive set variables to avoid violating precedence relations

@] ocalSolver 13123

Numerical results

@] ocalSolver 14123

Numerical results - 100 tasks Assembly Line Balancing instances

“large” benchmark from [1]

LocalSolver 12.0 | CP Optimizer 20.1.0 Gurobi 91
60s 600s 60s 600s 60s 600s
Nb, % feasible 525 525 525 525 459 510

instances 100% 100% | 100% 100% 87% 97%

Nb, % instances | 487 497 447 492 326 406

<1% gap 93% 95% 85% 94% 62% 77%

Table 1: Numerical results - 100 tasks benchmark

[11 A Otto, C.Otto, and A. Scholl. Systematic data generation and test design for solution
algorithms on the example of salbpgen for assembly line balancing. European Journal
of Operational Research, 228(1) :33-45, 2013.

@&l ocalSolver 15123

Numerical results - 1000 tasks Assembly Line Balancing instances

“very large” benchmark from [1] - improvement of the literature’s best known solution on 59% of
the instances

LocalSolver 12.0 | CP Optimizer 20.1.0 | Gurobi 9.1

60s 600s 60s 600s 600s

Nb, % feasible

instances

Nb, % instances
<1% gap
Avg gap 21% 1.7%

Table 2: Numerical results - 1000 tasks benchmark

[11 A Otto, C.Otto, and A. Scholl. Systematic data generation and test design for solution
algorithms on the example of salbpgen for assembly line balancing. European Journal
ocalSolver of Operational Research, 228(1) :33-45, 2013. 6123

Numerical results - 1000 tasks Assembly Line Balancing instances

“very large” benchmark from [1] - improvement of the literature’s best known solution on 59% of

the instances

LocalSolver 12.0 | CP Optimizer 20.1.0 | GurobiS.1 || Moves deactivated
60s 600s 60s 600s 600s 60s 600s
Nb, % feasible | 525 525 525 525 525 525
instances 100% 100% | 100% 100% 100% 100%
Nb, % instances | 500 521 310 338 o7 209
<1% gap 95% 99% | 59% B64% 18% 40%
Avg gap 04% 01% | 21% 17% 3.0% 19%

Table 3: Numerical results - 1000 tasks benchmark

[11 A Otto, C.Otto, and A. Scholl. Systematic data generation and test design for solution
; algorithms on the example of salbpgen for assembly line balancing. European Journal
@&l ocalSolver of Operational Research, 228(1) :33-45, 2013. 17123

Numerical results - 1000 tasks Assembly Line Balancing instances

6% &
=,
5% X
4% #5
é’ .
= 3% N
S ::
2% .
1% - - ..
0% - —_— =

0 100 200 300 400 500 600

Best known solution
« LS12.0 (avg gap 0.3%) « CP020..0 (avg gap 1.9%)

Figure 2: Gap to the best known solution in 120s

@] ocalSolver 18123

Numerical results - Bin Packing instances

Performance improvements due to the move on LocalSolver 12.0 on the very hard Bin Packing
instances from [2] :

e Gap to the best known lower bound : 0.44% — 0.36% in 60s
® |Improvements on 58% of the 240 instances

[2] T.Gschwind andS. Irnich. Dual inequalities for stabilized column generation revisited.
INFORMS Journal on Computing, 28(1) :175-194, 2016.

@] ocalSolver 19123

Conclusion

@] ocalSolver 20123

Conclusion

Local move based on ejection chains
® Applicable to any problem with a packing structure
® Helps LocalSolver get out of local minima

e Particularly efficient on combinatorial instances

Great performance improvements
® (0.4% gap on the Assembly Line Balancing Problem (60s)
e (.36% gap on the Bin Packing Problem (60s)

@] ocalSolver 21123

Adapt our packing local move to apply it to more generalized packing problems
e Different set capacities
® Groups of elements
e Mandatory or forbidden assignments

¢ Bin-dependant element weights

@] ocalSolver 22123

Thank you for your attention

@] ocalSolver 23123

	LocalSolver model for the Assembly Line Balancing Problem
	Packing move based on ejection chains
	Numerical results

