Column elimination for scheduling problems

Vianney Coppé
Hexaly

e-mail: vcoppe@hexaly.com

Column elimination [2] is a recent framework for solving combinatorial opti-
mization problems in which the solution consists of multiple sequences. It uses a
relazed decision diagram to compactly encode a superset of all feasible sequences.
By solving a constrained network flow problem in this decision diagram (DD), a
(relaxed) minimum-cost set of sequences can be found. If it happens to corre-
spond to an exact solution, it is also guaranteed to be the optimal one. Otherwise,
this relaxed solution gives a lower bound on the optimal cost, and the DD can be
refined to eliminate the relaxed solution at hand before solving a new iteration
of the flow problem. This technique was successfully applied to several vehicle
routing and graph coloring problems [2, 3]|. In this paper, we investigate how to
apply it to disjunctive scheduling problems.

There are two main obstacles to applying column elimination to scheduling
problems. First, while routing problems typically involve uniform vehicles or few
vehicle classes, the machines considered in scheduling problems are usually all
different. This is due to heterogeneous machine-task compatibilities and possibly
machine-dependent task durations, setup and changeover times. We can deal
with this variety of machines by creating a separate relaxed DD for each of them
and embedding those into a single meta-DD. This meta-DD simply connects its
root node to each machine-specific root node, and each machine-specific terminal
node to its own terminal node. Since machine-task compatibilities are generally
sparse, the size of the meta-DD remains reasonable.

The second obstacle lies in the presence of precedence constraints between
tasks. In routing problems, it is always preferable to visit clients as early as
possible. However, scheduling problems with precedence constraints may require
machines to wait for a task to be completed on another machine before starting a
given task. We first explain how to allow such idle times and then how to enforce
precedence constraints. To model idle times, the DD must include transitions
for a whole range of start times for each task. Clearly, representing all possible
time-indexed transitions would yield very large DDs, especially when the horizon
is loose. We propose to use the modeling introduced in [1] for single-machine
constraint propagation in constraint programming, in which time information is
not explicitly encoded in the DD but rather derived a posteriori. It works by
performing a top-down and bottom-up pass on the DD to compute information
such as the earliest and latest completion times for each node n, respectively
denoted ect(n) and lct(n). This information is used to identify and filter infeasible
transitions, and to assign transition costs to the remaining arcs.

Because they are computed with respect to the most favorable completion
time, the transition costs may be relaxed. Therefore, after finding a minimum-



cost flow in the DD, we compute the true completion time of each task in the
solution and use it to obtain the true transition costs. If all the transition costs
match, the solution is exact. Otherwise, we identify transitions having a re-
laxed cost and refine them as follows. Let a = (u,v) be an arc with relaxed
cost and let ct, be the true completion time of the corresponding transition in
the solution. We refine the DD by splitting node v into two nodes v; and vy
with shorter completion time intervals. More precisely, if ect(v) < ct, < lct(v),
we create nodes vy and vy with explicitly encoded completion time intervals
[ect(v1),lct(vy)] = [ect(v),ctq — 1] and [ect(ve),lct(va)] = [cta,lct(v)]. We call
this operation splitting because all the incoming and outgoing arcs of v are then
transferred to nodes vy and vo before removing node v. After a certain number
of such refinements, a new round of propagation and filtering can be performed
to filter additional infeasible transitions and improve the arc costs.

Let us now explain how to enforce precedence constraints. We propose to
handle them by embedding column elimination in a branch-and-bound (B&B)
framework. After applying column elimination in a given B&B node, we look for
violated precedence constraints in the solution. If there are none, the solution is
feasible, and may later be proven optimal by the B&B. Otherwise, let ¢ and j be
two tasks with start and completion times st;, ct; and st;, ct; in the solution, such
that ¢ must precede j but ct; > st;. We create a first branch with the additional
constraint st(j) < ct; and a second with st(j) > ct;. Those time constraints can
be propagated through the precedence network to tighten the earliest and latest
times for each task. They are then injected into column elimination by finding all
transitions that are incompatible with them and blocking any flow through those.
Note that branching information can also be used to strengthen the arc costs and
to determine the true completion times inside the refinement procedure.

It may happen that a combination of branching constraints creates an infea-
sible subproblem. To detect those cases, we apply column elimination on the
linear relaxation of the constrained network flow problem and solve it with a
linear programming solver. Therefore, we may also need to branch to separate
fractional solutions — a procedure called branch-and-refine in [2] — using task time
constraints and forced /forbidden machine-task assignment constraints.

This approach was implemented inside the Hexaly global optimization solver
and significantly improves the bounds computed for several variants of the (flexi-
ble) job shop scheduling problem, increasing the proportion optimality proofs on
the benchmark instances. It can handle all standard scheduling objectives; those
including a mazimum function need to use a slightly adapted flow problem.

References

[1] Andre A. Cire and Willem-Jan van Hoeve. Multivalued decision diagrams for
sequencing problems. Operations Research, 61(6):1411-1428, 2013.

[2] Anthony Karahalios and Willem-Jan van Hoeve. Column elimination for
capacitated vehicle routing problems. In International Conference on Inte-
gration of Constraint Programming, Artificial Intelligence, and Operations
Research, pages 35-51. Springer, 2023.

[3] Willem-Jan van Hoeve. Graph coloring with decision diagrams. Mathematical
Programming, 192(1):631-674, 2022.



