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ABSTRACT

Local search is a common method for solving combinatorial optimisation problems. We focus on
general-purpose local search solvers that accept as input a constraint model — a declarative de-
scription of a problem consisting of a set of decision variables under a set of constraints. Existing
approaches typically take as input models written in solver-independent constraint modelling lan-
guages like MiniZinc. The ATHANOR solver we describe herein differs in that it begins from a
specification of a problem in the abstract constraint specification language ESSENCE, which allows
problems to be described without commitment to low-level modelling decisions through its support
for a rich set of abstract types. The advantage of proceeding from ESSENCE is that the structure
apparent in a concise, abstract specification of a problem can be exploited to generate high quality
neighbourhoods automatically, avoiding the difficult task of identifying that structure in an equiva-
lent constraint model. Based on the twin benefits of neighbourhoods derived from high level types
and the scalability derived by searching directly over those types, our empirical results demonstrate
strong performance in practice relative to existing solution methods.

1 Introduction

Local search [1] is a common method for solving combinatorial optimisation problems. Typically, it operates by
generating an initial assignment to the decision variables in a problem and then iteratively modifies this assignment to
improve an objective through a sequence of moves, selected from a neighbourhood of assignments reachable from the
current assignment. This approach trades completeness for the ability to make rapid improvements to the objective,
and often finds good solutions more quickly than systematic search procedures [2].

We focus herein on general-purpose local search solvers that accept as input a constraint model: a declarative problem
description consisting of a set of decision variables under a set of constraints. This is a general, flexible approach in
contrast to local search procedures specialised to individual problems (e.g., [2, 3, 4]).

Existing approaches typically accept models written in solver-independent constraint modelling languages like MiniZ-
inc [5]. The recently-proposed Structured Neighbourhood Search (SNS) [6], and the ATHANOR solver we describe in
this paper (which was first proposed in [7]), differ in that they begin from a problem specification in the abstract con-
straint specification language ESSENCE [8, 9, 10]. ESSENCE allows problems to be described without commitment to
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1 $ Parameters to the problem:
2 given nNodes , nRings , capacity : int (1..)
3 letting Nodes be domain int (1.. nNodes)
4 given demand : set of set (size 2) of Nodes
5
6 $ Decision variable for search:
7 find network : set (maxSize nRings) of
8 set (minSize 2, maxSize capacity) of Nodes
9 $ The problem objective:

10 minimising sum ring in network . |ring|
11 $ The problem constraints:
12 such that forAll pair in demand .
13 exists ring in network .
14 pair subsetEq ring

Figure 1: Synchronous Optical Networking in ESSENCE. The main parameter of the problem is demand, a set of pairs
of nodes to be connected to each other. A single highly structured decision variable network (set of set of int)
suffices to model the fibre-optic rings, each inner set of ints representing a set of connections from a ring to nodes.
Rings have a limited number of connections that they can support, hence the maxSize attribute on the inner set. This is
important as a pair of nodes in the demand are only connected to each other if they are both on the same ring. Nodes
may connect to multiple rings to facilitate more connections, however the objective is to minimise the total number of
connections. The specification can be summarised in mathematical notation as follows.
given nNodes, nRings, capacity , demand
find network
where |network | ≤ nRings ∧ ∀r ∈ network . 2 ≤ |r| ≤ capacity ∧ r ⊆ {1 . . .nNodes}
minimising

∑
ring∈network |ring |

such that ∀pair ∈ demand . ∃ring ∈ network . pair ⊆ ring

low-level modelling decisions through its support for a rich set of abstract types, such as sets, multi-sets, sequences and
relations, each of which can be nested arbitrarily (set of partition, multi-set of sequence of tuple, and so on).
Figure 1 presents an example ESSENCE specification of the Synchronous Optical Networking Problem (SONET) [11],
where a set of nodes must be connected via a set of fibre-optic rings.

Our approach is to proceed from ESSENCE, where the structure apparent in a concise, abstract problem specification
can be exploited to generate high quality neighbourhood structures [12] automatically, avoiding the challenging task
of identifying that structure in an equivalent constraint model. A neighbourhood structure is a procedure that takes
a current assignment to a variable in a specification and applies a random transformation to it, generating a new
assignment to the variable from a neighbourhood. ATHANOR has a set of neighbourhood templates, which express
an abstract concept, such as adding values to a set, or moving a value from one set to another. ATHANOR takes
an abstract problem specification and uses the neighbourhood templates to create neighbourhood structures. In the
SONET specification the decision variable is a set of sets. Three illustrative neighbourhood structures produced for
this structure by ATHANOR are:

• Select a set and remove an element: improves the objective, removes unnecessary connections to the rings.

• Select a set and add an element: helps with satisfying the constraints, if a demand is not currently met.

• Select two sets, move an element from one to the other: moves connections to where they may be better used,
i.e. to connect to more nodes.

Given an ESSENCE specification of a problem class and a set of neighbourhood structures, there are two options for
solving. One option is SNS [6], which uses CONJURE [13] to refine the original specification and neighbourhood
structures into a constraint model and solves with an existing constraint solver. Alternatively, we can perform a local
search directly on the augmented ESSENCE specification. This is the novel approach taken by ATHANOR, described in
this paper. Specifically, ATHANOR supports the direct instantiation of abstract variable types such as set, sequence,
partition, function, without decomposing the variables and constraints posted on them into low-level representa-
tions. For several problem classes, ATHANOR’s high-level representations allow the solver to scale far better than other
solvers, solving instances that are infeasibly large for competing solvers. As explained in Section 7.3, this is because
ATHANOR dynamically manages memory during the search to support high-level variable types whose cardinality can
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vary significantly depending on the value assigned. This is in contrast to low-level constraint solvers, which typically
employ a more rigid, conservative approach that immediately requires a substantial memory commitment.

To illustrate, reconsider the single decision variable in the SONET example:

1 find network : set (maxSize nRings) of
2 set (minSize 2, maxSize capacity) of Nodes

While maxSize capacity on the inner sets is enforcing a problem constraint (the capacity of each ring), maxSize
nRings on the outer set is only required because otherwise the deduced maximum cardinality of the outer set network
is:

capacity∑
i=2

(
n

i

)
,

Where n is the size of the domain Nodes. Hence, with a capacity of 32 and a Nodes domain of size 65, the maximum
cardinality of network is 264−66. Existing low-level solvers require this abstract decision variable to be modelled as a
constrained collection of more primitive variables, which must be done conservatively so as to be able to represent the
largest cardinality value of the set of sets. Clearly, 264 is larger than is practically feasible, hence the artificial bound
on the outer set. ATHANOR does not require this bound: it supports the instantiation of the set of sets directly, and
is able to assign to it values of different cardinality efficiently (although the worst case still remains). Moreover, our
experiments show that even when a maximum cardinality is given, ATHANOR still scales better to larger instances.

Through the twin benefits of neighbourhood structures derived from high level types and the scalability derived by
searching directly over those types, our empirical results demonstrate strong performance relative to existing solution
methods.

Our major contributions are as follows:

• The automatic derivation of neighbourhood structures from the types of the abstract decision variables in
ESSENCE.

• Representations that scale with the size of the value rather than the upper bound of the domain of a variable.

To enable the above to be implemented in a practical solver, we also make the following contributions:

• Time and space-efficient incremental evaluation of expressions that quantify over values of variable size;
• Efficient generation of random values drawn from extremely large domains;
• Experimental evaluation of the proposed solver in comparison to other state-of-the-art methods, including

local search and systematic solvers.

2 An Overview of ESSENCE and ATHANOR

This section provides an overview of the architecture and operation of the ATHANOR solver, before full details are
given in subsequent sections. We also briefly describe the types and structure of the ESSENCE language on which
ATHANOR operates.

2.1 Background: ESSENCE

We begin with a brief overview of the ESSENCE abstract constraint specification language, from which the neigh-
bourhood templates and neighbourhood structures employed by ATHANOR are derived (this derivation is discussed in
Section 4). ESSENCE was originally conceived as a means of capturing a formal description of a combinatorial prob-
lem without committing to a concrete model suitable for input to a particular solving formalism, such as constraint
programming or SAT. Hence, the types supported by ESSENCE (summarised in Table 1) are designed to allow a spec-
ification to be given in terms of the combinatorial structure of the problem. We distinguish between atomic types and
compound types (as shown in Table 1). There is also a distinction in ESSENCE between abstract types (set, multiset,
sequence, relation, function, and partition) and concrete types (the atomic types, matrix, tuple, and record) [13].

An ESSENCE specification (e.g. Figure 1) comprises formal parameters (given), which may themselves be constrained
(where); the combinatorial objects to be found (find); constraints the objects must satisfy (such that); identifiers
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Atomic Types
Boolean A simple Boolean type.
Integer Any subset of the integers, specified as a set of intervals.
Enumerated A type with a finite set of named values.
Unnamed A type with a finite set of unnamed values. The values of an unnamed type cannot be referenced in

the specification.

Compound Types
Set Set of variable size (unless annotated otherwise) of any type τ .
Multiset Similar to set but allows multiple occurrences of values.
Sequence A sequence of variable length (an upper bound must be provided) of any type τ .
Relation A relation of arbitrary arity over any types τ1, τ2, . . .
Function A function from any type τ1 to any other type τ2. The function is partial by default but may be made

total (or surjective, injective, etc.) with an annotation.
Partition A partition from any finite type τ . A partition may be annotated to control the number and sizes of

parts.
Matrix A matrix with any number of dimensions, containing any type τ and indexed by integer or enumerated

types in each dimension.
Tuple A container with fields accessed by an integer index, each of which may be of any type.
Record A container with named fields, each of which may be of any type.

Table 1: The ESSENCE type constructors supported by ATHANOR, which may be annotated to impose further structure,
such as a total function or maximum cardinality of a set. ESSENCE supports common operators on these types, such
as set intersection and union, and arbitrary nesting, such as set of sets of integers. Decision variables must have a finite
domain.

declared (letting); and an optional objective function (min/maximising). The input to ATHANOR is an ESSENCE
specification of a problem class and values for its formal parameters to derive a particular problem instance to solve.

2.2 Overview of ATHANOR

Given an ESSENCE specification, ATHANOR begins by constructing two abstract syntax trees (ASTs). The first tree
encodes the constraints in a problem, the second encodes the objective, if present. Each node in the tree represents an
ESSENCE expression, with each leaf being a reference to a variable in the problem (or a constant) and their ancestors
representing the operators. Subsequently, ATHANOR generates a value at random for each of the decision variables
according to some restrictions (described in Section 5). The operators (ancestor nodes) are then evaluated all the
way up to the roots of the two trees, yielding a Boolean and an integer value for the constraint and objective trees
respectively.

Furthermore, every Boolean expression is associated with an integer termed the constraint violation. When the ex-
pression evaluates to true, the constraint violation is 0, otherwise it takes a positive value. The constraint violation is
a heuristic for the magnitude of the change necessary to the operand values of an expression such that the expression
evaluates to true. In addition, each variable in the problem is associated with a variable violation, a heuristic measure
of the likelihood of a variable being the cause of violated constraints in the problem. In the case of a structured type,
such as a set of set of int, variable violations are associated with the top level structure (here the outermost set),
each of its elements, and their elements and so on. This allows the solver to infer whether a whole or part of a structure
is the cause of constraint violations, as described in Section 6.

Figures 2 to 4 illustrate the initialisation of the constraint tree for the SONET specification (Figure 1). The forAll
quantifier is represented with an and function, applied to a list generated by a comprehension. Similarly, the exists
quantifier becomes an or function containing a comprehension. Figure 2 presents the abstract syntax tree prior to the
unrolling of the two comprehensions. Each comprehension has three children: the expression template (labelled expr
template), the generator, and the unrolled list (initially empty). Comprehensions may also produce sets, but in this
example both comprehensions produce lists. The generator supplies a sequence of values to substitute one by one into
the expression template to create the elements of the unrolled list. For this simple example, we consider two demand
pairs, {1, 3} and {3, 4}. Figure 3 shows the constraint tree after the top comprehension has been unrolled with respect
to these two pairs, forming a list with two elements. Finally, a random value for the network variable is generated,
{{1, 3, 8}, {2, 3}}, and used to unroll the inner comprehension, as presented in Figure 4. At this point, the AST can be
evaluated, and it evaluates to false. The expression template (expr template) child of a comprehension is always
retained in the AST so that the unrolled child can be updated in the event that the generator is changed.
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And

Comprehension

Or

expr template

pair ← demand

generator unrolled

Comprehension

subsetEq

expr template

ring ← network

generator unrolled

pair ring

Figure 2: SONET Abstract Syntax Tree: Unevaluated.

Unrolling the syntax trees dynamically, as illustrated here, is vital for the scalability of ATHANOR: the sizes of the
trees scale linearly with the actual sizes of the values of decision variables, not their largest possible sizes. The values
themselves are also represented compactly, as described in Section 7.3.

After initialisation, the tree structures are used to track subsequent changes to the leaf nodes (Section 7). ATHANOR
employs two ASTs for both flexibility and performance. Its search strategies benefit from being able to make decisions
dependent on access to the root of each tree individually, such as permitting constraint violations while focusing on
improving the objective value.

Before commencing the search, ATHANOR constructs all of the neighbourhood structures that will be used during the
search process to generate new assignments within neighbourhoods. These neighbourhood structures are created by
combining a set of neighbourhood templates, which represent high-level neighbourhoods. Examples of neighbourhood
templates include adding a value to a set, or moving a value from one set to another.

Following initialisation, ATHANOR iteratively modifies the current assignment in an attempt both to reduce the con-
straint violation count and to improve the objective value. This is achieved by using the previously constructed neigh-
bourhood structures, which select new values for some variables within a neighbourhood. The two ASTs are used to
evaluate the impact of the changes made. Neighbourhood structures and neighbourhood templates are derived directly
from the ESSENCE specification (as described in Section 4). ATHANOR makes use of several search procedures, as
described in Section 8. The experimental evaluation of ATHANOR is presented in Section 9 and Section 10.

3 Related Work

There are a number of existing approaches related to our work, which we summarise in this section.

LOCALIZER [14] introduced a modelling language for the manual specification of a local search procedure. One of
its key innovations was the concept of an invariant (also known as one-way constraints in the iOpt toolkit [15]), an
expression that describes how to compute the values of one set of variables from another. This allows the separation
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And

Comprehension

Or

expr template

pair ← {{1,3},{3,4}}

generator

  

unrolled

Comprehension

subsetEq

expr template

ring ← network

generator unrolled

pair ring

Or Or

Comprehension Comprehension

subsetEq

expr template

ring ← network

generator unrolled

{1,3} ring

subsetEq

expr template

ring ← network

generator unrolled

{3,4} ring

Figure 3: SONET Abstract Syntax Tree: Outer comprehension (with variable pair) unrolled.

of the problem variables into those over which search is performed, and those whose values are updated incrementally
and efficiently via the invariants. COMET [16, 17] developed these ideas further, providing a full object-oriented
programming language that supports declarative modelling followed by local search for solutions. COMET is able
to synthesize local search procedures from a declarative constraint-based local search (CBLS) model [18] where
constraints are annotated as hard (i.e. remains satisfied during search) or soft (may be violated during search) and
a metaheuristic such as Tabu Search is specified by the user. Neighbourhood structures are synthesized from the
constraint semantics (for example, a hard allDifferent constraint may lead to a neighbourhood structure that swaps the
values of two variables in the allDifferent).

Several more CBLS solvers [16, 17] have since been developed. The Kangaroo solver [19] employs a lazy approach,
increasing efficiency by propagating invariants only as necessary. Oscar-CBLS [20] is an open-source solver that
adopts a similar partial propagation scheme, making neighbourhood selections based on the objective value only.
Björdal et al. [21, 22] provide an automated compilation method from the solver-independent constraint modelling
language MiniZinc [5] to Oscar-CBLS, performing an analysis of the MiniZinc model to determine invariant structure
and which constraints can be implicitly satisfied through neighbourhood structure, as well as synthesising a search
strategy. This work was further developed to extend MiniZinc to support the declarative specification of neighbour-
hoods [23]. Yuck1 also implements a set of constraint-specific neighbourhoods to support the MiniZinc language and
a search strategy based upon simulated annealing. iZplus2 is something of a hybrid, using systematic search to find
the first solution to an optimisation problem and then local search to find better solutions. It implements CBLS for de-
cision problems, either alone or in parallel with systematic search. LocalSolver [24] was the basis for the commercial

1https://github.com/informarte/yuck
2https://www.minizinc.org/challenge2014/description izplus.txt
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And

Comprehension

Or

expr template

pair ← {{1,3},{3,4}}

generator

  

unrolled

Comprehension

subsetEq

expr template

ring ← {{1,3,8},{2,3}}

generator unrolled

pair ring

Or Or

Comprehension Comprehension

subsetEq

expr template

ring ← {{1,3,8},{2,3}}

generator

  

unrolled

{1,3} ring subsetEq subsetEq

{1,3} {1,3,8} {1,3} {2,3}

subsetEq

expr template

ring ← {{1,3,8},{2,3}}

generator

  

unrolled

{3,4} ring subsetEq subsetEq

{3,4} {1,3,8} {3,4} {2,3}

Figure 4: SONET Abstract Syntax Tree: Inner comprehension (with variable ring) unrolled.

Hexaly Optimizer.3 Its emphasis is on allowing the user to focus on modelling while treating the solving process as a
black box. Structured Neighbourhood Search [6] (SNS) generates neighbourhoods from ESSENCE specifications, as
ATHANOR does, then applies CONJURE [13] and SAVILE ROW [25] to refine them (alongside the model) into the input
language of a backtracking constraint solver. SNS uses an adapted version of the MINION solver [26] that applies the
neighbourhoods in a similar way to Large Neighbourhood Search (described below). SNS contrasts with the work
described in this paper as ATHANOR directly operates on abstract ESSENCE variables. This leads to a more scalable
approach, especially due to the dynamic creation and deletion of values and constraints (as illustrated in Section 2.2).

COMET was extended to support graph variables with specialised neighbourhoods to search over them [27]. Similarly,
Ågren et al. [28] and Björdal [29] showed how to introduce set and string variables in a local search setting respectively.
However, these cannot be composed with other abstract types such as those offered by ESSENCE.

Large neighbourhood search (LNS) [30] is a general framework for solving constrained optimisation problems which is
built on a systematic solver. Systematic search is typically used to find an initial feasible solution. In each subsequent
iteration, a subset of the decision variables is selected to be unassigned (relaxed) and searched once more by the
systematic solver for an assignment with an improved objective value. The ability to exhaustively search parts of the
search space allows these solvers to perform well on highly constrained and highly structured problems. In the context
of LNS, a neighbourhood is responsible for selecting a set of variables to relax. Highly effective specialised LNS
neighbourhoods have been proposed for many problem classes (such as vehicle routing [30]); however, developing
such neighbourhoods requires time and in-depth understanding of the problem, motivating research into general-
purpose LNS neighbourhoods.

3https://www.hexaly.com
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Propagation-guided large neighbourhood search (LNS-PG) [31] is a general-purpose LNS method that exploits the
propagation process of a CP solver to inform its choice of variables to relax. The rationale behind LNS-PG is that
the selected variables should form a closely linked sub-part of the problem instance, where the strength of a link
between two variables is measured by assigning one of the variables and recording the effect of propagation on the
other variable. Explanation-based large neighbourhood search (LNS-EB) [32] uses the explanation mechanism of a
learning CP solver to find sets of variables that are linked to improving the objective. Two methods of LNS-EB were
proposed with promising results. LNS-PG and LNS-EB are both able to derive neighbourhoods automatically for any
problem class, in common with ATHANOR and SNS, however they do not have access to the high-level structure of
ESSENCE.

4 Neighbourhoods

A neighbourhood structure [12] is a procedure that takes an assignment to a decision variable and applies a transfor-
mation to it, such as randomly reassigning an integer, adding a value to a set, or moving elements between parts of a
partition. ATHANOR has a set of neighbourhood templates, which are the building blocks from which neighbourhood
structures are created. A neighbourhood is the set of assignments reachable from the current assignment to a decision
variable by applying a neighbourhood structure. At each iteration of the search, a neighbourhood structure is selected,
and the structure is used to generate a move from within a neighbourhood of the current assignment. Details on the
sampling process is described in Section 4.1.

Neighbourhoods must respect the types of variables, for example given the value {1, 3, 5} for a variable of type set (

size 3) of int(1..6), we can change 1 to 2, 4 or 6, but not to 3 or 5, nor can we add or remove values from the set,
as the set is fixed size. More complex types allow for more interesting neighbourhoods. For example, given a value
{{1, 2}, {2, 3, 4}} for a variable of type set of set of int(1..5), we could change one of the values inside one of
the inner sets, create or remove an entire set, or move values between sets – as long as we never create an invalid value
for our type.

In the next sub-section, we describe the set of neighbourhood templates and how they are combined into neighbour-
hood structures.

4.1 Neighbourhood Templates

ATHANOR’s neighbourhood templates are inspired by neighbourhood generation in Structured Neighbourhood
Search [6]. Since each neighbourhood is directly linked to a variable type and domain, ATHANOR’s neighbourhoods
are not allowed to violate type invariants, such as the uniqueness of elements in a set. As ATHANOR’s neighbourhoods
cannot violate type invariants, we reduce the time spent finding assignments to highly structured variables (e.g. set

of partition (regular, numParts 3)) and can instead focus on satisfying problem constraints or improving the
objective.

Where neighbourhood structures can very cheaply check if they would violate a type invariant, for example adding
a value to a set which is already maximum size, they do so. However, given the large number of type invariants
in ESSENCE we do not require all neighbourhood structures maintain all type invariants. Instead, neighbourhood
structures generate a neighbourhood move, which is reverted if any type invariant is violated. If a neighbourhood
structure fails to generate a valid neighbourhood move after a fixed number of attempts (currently set to 50), the
neighbourhood structure is abandoned and another neighbourhood structure is chosen.

Neighbourhood templates are divided into four categories. We will discuss these categories in turn, using the neigh-
bourhood structures generated for the SONET problem as examples.

4.1.1 Atomic Neighbourhood Templates

The first type of neighbourhood templates are atomic neighbourhood templates, presented in Table 2. These apply only
to a single value of one of the primitive types. For example, intAssignRandom reassigns a variable of type int to
another value in its domain. None of these apply to the SONET problem, as the SONET problem contains no variables
of type bool, enum, or int. However, these will be used as building blocks for neighbourhood structures used in the
SONET problem later. Integers have a direct neighbourhood template that restricts the magnitude of the change to be
no greater than the violation attributed to that variable (intAssignRandomFromViolation). No other type currently
has a neighbourhood template that makes use of the violation. We do not provide a general assignRandom for any
higher-level types, instead considering neighbourhoods that make smaller, structured changes.

8
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bool
boolReassign Reassign the variable to the other value in its domain.

enum
enumAssignRandom Randomly reassign the variable to a different value in its do-

main.

int
intAssignRandom Randomly reassign the variable to a different value in its do-

main.
intAssignRandomFromViolation Assign a value uniformly at random in the range i± v, i is the

current value of the integer, v is a violation attributed to that
variable.

Table 2: A complete list of atomic neighbourhood templates in ATHANOR.

4.1.2 Direct Neighbourhood Templates

The second type of neighbourhood templates are direct templates, presented in Table 3. These are only dependent on
the outermost part of a type. For example, the setAdd4 neighbourhood template (Table 3) can only be applied to a
set, but can be instantiated for sets of any type. The Add templates use the existing infrastructure for creating random
values, discussed in Section 5. The relation type in ESSENCE is equivalent to a set of tuple, so variables of type
relation use the set neighbourhoods.

The attributes of variable domains are considered during the creation of neighbourhood structures. For example,
neighbourhood templates that alter a set’s cardinality are not used to create neighbourhood structures on a set variable
whose domain has a fixed size attribute. Similarly, if a sequence variable has a domain with the injective attribute
(meaning all values in the sequence are distinct), the neighbourhood structures created for that variable are limited to
those that retain injectivity.

In SONET, the set Add and Remove neighbourhood templates are used to add and remove elements from network.
These added and removed values are of type set (minSize 2, maxSize capacity).

4.1.3 Higher-order Neighbourhood Templates

The third type of neighbourhood template is higher-order, as listed in Table 4. These take another neighbourhood
template and apply it to one or more elements of a container, such as a set or sequence. LiftSingle applies a
neighbourhood template on a type T to a single element of a collection of T s. For example, in SONET, we can lift
SetAdd to create SetLiftSingle SetAdd, which adds an element to a set contained in network. We can lift multiple
times, so we can lift intAssignRandom twice, thus creating a neighbourhood structure that can modify any integer
contained in a set that is in network.

Neighbourhoods can be lifted for sets, multisets, sequences, and the defined set and the range of a function. Neigh-
bourhoods are not currently lifted for partitions, because none of our currently implemented neighbourhood templates
would lift to useful, valid neighbourhood structures on partitions. Neighbourhood structures generated by lifting a
set illustrate how difficult it is to ensure neighbourhood structures satisfy all type invariants. For example, changing
one value in a set to be equal to another value in the same set, where the set has fixed size, would violate the type
invariant of the set. Rather than require every neighbourhood handle this problem, ATHANOR runs the neighbour-
hood structure, then as a final step checks if the set’s type invariants are violated – if so the move is rejected and an
alternative move is generated.

4.1.4 Synchronised Neighbourhood Templates

The fourth and final kind of neighbourhood templates operate on multiple members of a container at once. These are
known as Synchronised neighbourhood templates and are presented in Table 5. For example, the setMove neighbour-
hood template moves an element from one set to another. Because these neighbourhood templates require two values
to operate, they only work when lifted. liftMultiple takes a synchronised neighbourhood and lifts it to any of the
container types in ATHANOR.

4For clarity, the template name in the text is formed from the name given in Table 2 or 3, prefixed with the type on which it is
instantiated.
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set, multiset
Remove Remove a random element.
Add Add a random element.

sequence
Remove Remove a random element from the sequence.
Add Add a random element to the sequence at a randomly chosen posi-

tion.
ReverseSub Reverse a contiguous subsequence of a random size.
PositionsSwap Swap the position of a random element with another.
ReassignSub Randomly reassign a contiguous subsequence.

function
Remove Remove a random mapping from the function.
Add Add a random mapping to the function.
UnifyImages Randomly choose two points in the function with distinct images,

assign the image of one point to the image of the other.
SplitImages Randomly choose two mappings with equal images, randomly re-

assign one of the images.
Swap Swap the images of two randomly chosen mappings in the function.
SwapAlongAxis Special case of Swap: with functions that map from a tuple to any

type, swap the images of two tuples τ1 and τ2 where τ1 and τ2 differ
in exactly one place.

partition
MoveParts Randomly select two parts p1 and p2 and an element e1 ∈ p1 and

move e1 into p2.
SwapParts Randomly select two parts p1 and p2 and elements e1 ∈ p1 and

e2 ∈ p2 and swap the elements such that e1 ∈ p2 and e2 ∈ p1.
MergeParts Merge two randomly-selected parts into one.
SplitPart Selects one part p1 at random, creates a new part p2 and distributes

the elements of p1 between the two at random, while respecting part
size attributes.

Table 3: A complete list of direct neighbourhood templates in ATHANOR.

LiftSingle Randomly select an item from the structure and apply t, keeping all other elements
the same.

LiftMultiple Randomly select multiple items from the structure and apply t, keeping all other
elements the same.

Table 4: A complete list of higher-order neighbourhood templates, parameterised with a neighbourhood template t.
For LiftMultiple, t must be a synchronised neighbourhood template. The LiftMultiple neighbourhood template
selects as many elements as required by t. At present, this is always two elements.

In SONET, we generate two synchronised lifted neighbourhoods,
SetLiftMultiple SetMove, which takes two sets in network and moves an item from one set to another, and
SetLiftMultiple SetCrossover, which takes two sets in network and exchanges two elements from the two sets.

4.2 Neighbourhood Structure Creation

Neighbourhood structures are created once at the beginning of search, and neighbourhood structures are created inde-
pendently for each variable in the ESSENCE specification. Parameters do not affect neighbourhood structure genera-
tion.

For each variable, we start at the top of the type and attempt to instantiate each type of neighbourhood template
appropriate for the outer-most type. For each lifted neighbourhood template that applies to the outer-most type, we
remove the outer-most type, recursively create all neighbourhood structures for the inner type, and combine these with
the lifted neighbourhood template.

10
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set
Move Move a random element from one set to another.
Crossover Swap randomly chosen elements between two sets.

sequence
Move Move a random element from one sequence to a random position in another se-

quence.
Crossover Exchange elements between two sequences that are at the same randomly chosen

index.

function
Crossover Given two functions, select a mapping at random from each one such that they have

the same preimage. Exchange the images of these two mappings.
Table 5: A complete list of synchronised neighbourhood templates in ATHANOR. These are used in conjunction
with higher-order templates to operate on multiple parts of an abstract structure simultaneously.

This process of generating all neighbourhood structures is very quick, as it only has to operate on the types and
domains of each variable in the ESSENCE specification.

Bringing together the neighbourhood templates discussed in this section, we present the full generation of neighbour-
hood structures for SONET. In SONET there is only a single decision variable, network, which (removing minSize

and maxSize annotations) has type set of set of Nodes.

ATHANOR begins by applying direct neighbourhood templates, which generate SetAdd and SetRemove neighbour
structures on network. Next, the lifted neighbourhood templates are considered. These check which templates can
be applied to the inner set of Nodes type. Those applicable are SetAdd, SetRemove, SetMove, and SetCrossover,
which are all lifted to operate on members of network to create neighbourhood structures.

Finally, ATHANOR applies the lifted neighbourhood templates to set of Nodes, which requires the neighbourhood
templates on Nodes, intAssignRandom and intAssignRandomFromViolation. These are both lifted twice, to
create template structures that modify a single element in a single element of network.

5 Generating Random Values

ATHANOR requires a method to generate a value that belongs to a given domain, both for generating initial variable
assignments at the start of search and for generating new elements of a container type (for example, in the setAdd
neighbourhood template).

Values are not generated uniformly at random, instead smaller values (i.e. values of smaller cardinality) are preferred
for two reasons. Firstly, ESSENCE domains can contain values so large that they would not typically fit in memory.
Types can be arbitrarily nested, and several types describe variable-sized containers (such as set and sequence). In
Section 1 we gave an example where a small instance of SONET led to a domain containing values with cardinality
264 − 66.

Secondly, the unrolling and evaluation of constraints can be computationally expensive when a value has high cardi-
nality. ATHANOR consistently aims to make small incremental changes that are computationally cheap to evaluate,
and may be quickly undone if the new state is not accepted by the search strategy. Generating high cardinality random
values is inconsistent with this general aim. When a large value is a necessary part of the solution, it may be reached
by adding elements to a container over several iterations of search.

The method for generating random values in ATHANOR includes a mechanism for limiting the number of steps in the
generation process, and therefore limiting the size of the generated values as well as the resources needed to generate
a value. The resource limit is an essential part of the method. Without the resource limit, when generating a value of
a variable-sized compound type, each possible cardinality would be generated with equal probability. The resource
limit applies to every part of a nested domain and is described in detail below.

5.1 Generating Random Values Under Resource Limits

In this section, we describe the algorithm GENERATERANDOM. We use the multiset (mset) domain as an example
because it demonstrates the general method by which random values are produced for variable-sized container types.
Other types, such as set, are very similar but require that other constraints (type invariants) are satisfied when gen-
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Algorithm 1 GENERATERANDOMMSET procedure with resource limit.
1: Input: a multiset domain d, an integer quantity of resource rin
2: if rin ≤ 0 then
3: return fail, 0 ▷ no value created, no resource consumed
4: Let dinner be the inner domain ▷ domain of the elements of the multiset
5: c← {} ▷ create c, an empty container from the domain d
6: r ← 1
7: Let nmin and nmax be min and max cardinalities of c, as defined by d
8: n← value chosen uniformly at random from {nmin . . . nmax}
9: while |c| < n do

10: ▷ Calculate reserved resource that cannot be used by recursive call
11: rres ← max(0, nmin − |c| − 1)× CALCMINRESOURCE(dinner)
12: e, re ← GENERATERANDOM(dinner, rin − rres − r)
13: ▷ re is the resource consumed by the recursive call
14: r ← r + re
15: if e = fail then
16: if |c| < nmin then
17: return fail, r
18: else
19: return c, r

20: Add e to c
21: return c, r

erating a value. The procedure GENERATERANDOMMSET(d, rin) is shown in Algorithm 1. GENERATERANDOM
(for any type) has two parameters: d, which is the domain from which a random value is to be generated; and rin,
an integer representing the amount of resource (a proxy for computation time) that may be consumed in the attempt
to generate a random value. If the GENERATERANDOM procedure determines that there is insufficient resource, the
algorithm has the option of failing. In this case, no value is produced, only the amount of resource consumed in the
attempt is returned.

GENERATERANDOM is a recursive procedure. After initialising an empty container (for example, a multiset of τ ),
the procedure may add elements to the container by invoking GENERATERANDOM with the inner domain τ (as in
Algorithm 1). However, it is necessary to share the amount of resource given to the GENERATERANDOM procedure
between the initial invocation and any recursive invocations. This is because the elements of a container may also be
variable-sized and each may therefore consume different amounts of resource when generated. For example, consider
applying this procedure to the domain mset (maxSize 1000) of mset (maxSize 1000) of int(...). Not
only will the outer multiset have a variable size, but so will each of its elements. In this case, controlling the size of
the outer multiset alone is not an effective control of computational cost as we may spend time producing few but very
large inner multisets.

Generating an atomic type (such as int or bool) has a cost of 1. Four variable-sized compound types (set, multiset,
sequence, and relation) have a cost of 1 to initialise the container, while the other compound types (function, partition,
matrix, tuple, record) do not. The cost of generating any compound type includes the cost of all attempts to generate
an element (regardless of whether the element was successfully added to the container).

In GENERATERANDOMMSET (Algorithm 1), r represents the resource used so far. It is initialised to 1, and each time
an element is added to the multiset r is increased by the amount of resource used to generate the element. Note that the
generation of each element of the multiset (by recursive call to GENERATERANDOM) must also have a resource limit.
A simple resource limit for generating one element would be rin − r, however it may be necessary to generate several
elements to reach the lower cardinality bound nmin. Supposing we have |c| elements in the multiset, and also that the
current iteration of the main loop of Algorithm 1 will add one element, then nmin − |c| − 1 more elements will be
needed to meet the lower cardinality bound. The procedure reserves an amount of resource rres that is an estimate of
the minimum amount required to generate nmin−|c|−1 elements. CALCMINRESOURCE takes a domain and returns an
estimate of the minimum resource required to make an element of the domain. The resource limit for the recursive call
is then calculated as rin− rres− r. If the recursive call to GENERATERANDOM fails, then GENERATERANDOMMSET
either returns the current multiset, or (if an insufficient number of elements have been generated) it fails and returns r.

Other types are generated similarly. For sets, lines 12-20 of Algorithm 1 are iterated until a value is generated that is
not already in c. Sequences are generated identically to multisets, except that adding an element to the container (line
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20) appends the element to the end of the sequence (when doing so would not break an attribute such as injective).
Relations are treated as sets of tuples. The algorithms for generating the fixed-size types (matrix, tuple, record) are the
same as for a multiset of fixed size (i.e. with the size attribute), except that with tuples and records the inner domains
may differ. Values of the atomic types such as int are chosen uniformly at random.

Functions divide into two cases. The first are total functions where the preimage is straightforwardly enumerable
(i.e. it is of type int, enum, bool, or tuple of straightforwardly enumerable types). In this case, a fixed number of
output values are required, and they are randomly generated in the same way that a fixed-length sequence would be.
Otherwise, the process is very similar to generating a set of pairs. For each pair, first the preimage is generated (as in
lines 12-14 of Algorithm 1) and this process is iterated until a unique preimage has been generated. Then, the image
is generated, and (if successful) the mapping is added to the function. Resources are handled exactly as if generating
a set of pairs.

Partitions are generated in two passes. One pass generates a random sequence of distinct elements using the same
method used for injective sequences. The other pass (which does not consume any resource) assigns each element in
the sequence to a cell in the partition. If the partition is regular, the number of cells is chosen uniformly at random
(satisfying any relevant attributes) and the elements are divided equally among the cells uniformly at random. Other-
wise, the minimum number of cells are created (according to a minNumParts or numParts attribute, if present) and
the minimum required number of elements are placed in each. Then, if there are elements remaining, one element e
is chosen and an attempt is made to place e in an existing cell at random, or build a new cell containing e with the
minimum required number of other elements. This step may fail by exceeding a cell’s maximum cardinality, exceeding
the partition’s maximum number of cells, or having insufficient elements remaining to create a new cell. This step is
iterated until there are no elements left from the sequence.

5.2 Resource Limits

The GENERATERANDOM procedure is used to generate random values for the initial state and for some neighbourhood
structures. In both cases, small values are preferable (as outlined above) and so GENERATERANDOM should be given
a small value of rin initially. However, it may run out of resource and fail to generate a value, requiring it to be
called again with a larger value of rin. We define two constants: rmul = 1.1 and rmin = 500. For the first call,
we set rin ← rmul × CALCMINRESOURCE(d) + rmin. If the first call fails, then we set rin ← rmul × rin and call
GENERATERANDOM again, repeating until a value is returned.

In summary, the effect of the resource limit is to introduce a strong bias towards values with low cardinality (for every
part of a nested domain) while still allowing some freedom to generate values that are not of the minimal cardinality.

6 Violation Counts

In constraint-based local search solvers, each constraint is often associated with a constraint violation value (or vio-
lation degree) [16, 33], which heuristically measures the number of necessary changes in the current assignment to
satisfy the constraint, where the violation is 0 when the constraint is satisfied. There can be more than one way of
calculating a violation for a constraint, and the violation value does not have a single definition across all constraints.
For example, the constraint violation v for the constraint x = y can be defined as v = |x− y|. One method of measur-
ing violation for the allDiff constraint counts the number of repeated values used by its variables. The violation of an
arbitrary constraint is calculated inductively based on its structure. For example, the violation of a disjunction c1 ∨ c2
is the minimum of the violations of c1 and c2. We refer to Michel and Van Hentenryck [33] for a full list of violation
calculation rules for different types of constraints, on which ATHANOR’s constraint violation rules are based.

Another key concept in constraint-based local search solvers is variable violation, which indicates how much each
variable contributes to the violation of a constraint. Unlike constraint violations, which are only assigned to booleans,
variables of all types can have a variable violation attached to them. In previous works [16, 33], the violation of
a variable x within a constraint c is defined as the largest possible decrease in the constraint violation of c over all
possible values in the domain of x. However, such calculations can be computationally expensive, especially in
ATHANOR where arbitrarily nested variable types are allowed. Furthermore, in a high-level description of a problem,
there are cases where only a single high-level decision variable exists in a constraint model. Attaching a violation to
only such variable is too coarse. A useful additional feature would be to attach violations to parts of variables, such as
the members of a set or sequence. Therefore, we propose a modified version of variable violation calculation, which
heuristically decides which variables, and parts of variables, are most likely the cause of current constraint violation.

The variable violation calculation in ATHANOR is done in a top-down manner. The violation of each constraint is
assigned to the top operator of the constraint, and then the violation is recursively forwarded to the operands of
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each operator. Violations can optionally have an explanation label, which is also passed down. At present, the only
two explanations are too_small and too_large, which can only be applied to expressions of type int. The default
behaviour is that the violation count and label are passed unchanged to all operands of an operator, but some operators
have a specialised implementation which better assigns the violations to operands. We demonstrate the process with
the following example:

1 given n, y : int
2 find x: int (1..10)
3 such that x >= y
4 find s : set (size 5) of int (1..n)
5 such that 1 = sum i in s . toInt(i % 2 = 0)

Assume y = 5 and that the current assignment is x = 1, s = {1,2,3,4,6}. Consider the first constraint: x >= y.
ATHANOR will calculate the constraint violation v, which can include an explanation. In the case of the >= operator,
v = max(y-x,0) = 4 (see, e.g., [33], for more details). The violation and an explanation are then forwarded to the
constraint’s operands. For the >= operator, the left hand side (x) is assigned the violation of 4 and the explanation label
too_small, while the right hand side (y) is also assigned the violation of 4 and the explanation label too_large. This
leads to x being assigned a violation of 4 and too_small. The violation on y is dropped, as only variables can have
violations, not parameters.

We now consider the second constraint: 1 = sum i in s. toInt(i%2 = 0). As the right hand side is evaluated to 3,
the left hand side receives a violation of v = abs(1-3) = 2 and an explanation too_small, although this violation is
ignored as it applies to a constant. The same violation, 2, and the explanation too_large is assigned to the right hand
side, and this violation and explanation are subsequently passed to each operand of the sum operator, toInt(i%2 = 0).
The violation count is assigned to every member of the quantification, rather than split, under the expectation that
usually a single step of local search will tend to change one, or a few, members of the quantification, rather than all
members equally.

Rather than pass on the violation count to its operand unchanged, the toInt operator has a more optimised imple-
mentation. The toInt operator can only take one of two possible values (0 or 1), so we can infer information about
the largest possible decrease in violation that can occur. More concretely, if the operand is evaluated to false, then
the toInt operator is already at its smallest possible value (0), and so cannot take a smaller value. Therefore, any
violation labelled as too_large is ignored. In our example, the violation is dropped when i ∈ {1,3}. toInt is the
main operator where violation counts are useful, where they avoid marking expressions as violating when changing
their value would not actually reduce the overall violation count.

On the other hand, when i ∈ {2,4,6}, the toInt operand is true, which means it can become smaller. Therefore, in
this case a violation of 1 (as the value of the toInt operator can change by at most 1) and an explanation too_large

are passed down to the = operator and subsequently to the operator’s non-constant operand: i % 2. The operator %, on
the other hand, simply passes down the violation to its non-constant operand, variable i, which is an element of s. For
implementation simplicity, not every operator in ATHANOR generates an explanation. In this case, the operator % does
not assign any explanation to its operands.

With the presence of nested types, in ATHANOR the variable violation on any containing structure s is the sum of
the variable violation directly associated with s and the variable violation associated with all elements of s. In our
previous example, the violation of s is defined as the sum of variable violations of elements 2, 4, and 6 (there was no
variable violation associated with elements 1 and 3 in this example).

ESSENCE, and therefore ATHANOR, operate on relational semantics [34]. This means Booleans can be true, false,
or undefined. Since undefined values can have such a large impact, with one operand potentially causing the entire
expression tree to become undefined, ATHANOR assigns undefined a very large violation count (232). An investigation
into other methods of assigning violation to undefined values is left for future work.

Information about constraint violation and variable violation is used frequently during the search in ATHANOR. As
described in Section 8, the total constraint violation is used for measuring the magnitude of infeasibility of an as-
signment (the smaller the better). Variable violation, on the other hand, is used for biasing towards variables with
higher contributions to the violation of the current assignment during the application of a neighbourhood structure,
i.e., elements with higher variable violations will have a higher probability of being selected.
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7 Incremental Evaluation

During search, whenever a variable is reassigned we must calculate new values and new violation counts for the con-
straints. Rather than reevaluating the entire AST, which can be computationally expensive, ATHANOR only reevaluates
the nodes on the paths from the changed variable (leaf node) to the root. The reevaluation is done incrementally and
is optimised for efficiency via three mechanisms: caching, triggering, and incremental hashing. ATHANOR also uses
invariants in some cases, as described below.

7.1 Caching

Every node in the AST can be queried for a value. In the case of a leaf node, this is the value assigned to the variable
represented by the leaf. For a non-leaf node, this is the value produced by evaluating the operator encoded by the
node. In most cases, operators cache their values after evaluation and simply return the cached values when queried.
In addition, the operators also cache the values of their operands when needed. For example, a sum operator will cache
the current sum of all its child nodes and the value of each element in the sum. Some operators do not cache their
values, but instead forward the request for a value to a descendant node. For example, the sequence index operator,
which accepts a sequence s and an integer index i, and evaluates to the member m of s whose position matches i.
Unless i is out of bounds (see below for a discussion of undefinedness) instead of storing its own value, when queried
the sequence index operator simply forwards the query to m.

The cached values are used for incremental evaluation whenever possible. This is particularly useful when there are
nodes in the AST that have a very large number of children. Consider, for example, summing a list of length 1000. As
an example, when changing the value of c from c1 to c2 in the expression s = sum({a,b,c,d,e}), the new value of
the sum can be calculated as s’ = s - c1 + c2. This allows the sum operator to be reevaluated without querying the
values of a, b, d, and e.

7.2 Triggering

During incremental evaluation, operators must check if they have to update their current values. Each operator makes
use of two pieces of information to update its value during the incremental evaluation: its current cached values and
the changes made by its child nodes. Changes in child nodes are communicated to their parents through triggers -
functions that describe in detail the changes in the child nodes’ values. All data types share a common set of three
basic trigger functions:

• valueChanged() notifies that the value of the node has changed.

• hasBecomeUndefined() notifies that the value of the node has become undefined (for example, dividing by 0,
or indexing a sequence by an out-of-bounds value, such as −1).

• hasBecomeDefined() notifies that the value of a node has changed from undefined to defined.

While these three triggers are sufficient to implement incremental evaluation, many abstract types extend the basic set
of trigger functions in order to give a more detailed description of the change in the value of a node. This allows a more
efficient implementation of incremental evaluation in many cases. Consider, as an example, the set type. Notifying
a set operator that the value of one of its operands (of type set) has changed gives very limited information to the
operator. Only one member of the set may have changed, or the entire set might have been replaced with a different
one. The basic valueChanged() trigger function will always need a full reevaluation of the operator. To improve
performance, ATHANOR defines additional trigger functions for the set type, including:

• valueAdded(index): a new element is added to the set at index.

• valueRemoved(index): an element is removed from the set at index.

• memberValueChanged(index): an element in the set is changed at index.

In addition, some compound types share two additional trigger functions: memberHasBecomeDefined(index) and
memberHasBecomeUndefined(index), which indicate that some element has become defined or undefined, respec-
tively. These are useful for operators such as f(y), which evaluates to the image of y w.r.t the function f , and which
only becomes undefined if the image of y becomes undefined.

Note that while types such as sets are unordered in ESSENCE, we treat abstract types as ordered internally, so any
particular value remains at the same index where possible.
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Each operator makes use of the information provided by the triggers to update its current cached value and violation
count (if it is Boolean). Consider the constraint a subsetEq b. This expression is true or false. ATHANOR also
stores the violation count, which is the number of members of a not contained in b. The expression is true when
the violation count is 0. Assume the violation of the expression, denoted as v, has been evaluated previously. The
following demonstrates how changes to the value of a change the violation count v.

a->valueAdded(index) If a[index] /∈ b

then v ← v + 1

a->valueRemoved(index) If a[index] /∈ b then v ← v - 1

a->memberValueChanged(index) Let x be the old value at index index, and y be the new value. Then run
valueRemoved(x) followed by valueAdded(y).

a->valueChanged() Set has changed in an unknown way, perform a full re-evaluation of v.

a->hasBecomeUndefined() assign the violation count 232 to v (as discussed in Section 6).

a->hasBecomeDefined() If b is defined, perform a full re-evaluation of v.

A similar procedure is followed for trigger notifications from b. Another example of triggers and incremental evalua-
tion for the sum operator and the sequence type can be found in A.

7.3 Value Representation and Incremental Hashing

It is important for scalability that values are represented compactly, particularly for types where the size is variable.
ATHANOR uses representations that scale approximately linearly with the actual size of the value, not its upper-bound
size. For example, values of type set of int are represented with an extensible array of references to the elements,
combined with a hash set (i.e. a hash table containing only keys) of the elements, both of which scale approximately
linearly with the number of elements. Each type has a hash function that is incrementally updated to reflect changes
made to a value of that type. The incremental hash functions are important for efficiency because hash values are
extensively used to compare values for equality or disequality. B describes the value representations and incremental
hash functions for each type. In very rare cases a hash collision can affect the behaviour of ATHANOR, and we also
discuss this issue in B.

7.4 Invariants and Partial One-Way Propagation

Invariants, also known as one-way constraints, are a common feature of constraint-based local search solvers (as
discussed in Section 3). An invariant defines one set of variables in terms of another set. For example, given x = y+2,
we can allow the search process to change y, and calculate the value of x from y when required.

ATHANOR implements invariants for integer variables. When an integer variable a is contained in an equality con-
straint a = e (with any expression e), all other occurrences of a are replaced with e throughout the specification and
the variable a is deleted. To ensure that e takes a value within the domain of a, the constraint a = e is replaced with
e ∈ D(a), where D(a) is the domain of a, unless this constraint is trivially true in which case it is replaced with TRUE.

Integer elements of compound types are a more difficult case. Consider an equality involving a member of a compound
type, for example M [2] = y + 2, for a sequence M and integer y. In this case we cannot remove M [2] because the
sequence M as a whole may appear in other constraints and will have neighbourhood structures. However, we would
still like to use this constraint to update M [2] when y changes.

To handle such cases, we introduce a weaker technique which we call partial one-way propagation. Given a constraint
b = e where b is an integer element of a compound type, partial one-way propagation can assign b the value of e
whenever e changes, without deleting b or deleting the constraint b = e. We implement partial one-way propagation
for constraints b = e when: b is an integer element of a compound type; the value of e must always be in the domain of
b; and the domain of the decision variable x containing b places no restrictions on the value of b other than the domain
of b itself.

The final requirement is to ensure that updating b will not violate the type of x. For example, if x is an injective
sequence, updating b could break injectivity. Similarly, sets and partitions disallow duplicate values so their elements
also cannot be updated by partial one-way propagation. Restrictions on an integer element can arise from any layer of
the type of x; for example, while the integers in a sequence (maxSize 5) of int can be updated by partial one-
way propagation, the integers in a set of sequence (maxSize 5) of int cannot, because the set cannot contain
duplicate sequences.
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Algorithm 2 Overall search procedure of ATHANOR

1: s← random initial assignment ▷ current solution
2: sbest ← s, s∗ ← s ▷ global and local best solutions so far
3: nr ← 10 ▷ random walk length
4: while time limit not reached do
5: if VIOLATION(s) > 0 then
6: s← HILLCLIMBERTOZEROVIOLATION(s) ▷ repair violations
7: s← HILLCLIMBER(s) ▷ improve objective function
8: if STRICTLYBETTER(s, s∗) then
9: s∗ ← s , nr ← 10 ▷ update local best & reset random walk length

10: if STRICTLYBETTER(s, sbest) then
11: sbest ← s ▷ update global best
12: else ▷ exploration phase to avoid local optima
13: nr ← nr × 1.3 ▷ increase random walk length
14: s← RANDOMWALK(s, nr) ▷ random walk for nr steps
15: if nr > 500 then ▷ exploration phase reaches its limit
16: nr ← 10, s∗ ← s ▷ reset random walk length and local best

return sbest

ATHANOR keeps track of all constraints of the form b = e that satisfy the conditions given above. For each such
constraint, whenever the value of e is changed during incremental evaluation the value of b is updated automatically.
To prevent cycles, each element of a compound type may be updated at most once during each pass of incremental
evaluation. The constraint b = e is not removed, and may be violated when the cycle detection prevents updating b.

An example can be seen in the Minimum Energy Broadcast problem (Figure 9): for a total function named depths, we
have the constraint depths(child)=depths(parent)+1. depths(child) is updated when the value of the right-hand
side changes.

The CBLS systems described in Section 3 have various sophisticated ways of identifying invariants and processing
them efficiently. There is clear potential for improvement to ATHANOR in this area.

8 Search Procedures

In ATHANOR, as is usual for local search-based metaheuristics, the generated neighbourhood structures are treated
as black boxes – procedures which may improve or worsen the violation count or the objective. A single iteration of
search consists of the selection of one variable and its reassignment via a neighbourhood structure. Built around these
iterations is the traditional metaheuristic design; the metaheuristic decides after each iteration of search whether the
new solution should be accepted or the change should be reversed. The metaheuristics used in ATHANOR follows the
well-known Iterated Local Search (ILS) algorithm [35] where a hill climbing phase (for improving the current solution)
and an exploration phase (for escaping local optima) are interleaved. During the hill climbing phase, neighbourhood
structures are selected dynamically to ensure the most effective ones are chosen depending on the current stage of the
search.

In this section, we first explain the overall search procedure of ATHANOR (Section 8.1). The exploration phase is then
described in Section 8.2, followed by details of the hill climbing phase (Section 8.3 and Section 8.4). Finally, the
dynamic neighbourhood structure selection mechanism is explained in Section 8.5.

8.1 Search Architecture

The overall search procedure of ATHANOR is presented in Algorithm 2 5. The search starts by randomly assigning
values to all variables (line 1), initialising the two best solutions so far (line 2) and the random walk’s length for the
exploration phase (line 3). The two best solutions saved during the search include: (i) sbest, the current global best
during the entire search; and (ii) s∗, the local best solution obtained before the random walk’s length reaches its limit.

5All constant values used in ATHANOR’s search procedure were chosen based on manual tuning on some example instances
taken from CSPLib [36]. A systematic investigation of the influence of those parameters on solver performance and how to select
the best values is left for future work.
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Algorithm 3 Exploration phase in ATHANOR (RANDOMWALK)

1: Input: current solution s, random walk length nr

2: vmax ← VIOLATION(s) + nr ▷ cap on violation of current assignment
3: i← 0
4: while i ≤ nr do
5: s′ ← apply a random neighbourhood structure on s
6: if VIOLATION(s′) ≤ vmax then
7: s← s′, i← i+ 1

return s

For constrained problems, it is possible that the current solution does not satisfy all constraints. Therefore, in the
main loop, ATHANOR first tries to repair any violations via a hill climbing search (line 6, procedure HILLCLIMBER-
TOZEROVIOLATION) before starting to alternate between two phases: (i) a hill climbing phase (line 7, procedure
HILLCLIMBER), which focuses on improving the objective function value; and (ii) an exploration phase (line 14,
procedure RANDOMWALK), which makes a number of random changes to the current solution s obtained from the
hill-climbing if s is not better than the local best s∗. The comparator STRICTLYBETTER(s, s∗) (line 8) is defined as
follows:

procedure STRICTLYBETTER(s, s∗)
return VIOLATION(s) < VIOLATION(s∗) ∨

( VIOLATION(s) = 0 ∧ VIOLATION(s∗) = 0 ∧
OBJECTIVE(s) < OBJECTIVE(s∗) )

where VIOLATION(s) and OBJECTIVE(s) correspond to the total number of constraint violations (as described in Sec-
tion 6) and the objective function value of a solution s.

The idea of alternating between the two phases (exploration and hill climbing) is that if the hill climbing fails to find
a better solution, this is an indication that ATHANOR has become stuck in a local optimum. The exploration phase
aims to force ATHANOR into a different area of the search space by making random changes to the current solution.
The number of changes is limited by nr. If hill climbing still fails to improve on the local best solution after the
perturbation, random walk is applied again with an increased value of nr (lines 13 − 14). Once nr reaches a certain
limit, ATHANOR redefines the local best as the current solution after exploration and resets nr (line 16). This can be
considered as a random restart when the current exploration is no longer effective.

In this work, when a neighbourhood structure is applied on a current assignment, we simply sample a random assign-
ment from the neighbourhood and replace the current assignment with the new one. There are several alternatives
used in the literature, such as exploring a random subset of the neighbourhood and choosing the best assignment from
the subset, or exploring the neighbourhood until the first improved assignment is found. An investigation of those
alternatives is left for future work.

8.2 Exploration

The exploration phase is detailed in Algorithm 3. This phase aims to escape local optima by making a number of
unguided random moves. Each move is performed by randomly selecting a neighbourhood structure and applying
it to the current assignment. However, we found that simply allowing ATHANOR to make unrestricted changes to
the assignment was unproductive because some neighbourhood structures make much more dramatic changes than
others. For example, given a nested structure such as a set of set of int, one neighbourhood structure deletes a
single integer from an inner set, while another neighbourhood structure deletes a set of integers. An important area of
future work is to investigate different strategies to control the magnitude of the changes made by each neighbourhood
structure. In this paper, we adopt a simple strategy where we set a limit on the increase in the violation allowed during
the current exploration phase (set by nr). A tight restriction on violation increase tends to cause ATHANOR to make
small changes to the assignment, if the specification includes some constraints. The same parameter nr also determines
the number of random moves made during the exploration phase. Therefore, increasing nr allows individual moves
to make larger changes to the assignment, and also increases the number of random moves. While Algorithm 3 could
hypothetically enter an infinite loop if applying random neighbour structures failed to find any assignments that satisfy
the violation requirements, we have never observed this. If it did, the algorithm could be modified to terminate after a
specified number of failed attempts to apply a random neighbourhood structure.
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Algorithm 4 Procedure HILLCLIMBERTOZEROVIOLATION

1: Input: current solution s
2: i← 0
3: while VIOLATION(s) > 0 do
4: s′ ← APPLYNEIGHBOURHOODSTRUCTURE(s)
5: if VIOLATION(s′) < VIOLATION(s) then
6: s← s′, i← 0
7: else
8: i← i+ 1
9: if i = 5000 then

10: s← random assignment, i← 0

11: return s

8.3 Hill Climbing for Repairing Violations

The HILLCLIMBERTOZEROVIOLATION procedure (called on line 6, Algorithm 2) is described in Algorithm 4. This
procedure solely focuses on repairing any violations in the current assignment. At each iteration, a neighbourhood
structure is dynamically selected (details on how neighbourhood structures are selected are described in Section 8.5)
and applied to the current solution s (line 4). The new solution is assigned to s if it has a smaller number of violations
(line 6). To avoid getting stuck in local optima, we restart the whole search with a random assignment if there is no
improvement in terms of violations across 5000 consecutive iterations (lines 9− 10).

8.4 Hill Climbing for Improving Objective Function Value

The HILLCLIMBER procedure (called on line 7, Algorithm 2) assumes that the input solution is feasible and focuses
on improving the objective value. This procedure is comprised of two different versions of hill climbing. The first
one, namely HILLCLIMBERSTANDARD, is a simple and standard hill climbing algorithm where only strictly better
solutions are accepted, while the second one, namely HILLCLIMBERWITHVIOLATIONS, is more sophisticated and
temporarily allows assignments with constraint violations. The latter one was introduced to address the issue where
heavily constrained variables exist and the search must temporarily violate constraints to improve the objective.

Each version of hill climbing is given a fixed budget of 5000 solution evaluations during each iteration of the overall
search procedure of ATHANOR. We first describe the sophisticated hill climbing version (Section 8.4.1), followed
by the dynamic selection mechanism to choose between HILLCLIMBERSTANDARD and HILLCLIMBERWITHVIOLA-
TIONS (Section 8.4.2).

8.4.1 Hill Climbing with Temporary Violations

The HILLCLIMBERWITHVIOLATIONS procedure is shown in Algorithm 5. Starting from a current solution s and an
initial limit nvio for temporary violations (lines 3−4), the main loop includes two stages. First, ATHANOR searches for
an assignment with a better objective value while allowing violations up to the limit of nvio (lines 8−13). The second
stage attempts to repair the introduced violations while maintaining the improved objective value (lines 16 − 21).
Following the second stage, if the search found a feasible solution with improved objective value then we reset nvio

and the target objective, essentially re-starting the procedure from the improved assignment s′ (lines 23 − 25). Also,
when the violation limit reaches a certain value (line 23), the search is reset but with an assignment s′ that could be
worse than the original assignment s. Otherwise, we increase the violation limit nvio and continue to the next iteration
(line 27).

8.4.2 Dynamic Selection of Hill Climbing Procedure

Each time HILLCLIMBER is called from Algorithm 2, a choice is made between HILLCLIMBERSTANDARD and HILL-
CLIMBERWITHVIOLATIONS. It is not known a priori which one is most suitable at a given stage of the search, so the
choice is made dynamically.

The choice is treated as a Multi-Armed Bandit (MAB) problem [37]. The MAB problem considers a bandit with
multiple independent arms, each of which when pulled returns a random reward. The reward distribution of each
arm is unknown, and the aim is to choose which arms to pull such that the total reward is maximised. The most
important point when solving a MAB problem is to have a balance between exploitation (pulling the best-so-far
arm) and exploration (trying a new or less frequently selected arm to gather more information). One of the most
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Algorithm 5 Procedure HILLCLIMBERWITHVIOLATIONS

1: Input: current solution s, budget b
2: i← 0 ▷ number of evaluations used by the whole procedure
3: nvio ← 20 ▷ current violation limit
4: s′ ← s ▷ current best solution
5: o← OBJECTIVE(s) ▷ current best objective value (without violation)
6: repeat
7: ▷ We first attempt to improve the objective while allowing violations
8: k1 ← 0 ▷ number of evaluations used by the first loop
9: while OBJECTIVE(s′) ≥ o and k1 ≤ min(b− i, 500) do

10: s′′ ← APPLYNEIGHBOURHOODSTRUCTURE(s′)
11: k1 ← k1 + 1
12: if VIOLATION(s′′) ≤ nvio and OBJECTIVE(s′′) ≤ o then
13: s′ ← s′′

14: i← i+ k1
15: ▷ Now attempt to repair violations
16: k2 ← 0 ▷ number of evaluations used by the second loop
17: while VIOLATION(s′) > 0 and k2 ≤ min(b− i, 500) do
18: s′′ ← APPLYNEIGHBOURHOODSTRUCTURE(s′)
19: k2 ← k2 + 1
20: if VIOLATION(s′′) ≤ VIOLATION(s′) and OBJECTIVE(s′′) < o then
21: s′ ← s′′

22: i← i+ k2
23: if (VIOLATION(s′) = 0 and OBJECTIVE(s′) < o) or nvio ≥ 20× 1.210 then
24: nvio ← 20
25: o← OBJECTIVE(s′)
26: else
27: nvio ← nvio × 1.2
28: until i ≥ b return s′

common strategies for achieving a balanced exploitation-exploration trade-off is the Upper Confidence Bound (UCB)
algorithm [38], where the selected arm a∗ for a time step t is defined as:

a∗ = argmax
a∈A

(
Rt(a)

nt(a)
+ c×

√
ln t

nt(a)

)
(1)

where A is the set of arms, nt(a) is the number of times arm a has been pulled until time t, and Rt(a) is the current total
reward received by pulling arm a. The formula offers a balance between exploitation (the first term) and exploration
(the second term), and c is a parameter of the algorithm 6.

In our context, each version of hill climbing is an arm. The individual reward received at each time step (i.e., when
an arm is pulled) is defined as the number of times that the objective value is improved during the hill climbing call
without introducing constraint violations.

8.5 Dynamic Neighbourhood Structure Selection

In this section, we describe in detail how neighbourhood structures are selected during each hill climbing variant (i.e.,
the APPLYNEIGHBOURHOODSTRUCTURE procedure in Algorithm 4 and Algorithm 5).

A typical ESSENCE specification with high-level nested types usually leads to the instantiation of several neighbour-
hood structures. Some neighbourhood structures may be better at improving the objective, while others may be better
at reducing violations when looking for a feasible solution. Of course there may be some that are not favourable for
either. The aim of dynamic neighbourhood structure selection is to quickly classify these neighbourhood structures
and bias the search towards the neighbourhoods appropriate to the current search stage.

6c is set as 1 in all experiments in this paper
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Consider, for example, the SONET problem and its objective, the minimisation of the sum of the inner sets’ cardi-
nalities. One of the matching neighbourhood structures, setRemove, as the name suggests, closely fits the objective
by explicitly focusing on reducing the sizes of the inner sets. The inverse, setAdd, is not useful with regards to the
objective as it always leads to a worse solution, but can aid with satisfying the constraints of the problem.

Similar to the dynamic selection of hill climbing versions, we make use of the UCB algorithm to select neighbour-
hood structures during the search, i.e., each neighbourhood structure is an arm. There are three UCB controllers for
neighbourhood structure selection, each of which targets a different stage of the search and therefore has a different
definition for the reward function. The first controller assigns an individual reward of one to a neighbourhood structure
when the total constraint violation is reduced. This controller is used when the main focus is on repairing the violations
(line 4 of Algorithm 4 and line 18 of Algorithm 5). The second controller focuses on improving the objective value.
It gives each neighbourhood structure an individual reward of one when the objective value is improved, irrespective
of changes in constraint violations. This controller is used in line 10 of Algorithm 5. The third controller gives each
neighbourhood structure an individual reward of one only when the objective value is improved without introducing
constraint violations. This last one is used in the HILLCLIMBERSTANDARD procedure described at the beginning of
Section 8.4.

The cost to execute and evaluate a neighbourhood structures can vary significantly, some neighbourhood structures
can be much more computationally expensive than others. The original UCB formula (Equation (1)) simply counts the
number of times each neighbourhood structure is selected by a UCB controller, neglecting the computational cost of
applying the neighbourhood structure . Here, we use an approximation of the total amount of computational resources
consumed by the application of the neighbourhood, cost(a). This includes the total resources of all the inner loops
executed during the neighbourhood structure application. If an iteration of an inner loop involves generating new
random values for a variable within the current assignment, the resources are calculated as detailed in Section 5.1.
For all other cases, the resource for each iteration is simply counted as 1 because the implementation involves simpler
operations (e.g., reassigning a pointer). Each time a neighbourhood structure is selected by a UCB controller, nt(a) is
increased by cost(a) + 1.

9 Experimental Evaluation

In this section we evaluate the performance of ATHANOR in comparison with a collection of other solvers. We compare
with constraint-based local search solvers that are able to generate neighbourhoods automatically (since ATHANOR
generates neighbourhood structures automatically), and with systematic constraint solvers that have performed well in
recent competitions. We have two hypotheses: first, that the structure available in a high-level problem specification
can be exploited to generate effective local search neighbourhoods; and second, that ATHANOR’s use of variable-sized
data structures (for both values and expressions) will allow it to scale gracefully to large problem instances.

In the first experiment we compare ATHANOR with local search and systematic solvers on a collection of benchmark
problems, ranging from simple to complex in structure. The results show that ATHANOR performs well overall but
comparatively better for problem classes with nested structure (such as a set of partitions). Our results broadly confirm
the first hypothesis.

In the second experiment, we use new sets of large instances of four problem classes (for example, new knapsack
instances with 80,000 objects) to explore how ATHANOR scales compared with the other solvers. The results demon-
strate ATHANOR’s ability to scale gracefully to large instances (through its support for variable-sized data structures)
on three of the four problem classes, largely confirming the second hypothesis.

All models and instances used for the experiments and the instance generators we created, together with experimental
results are all available in the repository https://github.com/athanor/athanor-experiments/. The source
code of ATHANOR is available at https://github.com/athanor/athanor. The constraint modelling tool CON-
JURE [13]7 is used by ATHANOR to parse ESSENCE.

9.1 Solvers

We compare ATHANOR with six other solvers in seven configurations, together with a simplified version of itself, as
follows:

LNS-PG: propagation-guided large neighbourhood search [31] as implemented in Choco [39] version 4.10.10. De-
tails are provided below.

7https://github.com/conjure-cp/conjure
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LNS-EB: explanation-based large neighbourhood search [32] as implemented in Choco version 4.0.9. At the time of
performing the experiments, 4.0.9 was the most recent version of Choco to support explanation-based LNS.

Yuck: a constraint-based local search solver.8

Oscar-CBLS: a constraint-based local search solver [20].9

Chuffed: a systematic CP solver with conflict learning [40], version 0.10.4 with the free search option enabled.

OR-Tools: a systematic CP solver with conflict learning 10, version 9.4.1874 with the free search option enabled.

SNS: structured neighbourhood search [6], a local search solver for ESSENCE.

Athanor-reduced: a simplified version of ATHANOR itself where the more complex neighbourhood templates are
removed. This is to validate the impact of high-level neighbourhoods on the solver’s performance.

The other solvers and configurations were chosen to include: both prominent approaches to automatically generating
neighbourhoods for LNS (propagation-guided and explanation-based); open-source CBLS solvers that were entered
in the Local Search track of the MiniZinc Challenge Series (Yuck and Oscar-CBLS); two systematic CP solvers,
including OR-Tools (the overall winner of several recent MiniZinc Challenges) and Chuffed (a solver with competitive
performance to OR-Tools); and Structured Neighbourhood Search, the only solver other than ATHANOR that uses the
structure available in ESSENCE.

LNS-PG and LNS-EB were both implemented using the API of Choco. The initial search for a feasible solution uses a
binary depth-first search with the dom/wdeg variable ordering heuristic and random value ordering. The search restarts
when a backtrack limit is reached, initially restarting after 50 backtracks; the backtrack limit is increased by a multiple
of 1.5 at each restart. The search used within LNS is also a binary depth-first search with dom/wdeg variable ordering.
The value ordering is minimum value first, and search is limited to 50 backtracks.

Yuck, Oscar-CBLS, Chuffed, and OR-Tools are called via MiniZinc [5]11 2.6.4. The version of ATHANOR used in the
experiments is release 0.9.9.12

ATHANOR makes use of high-level structure in two ways: variables are represented internally in a compact form, rather
than flattened to a lower-level representation; and neighbourhood structures are automatically created from neighbour-
hood templates and high-level types of decision variables. To investigate these two ideas separately, ATHANOR-
REDUCED is a version of ATHANOR with many high-level neighbourhood templates removed. ATHANOR-REDUCED
contains only the atomic neighbourhood templates, neighbourhood templates to add or remove a value for variable-
sized containers, and LiftSingle, so atomic templates can be applied to members of higher-order types. It also
contains all the partition templates, except SwapParts.

9.2 Essence Specifications and Constraint Models

Each problem class used in the experiments has an ESSENCE specification (used by ATHANOR and SNS) and two
constraint models: a MiniZinc model (used by Yuck, Oscar-CBLS, Chuffed, and OR-Tools); and a Choco model (for
LNS-PG and LNS-EB, written in Java using the Choco API). To ensure (as far as possible) a fair comparison of all
solvers, we have chosen or written constraint models that correspond closely to the ESSENCE specifications. In each
case, we describe how the abstract decision variables in the ESSENCE specification are represented in the MiniZinc
and Choco models. We also ensure that the MiniZinc and Choco models are as close as possible given the differences
between the two systems.

In some cases the representation of an abstract decision variable introduces symmetry (such as representing a set of τ
as a matrix of τ , for any ESSENCE type τ ). For each problem where this occurs, we have two versions of the MiniZinc
and Choco models: one with symmetry-breaking constraints and the other without. All experiments are conducted
with both versions of the model, because we do not know in advance whether symmetry-breaking constraints will help
or hinder a given solver.

The MiniZinc and Choco models use common global constraints such as allDifferent and element. In this set of
experiments, we do not utilise specialised global constraints that encapsulate an entire problem or a key part of it (such
as knapsack [41] and bin packing [42] constraints). The propagators for global constraints such as knapsack and bin

8https://github.com/informarte/yuck (the release dated November 1st, 2022)
9Downloaded from http://user.it.uu.se/~gusbj192/fzn-oscar-cbls/latest/oscar-cbls-flatzinc.zip, ver-

sion dated August 22nd, 2021, which is the latest release as of 8th June 2023.
10https://github.com/google/or-tools
11https://www.minizinc.org/
12https://github.com/athanor/athanor/releases/tag/release_v0.9.9
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1 given items new type enum
2 given weights : function (total) items --> int
3 given binSize : int
4 find packing : partition from items
5 minimising |parts(packing)|
6 such that forAll p in parts(packing) .
7 binSize >= sum i in p . weights(i)

Figure 5: ESSENCE specification of the bin packing problem.

packing are essentially special-purpose solvers for a problem class, and our aim is to compare the general-purpose
solver ATHANOR to other general-purpose solvers. In Section 10, we conduct a separate set of experiments where
those specialised global constraints are employed.

Both MiniZinc and Choco support set variables (representing a set of integers). We use set variables in MiniZinc for
any ESSENCE variable with type set of int. However, in the Choco models we represent set of int with an
array of Boolean variables (representing the characteristic function of the set). Decomposing set variables gives the
LNS methods the ability to search parts of the set representation while freezing the rest, and also avoids having a single
variable in the model of the Knapsack problem.

All MiniZinc and Choco models minimise or maximise an integer variable optVar, the value of which is a function
of the values of primary decision variables. Choco requires a single variable to optimise and we follow the same
convention in MiniZinc for consistency.

9.3 Benchmark Problems

We benchmark ATHANOR against other solvers on seven problem classes. As detailed in the subsequent sections,
we make use of standard benchmark instance sets whenever they are available. For problems where there are only
a small number of instances available, or the existing instances are trivially solved by the solvers considered in our
experiments, we create new benchmark instance generators and randomly generate new instances for the evaluation.
All models, generators and instances used in our experiments are provided in the accompanying repository.

9.3.1 Bin Packing

The specification of the classic bin packing problem is shown in Figure 5. Each item must be allocated to exactly
one bin, so we are able to use the partition type to capture the entire problem in a single decision variable. The
optimisation function (to be minimised) is the number of parts (cells) in the partition. The constraints state that the
weight limit of each bin is respected.

We use a 0/1 model by Håkan Kjellerstrand13 for the Choco and MiniZinc solvers. The model extends the basic model
of Régin and Rezgui [43]. For each item and bin, the model has a 0/1 variable indicating whether the item is placed
in the bin. Also, for each bin, we have a load variable that is the sum of weights of items in the bin. The upper bound
of each load variable is the weight limit of the bins. Constraints ensure that each item is packed exactly once, and an
implied constraint states that the sum of the load variables is equal to the total weight of items. Symmetry breaking
constraints place the load variables in non-increasing order. The optimisation function (to minimise) is the number of
load variables that are greater than 0.

We use 80 instances from a set of 160 generated by Falkenauer [44] and available from the OR-Library [45].14 Falke-
nauer generated 8 sets of 20 instances; from each set we took the 10 even-numbered instances. The number of items
in this instance set range from 60 to 1000.

9.3.2 Travelling Salesperson Problem

In the classic Travelling Salesperson Problem (TSP) [46] we are given a set of n cities, and the cost of travelling
between each pair of cities. The objective is to find the lowest-cost cycle that visits all cities exactly once. The
ESSENCE specification is given in Figure 6. The cycle is represented using a single decision variable with a sequence
domain of fixed length. Notice that no constraints are needed because the injective attribute on the sequence requires

13https://github.com/hakank/hakank/blob/master/minizinc/bin_packing_me.mzn
14http://people.brunel.ac.uk/~mastjjb/jeb/orlib/binpackinfo.html
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1 given nCities : int
2 given distances : function (total)
3 tuple (int (1.. nCities), int (1.. nCities)) --> int
4 letting maxDistance be max([i | ((_,_), i) <- distances ])
5 find tour : sequence (size nCities , injective)
6 of int (1.. nCities)
7 minimising sum i : int (2.. nCities) .
8 distances ((tour(i-1),tour(i)))
9 + distances ((tour(nCities),tour (1)))

Figure 6: ESSENCE specification of the Travelling Salesperson Problem

1 given n : int (1..) $ number of locations
2 letting L0 be domain int (0..n) $ 0 is the depot
3 letting L1 be domain int (1..n)
4 given weights : function (total) L1 --> int (1..)
5 given costs : function (total) tuple (L0 ,L0) --> int (0..)
6 given cap : int (1..) $ vehicle capacity
7 letting totalW be sum([ weight | (_,weight) <- weights ])
8 letting mV be totalW/cap+toInt(totalW%cap != 0) $ lowerbound
9 find plan : set (minSize mV, maxSize n) of

10 sequence (maxSize n, injective , minSize 1) of L1
11 minimising sum r in plan .
12 (sum([costs(tuple(r(i-1), r(i))) | i : int (2..n), i<=|r|])
13 + costs ((0, r(1))) + costs((r(|r|), 0)))
14 such that forAll route in plan . $ vehicle capacity
15 (sum (_,order) in route . weights(order)) <= cap ,
16 $ all orders delivered once
17 allDiff ([loc | route <- plan , (_,loc) <- route ]),
18 (sum p in plan . |p|) = n

Figure 7: ESSENCE specification of the Capacitated Vehicle Routing Problem.

all elements to be distinct, capturing the main constraint of the TSP. The objective function is simply the sum of the
costs of each journey between two cities within the tour.

For Choco and MiniZinc solvers we use a model that matches the ESSENCE specification as closely as possible. The
model has an array of integer decision variables to represent the sequence, and an allDifferent constraint to ensure each
city is visited exactly once. In MiniZinc the objective remains the same as in Figure 6 (except that an optimisation
variable is introduced as described in Section 9.2). In Choco each two-dimensional matrix lookup is translated to a
one-dimensional lookup using an element constraint with additional index and result variables.

In our experiments we use a subset of the TSPLIB set of symmetric instances [47]. We extract instances with 1000
or fewer cites (68 instances in total), as instances of larger sizes could not go through MiniZinc within the time and
memory limit (more details in Section 9.4).

9.3.3 Capacitated Vehicle Routing Problem

The Vehicle Routing Problem (VRP) without capacities [48] is a variation of TSP with multiple tours (performed by
a set of vehicles) that all include one depot location. Each location must be visited exactly once, with the exception
of the depot. Capacitated vehicle routing (CVRP) adds a weight to each location, and a capacity that applies to
each vehicle separately. For each vehicle, the sum of weights of its visited locations must not exceed the capacity.
The ESSENCE specification of CVRP is shown in Figure 7. The decision variable is a set of sequences, where each
sequence contains locations (and the depot is implicitly the first and last location). Constraints ensure that vehicles do
not exceed their capacities, and that all locations are visited by one vehicle. The models used by Choco and MiniZinc
solvers are derived from the ESSENCE specification in Figure 7. The outer type of the plan variable is a set with
maximum size n (the number of locations). The set is represented by a matrix named planMat with rows indexed
1 . . . n, where some rows may be unused in any given solution. The inner type of plan is a sequence of maximum
length n, and each row of planMat directly represents one sequence. A row is indexed 0 . . . n+1, and the first and last
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1 given items new type enum
2 given gain : function (total) items --> int
3 given weight : function (total) items --> int
4 given capacity : int
5 find picked : set of items
6 maximising sum i in picked . gain(i)
7 such that (sum i in picked . weight(i)) <= capacity

Figure 8: ESSENCE specification of the knapsack problem.

1 given n: int (1..)
2 given initNode: int (1..n)
3 letting dNodes be domain int (1..n)
4 given linkCosts:
5 function (total) (dNodes ,dNodes) --> int (0..)
6 find parents: function (total) dNodes --> dNodes
7 find depths: function (total) dNodes --> int (1..n)
8 minimising sum parent : dNodes .
9 max([ linkCosts ((parent ,child)) * toInt(parentI = parent)

10 | (child ,parentI) <- parents ])
11 such that
12 parents(initNode) = initNode ,
13 forAll (child ,parent) in parents .
14 (child != initNode) ->
15 (parent != child /\ linkCosts ((parent ,child)) != 0),
16 forAll (child ,parent) in parents .
17 (child != initNode) -> depths(child) = depths(parent) + 1

Figure 9: ESSENCE specification of the Minimum Energy Broadcast problem.

variables are fixed to zero (representing the depot). For each row, an additional variable is declared for the length of the
sequence. Variables in the inactive part of each row in planMat are fixed to zero, and unused rows are fixed to zero.
An alldifferent except 0 global constraint is applied to planMat, and the sequence lengths are constrained to
ensure each location is visited exactly once. Symmetry-breaking constraints order the first elements of the sequences.

We use 88 instances of CVRP available from VRP-REP [49] that have size n ≤ 100.1516

9.3.4 Knapsack Problem

The classic knapsack problem is straightforward to state in ESSENCE (Figure 8). The single decision variable is the set
of items in the knapsack, and the constraint enforces the weight capacity of the knapsack. The optimisation function
is to maximise the sum of the values of items in the knapsack. The MiniZinc model has one decision variable of type
set of int and closely follows Figure 8 except that a second variable is introduced representing the optimisation
value. The Choco model represents the set with an array of Boolean variables, one per item.

We sampled 54 instances from a benchmark set generated by Pisinger [50].17 The full benchmark set has subsets of
100 instances for each one of 54 generator configurations. We took instance number 50 from each subset. The number
of items in our selected instances ranges from 20 to 10,000.

9.3.5 Minimum Energy Broadcast

The Minimum Energy Broadcast (MEB) problem [51, 52] is to connect a set of wireless devices (nodes) to form a
broadcast network while minimising the energy required to broadcast a message. The structure of the network is a tree

15Instances of larger sizes either could not go through MiniZinc within the time and memory limits, or result in a memory
exception for several solvers called via MiniZinc.

16The instances are from Augerat 1995 – Sets A, B, and P, Christofides and Eilon 1969 – Set E., Fisher-1994-Set-F, Christofides-
et-al.-1979, Christofides-et-al.-1979-Set-M

17Available from www.diku.dk/~pisinger/hardinstances_pisinger.tgz
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1 given nBoats , nPeriods : int (1..)
2 letting Boat be domain int (1.. nBoats)
3 given capacity , crew : function (total) Boat --> int (1..)
4 find hosts : set (minSize 1) of Boat
5 find sched : set (size nPeriods) of partition from Boat
6 minimising |hosts|
7 $ Hosts stay on their own boat
8 such that forAll p in sched . |parts(p)| = |hosts| /\
9 forAll part in parts(p) . |part intersect hosts| = 1,

10 $ Host boats have sufficient capacity
11 forAll p in sched . forAll h in hosts .
12 (sum b in party(h,p) . crew(b)) <= capacity(h),
13 $ Pairs of crews that meet in the schedule are all distinct
14 allDiff ([ (i,j) | p <- sched , part <- p, i,j <- part , i<j ])

Figure 10: ESSENCE specification for the Progressive Party Problem.

where each non-leaf node is responsible for broadcasting messages to its set of children, thus a message broadcast by
the root will eventually reach all nodes. The root node is given as a parameter, and each pair of nodes has a given link
cost. The objective is to minimise the total energy to broadcast a message, where the energy used by a node is the
maximum of the set of link costs between the node and its children.

The ESSENCE specification of MEB is shown in Figure 9. The specification has a total function representing the
parent relationship of the tree, and it ensures acyclicity using a second total function representing the depth of nodes
in the tree. Constraints connect the depth of each non-root node to the depth of its parent. The MiniZinc and Choco
models closely follow the ESSENCE specification. The total functions are represented straightforwardly using arrays
(indexed by the function domain) of integer decision variables. Although the ESSENCE specification is similar to the
MiniZinc and Choco models, MEB allows us to evaluate whether neighbourhoods designed specifically for functions
can outperform generic neighbourhoods applied to arrays of integer variables.

We use a set of 56 instances from previous work [7]. 50 of the instances were created with a random instance
generator that has 4 parameters: the length of the square area where the devices are placed, the number of devices,
the maximum power each device can broadcast at, and the rate at which the radio signal attenuates. The generator is
parameterised according to the description provided in [51, 52]. The maximum power determines whether two devices
can communicate with each other, while the link cost between each pair of devices is determined by the Euclidean
distance between them and the attenuation rate. The parameters of the generator were tuned with the automatic
algorithm configuration tool irace [53] to find instances of appropriate difficulty. The random instances have between
73 and 297 nodes (within the range 70 to 300 imposed on the generation process). The remaining 6 instances were
sampled at random from an existing set provided in [6], those instances were of smaller sizes, where the number of
devices is in the range 20 to 60. All instances and the instance generator are provided in the experimental repository.

9.3.6 Progressive Party Problem

The Progressive Party Problem (PPP) [54, 55] is to arrange a social event involving boat crews. Given a set of boats
(each with a capacity and crew size) and a number of periods, a set of host boats are chosen and a schedule is designed
where the crews of non-host boats visit the host boats over several periods. In each period, every non-host boat will
visit one of the host boats. The capacity of the host boats must be respected, and no pair of boat crews are allowed to
meet more than once.

The ESSENCE specification for ATHANOR is shown in Figure 10. The key decision variable is sched, which is a set
of partitions of the boats, with one partition for each time period. Within each partition, each part contains exactly one
host boat. For each period and each host, the total number of crew members on-board the host boat is bounded by the
capacity of the host. The final constraint states that every ordered pair (i,j) of crews that meet is distinct throughout
the schedule. Unfortunately we cannot use the same specification for SNS because it does not support enough of the
current ESSENCE language. For SNS we use a less compact specification (available in the experimental repository)
where the allDiff constraint is decomposed.

For MiniZinc and Choco we use a standard model from the literature [56, 54]. In MiniZinc the main decision variables
are the set of hosts (exactly as in Figure 10) and an array named visit, indexed by boat b (row) and time period t
(column), representing the host boat visited by the crew of b at time t. Hosts always visit themselves, and other boats
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are required to visit hosts. For each pair of crews, they meet at most once (i.e. are assigned the same host at most
once) so we have a sum ≤ 1 constraint. Symmetry breaking constraints order the columns of visit. The Choco model
is very similar but explicitly adds Boolean variables for each pair of boats b1, b2 and time period t indicating whether
visit[b1, t] = b2, required for the capacity constraints. In Choco the hosts variable is represented with an array of
Boolean variables indicating whether each boat is in the set.

There are a small number of existing benchmark instances available for this problem. Therefore, we created a new
instance generator based on the problem description. We set the number of boats, number of periods, and maximum
boat capacity (maxC ) to be within the ranges [10, 80], [5, 30], and [10, 100], respectively (each chosen at random with
uniform distribution). The capacity and crew size of each boat are generated at random with uniform distribution in the
range [0.3×maxC, 0.8×maxC]. We generated 500 random instances with the given parameter ranges and used the
OR-Tools solver to identify unsatisfiable instances. The remaining instances (including the ones that were not solved
by OR-Tools within the time and memory limits given in Section 9.4) were taken and 54 instances were randomly
sampled from the set. We also sampled 6 instances at random from an existing benchmark set used elsewhere [6]. The
total number of instances used for this experiment is 60.

9.3.7 Synchronous Optical Networking

The Synchronous Optical Networking (SONET) problem [11, 57] is to design a fibre-optic network comprised of
multiple rings, where two network nodes are connected if there exists a ring that both nodes are connected to. Each
instance has a set of demand pairs (i, j) where node i must be connected to node j on at least one ring. The objective
is to minimise the total number of node to ring connections. We use the simplest variation of the problem, where each
ring has an upper bound on the number of nodes connected to it, but there is no upper bound on the amount of network
traffic carried by a ring. The ESSENCE specification of SONET is shown in Figure 1. The decision variable network
is a set of sets of nodes, where each inner set represents a ring. The constraint ensures that each demand pair is a
subset of at least one of the rings. The capacity constraint on the rings is expressed as a domain attribute of network
(namely maxSize capacity).

The MiniZinc model uses an array of decision variables of type set of int to represent the rings. The demand
constraint for each demand pair (i, j) states that there exists a ring that is a superset of {i, j}. The capacity constraints
and the objective are straightforwardly stated using the cardinality of sets. Symmetry-breaking constraints order the
sets in the array. The Choco model is similar to the MIP model of Sherali et al [58]. It represents each ring with an array
of Boolean variables (indicating whether each node is in the ring), and also introduces variables for the cardinality of
each ring. Demand constraints are represented with Boolean logic, while the capacity constraints and objective are
stated on the cardinality variables.

There are a number of SONET instances available in CSPLib [57]. However, those instances are of very small sizes (7
to 13 nodes) and are mostly trivially solvable by the solvers considered in our experiments. Therefore, we generated 50
random instances with number of nodes nNodes ∈ {30, 40, . . . , 120}, between 15 and 90 rings, and with the capacity
ranging from 15 to 90. For each unordered pair of nodes, the pair is chosen to be a demand pair with probability
0.5. We also include 8 existing instances [6] (the parameters of those instances are within similar ranges to the newly
generated ones). In total, there are 58 instances for the first experiment.

9.4 Experimental Details

For each solver, model, and problem instance, we ran the solver 10 times with 10 distinct random seeds, and with a
time limit of 10 minutes for each run. The elapsed time and objective value were recorded whenever a solver found
a new best solution. All experiments were run on the compute nodes of the Cirrus High Performance Computing
cluster 18. Each node has two 2.1 GHz, 18-core Intel Xeon E5-2695 processors. Each solver is given a memory limit
of 7GB, imposed using the runsolver tool [59].19

The MiniZinc Challenge incomplete scoring method20 was used to compute a performance score for each problem
class and solver (aggregating instances and runs of each instance). The scoring method is based on the quality of
solutions found and the time taken to find them, but takes no account of proof of optimality by a systematic solver.

The MiniZinc Challenge incomplete score is computed from the quality q(x, i, j) of the best solution found (within
the time limit) by solver x on instance i and run j, and the time t(x, i, j) taken by solver x on instance i and run j
to find the best solution. Given a problem class, each pair of solvers s and s′ are scored on every problem instance i

18https://www.cirrus.ac.uk/
19https://www.cril.univ-artois.fr/~roussel/runsolver/runsolver-3.4.1.tar.bz2
20https://www.minizinc.org/challenge2020/rules2020.html

27

https://www.cirrus.ac.uk/
https://www.cril.univ-artois.fr/~roussel/runsolver/runsolver-3.4.1.tar.bz2
https://www.minizinc.org/challenge2020/rules2020.html


Local Search over Abstract Constraint Specifications A PREPRINT

Chuffed LNS-EB LNS-PG OR-Tools Oscar-CBLS Yuck

Bin Packing Sym — — Sym — —
CVRP Sym Sym — Sym — —
PPP — Sym Sym Sym — —
SONET — — — — — —

Table 6: Whether symmetry-breaking constraints are valuable, for each problem class where they are available and for
each solver that uses a MiniZinc or Choco model. Sym indicates that the model with symmetry-breaking constraints
outperforms the model without them.

and run j. Solver s is awarded 1 if q(s, i, j) is better than q(s′, i, j); 0 if q(s, i, j) is worse than q(s′, i, j); or in the
case that q(s, i, j) = q(s′, i, j), t(s′,i,j)

t(s′,i,j)+t(s,i,j) . If s failed to find a solution then s is awarded 0 points, regardless of
whether s′ found a solution. For each solver s, its total score is the sum of its scores relative to every other solver s′
for every problem instance and run.

Note that the score depends critically on the time limit. To show how the relative performance of solvers evolve over
time, we calculated the score for every integer time limit in the range {1 . . . 600}. The score of a solver s can either
increase or decrease over time based on its progress relative to the other solvers.

9.5 Experiment 1: Evaluation of Athanor Neighbourhoods

The first experiment compares ATHANOR to the other eight solver configurations (described in Section 9.1) using
all seven benchmark problems. In this experiment we are testing the first hypothesis: that ATHANOR will generate
effective neighbourhoods and neighbourhood structures from the high-level structure available in the ESSENCE spec-
ifications. If the hypothesis is true, we expect to see ATHANOR performing well compared to the other solvers in
general, but particularly when the ESSENCE specification contains nested structures such as a set of set that allow
powerful neighbourhood structures to be constructed.

9.5.1 Symmetry Breaking

First we determined whether to include symmetry-breaking constraints for the four problem classes where they are
available (Bin Packing, CVRP, PPP, and SONET), and when using a solver other than ATHANOR or SNS (i.e. any
solver using a MiniZinc or Choco model). The symmetry-breaking constraints are described in the relevant subsections
of Section 9.3. For each solver and problem class we computed the score with a time limit of 600 seconds, with and
without the symmetry-breaking constraints. Table 6 shows the outcome for each of the four problem classes and each
relevant solver.

For all subsequent experiments, we show results only for the version with the better score as reported in Table 6.
However, both versions (with symmetry-breaking constraints and without) are included in each competition and there-
fore both versions affect the scores of other solvers. For example, when comparing ATHANOR to systematic solvers
(OR-Tools and Chuffed) on the Bin Packing problem, the scores are calculated from all five solver and model com-
binations and the results are reported for three: ATHANOR, Chuffed without symmetry-breaking, and OR-Tools with
symmetry-breaking.

9.5.2 Local Search Solvers

In Figure 11 we compare the performance of ATHANOR to the local search solvers SNS, Yuck, Oscar-CBLS, LNS-EB,
LNS-PG, and ATHANOR-REDUCED (as described in Section 9.1). Also, Figure 12 plots the time taken to find the first
feasible solution (regardless of quality) for each solver and each problem class as a cumulative curve. Figure 13 plots
the status of solver runs (i.e. whether a feasible solution was found, and if not how the solver failed) for each problem
class and each solver. We will discuss the problems with simpler (non-nested) ESSENCE types first.

The Knapsack model uses one of the simplest types in ESSENCE: a set of integers. Even so, ATHANOR is able to
perform well compared to other solvers. Both ATHANOR and LNS-EB achieve the best overall performance on this
problem, which indicates the effectiveness of the local search algorithm adopted by ATHANOR (independent of the
neighbourhood derivation contribution). The LNS-EB version of Choco LNS also perform very well, and slightly
outperforming ATHANOR at the end of the 10 minutes. Surprisingly, the CBLS solvers Yuck and Oscar-CBLS are
less strong, despite supporting sets of integers natively. All solvers except SNS find a first feasible solution rapidly
(Figure 12). SNS is hindered by the overhead of representing neighbourhoods as part of the constraint model, and for
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Figure 11: Performance of ATHANOR compared to other local search solvers using the scoring system described in
Section 9.4. Symmetry is broken for some combinations of problem class and solver (as described in Section 9.5.1).
Higher scores indicate better relative performance.
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some runs the translation process (instantiating the model and neighbourhoods) timed out at 600s (Figure 13). Due
to the simplicity of this problem, ATHANOR and ATHANOR-REDUCED have an identical set of neighbourhoods and
therefore their performance is the same (with very marginal difference due to fluctuation in time measurement).

The MEB specification consists of two total functions that are tightly constrained together. As with Knapsack,
ATHANOR finds good solutions quickly and performs comparatively well over the 10 minute timespan. Compared
with Knapsack, MEB has a more complex type (i.e., function) and ATHANOR is able to outperform ATHANOR-
REDUCED on this problem, showcasing the effectiveness of the derived high-level neighbourhoods. ATHANOR’s
performance is closely followed by the LNS solvers, which are able to edit both functions together. The CBLS solvers
are relatively weak, possibly because they cannot use neighbourhoods designed specifically for functions. Both Oscar-
CBLS and Yuck fail to find a feasible solution for the vast majority of runs (Figure 12 due to either timeout or memory
exceeded (Figure 13). SNS was more successful but in some cases the translation process timed out.

The TSP is represented as a fixed-length sequence of integers, and ATHANOR is able to use neighbourhood structures
generated from the direct neighbourhood templates for sequences. For example, the well-known 2-opt move [60]
(where a contiguous subsequence is reversed) is used by ATHANOR and SNS, but (to our knowledge) is not available
in the other solvers. In particular, Oscar-CBLS has specialised sequence neighbourhoods including 2-opt [61], but
(to the best of our knowledge) these are not available when the solver is called via MiniZinc because the sequence
is represented as an array of integers in MiniZinc. The effective neighbourhood derivation results in ATHANOR’s
winning performance compared with all other local search solvers, including ATHANOR-REDUCED. Oscar-CBLS and
Yuck have a large number of cases where the memory limit is exceeded. In addition, Yuck have a number of cases
where the solver times out, while a large number of SNS runs time out in the translation stage.

The ESSENCE model of Bin Packing is not nested, however it makes use of the partition type which could otherwise be
expressed as a set of sets. ATHANOR will maintain the partition structure at all times, and is able to use neighbourhood
structures generated from the direct neighbourhood templates for partition. As a result, ATHANOR performs well
on Bin Packing, followed by the LNS solvers then Oscar-CBLS (which finds a feasible solution for over 60% of
runs). Yuck times out or is out of memory for almost all runs, while SNS fails by translation timeout for the majority.
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Figure 12: Cumulative plots of the number of runs for which a feasible solution (of any quality) has been found, for
each solver and each problem class.
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Compared with ATHANOR, the neighbourhood set of ATHANOR-REDUCED has one less neighbourhood template
(SwapParts), which results in its reduced performance. Nevertheless, ATHANOR-REDUCED still performs relatively
well compared with other local search solvers, demonstrating the effectiveness of the derived neighbourhood structures
for partition.

The SONET problem is represented in ESSENCE using a set of sets of integers. ATHANOR’s higher-order and synchro-
nised neighbourhood templates allow moves such as moving an element from one inner set to another, or swapping
elements between two of the inner sets (in addition to moves involving only one of the inner sets). The effectiveness
of these high-level neighbourhoods is validated via the significant performance difference between ATHANOR and
ATHANOR-REDUCED. ATHANOR also significantly outperforms the other local search solvers. There are a number
of cases where each of the other local search solvers do not find a feasible solution within the time limit. Yuck is also
out of memory for a large number of runs, while a small proportion of SNS runs timed out during translation.

CVRP is represented in ESSENCE as a set of sequences of integers (representing locations), allowing ATHANOR to
make higher-order moves (by combining higher-order and synchronised neighbourhood templates) such as moving
a location from one sequence to another, in addition to moves involving only one sequence (such as reversing a
contiguous subsequence). Similar to SONET, The performance of ATHANOR is well ahead of all other solvers, in-
cluding ATHANOR-REDUCED, with LNS being the only competitive alternative. Figure 12 shows that ATHANOR and
ATHANOR-REDUCED are able to find a feasible solution quickly, followed by the two LNS solvers. Oscar-CBLS and
SNS are not able to find a feasible solution in all runs, due to either timeout, memory exceed, or timeout during the
translation (SNS).

PPP also has nested structure in the form of a set of partitions. However, there are no synchronised neighbourhood
templates for partition so only the direct neighbourhood templates (operating on one partition) are available for this
type in ATHANOR. Nevertheless, ATHANOR has access to six direct neighbourhood templates for partition, and it
convincingly outperforms the other local search solvers. Interestingly, ATHANOR-REDUCED performs slightly (but
consistently after 180 seconds) better than ATHANOR on this problem. ATHANOR-REDUCED has one less neigh-
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(d) MEB

at
ha

no
r

at
ha

no
r-r

ed
uc

ed

ch
uf

fe
d

ln
se

b

ln
sp

g

or
to

ol
s

os
ca

r-c
bl

s

sn
s

yu
ck

0

25

50

75

100

%
 ru

ns

meb

others
solution-found

solver-memout
solver-timeout

translation-memout
translation-timeout(e) PPP

at
ha

no
r

at
ha

no
r-r

ed
uc

ed

ch
uf

fe
d

ln
se

b

ln
sp

g

or
to

ol
s

os
ca

r-c
bl

s

sn
s

yu
ck

0

25

50

75

100

%
 ru

ns

ppp

others
solution-found

solver-memout
solver-timeout

translation-memout
translation-timeout

(f) SONET
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Figure 13: Status of solver runs for each problem class and each solver. Note that solution-found indicates that a
solver finds a feasible solution within the time limit and that it does not exceed the memory limit during the run.

bourhood template than ATHANOR (SwapParts). The reason could be that this neighbourhood is not useful for this
problem, and it takes time for the UCB neighbourhood selector to eliminate it from the search of ATHANOR. For the
other local search approaches, a majority of runs fail due to either timeout (LNS-EB, LNS-PG and Oscar-CBLS) or
memory exceeded (Yuck) or timeout during the translation (SNS)

In summary, ATHANORis the clear winner for all three classes with a nested type (CVRP, PPP and SONET) and also for
TSP and Bin Packing where powerful direct neighbourhood templates are available. ATHANOR also performed well
on MEB and Knapsack despite a relative lack of structure. The results firmly confirm our hypothesis that ATHANOR
is able to exploit the structure available in high-level problem specifications to generate effective neighbourhoods.
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Figure 14: Performance of ATHANOR compared to systematic solvers using the scoring system described in Sec-
tion 9.4. Symmetry is broken for some combinations of problem class and solver (as described in Section 9.5.1).
Higher scores indicate better relative performance.
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9.5.3 Systematic Solvers

In Figure 14 we compare ATHANOR and ATHANOR-REDUCED with Chuffed and OR-Tools (as described in Sec-
tion 9.1), both of which are systematic solvers with conflict learning and activity-based heuristics. The two systematic
solvers have quite different behaviour on the 7 problem classes, with Chuffed performing better on CVRP, PPP and
TSP, while OR-Tools dominates on Knapsack, MEB and SONET. The two solvers are competitive on Bin Packing,
where OR-Tools performs slightly better towards the end of the time limit.

Knapsack has a very simple type without any nested structure. Therefore, it is not surprising that ATHANOR is not
competitive on this problem. All solvers are able to find a feasible solution very quickly for all runs (Figure 12). They
are then competing on solution quality, and OR-Tools quickly takes the lead and retains it.

For MEB and TSP, we found that ATHANOR performed strongly in comparison to the systematic solvers. ATHANOR is
able to quickly find a first feasible solution for all runs on all instances of MEB and TSP, while Chuffed and OR-Tools
do not scale as well. For the MEB problem, Chuffed and OR-Tools timed out for a large proportion of runs. For TSP,
we found that both Chuffed and OR-Tools ran out of memory for a significant proportion of the runs, and also Chuffed
timed out for some runs (see Figure 13). Finding a feasible solution for TSP would ordinarily be trivial but the size of
the instances (up to 1000 cities) poses a challenge for both systematic solvers.

For Bin Packing, ATHANOR and ATHANOR-REDUCED were the only solvers that were able to find feasible solutions
for all runs of all instances. However, Chuffed and OR-Tools are able to compete in terms of solution quality (when
they find a solution), reducing the scores of ATHANOR and ATHANOR-REDUCED over time. OR-Tools is able to find
a feasible solution for 50% of the runs and Chuffed for somewhat less than 50% (as shown in Figure 13).

On the SONET problem ATHANOR and ATHANOR-REDUCED quickly find a feasible solution for all runs on all
instances, while the other two solvers are slower to do so. OR-Tools is able to compete with ATHANOR on solution
quality, and ATHANOR’s score declines slightly over time, however after 600 seconds ATHANOR still has a clear lead
in terms of solution quality. As noted above, there is a clear difference between ATHANOR and ATHANOR-REDUCED
caused by the use of higher-order and synchronised neighbourhood templates in ATHANOR. For both OR-Tools and
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Chuffed, the sets of integers in the MiniZinc model are represented with Boolean variables, producing a model where
most variables and constraints are Boolean and which should be well-suited to conflict learning solvers.

ATHANOR is the clear winner for CVRP, it is able to find feasible solutions quickly for all runs and produce the highest
quality solutions at every time step. OR-Tools and Chuffed do not scale as well. Both solvers run out of memory for
many runs and Chuffed also times out for some runs, as shown in Figure 13.

Finally, PPP challenges all four solvers in different ways. Chuffed is able to quickly find feasible solutions for all
runs, but its score declines over time as the other solvers produce better quality solutions. ATHANOR finds feasible
solutions for just over 70% of runs, and ATHANOR-REDUCED for just over 80%. OR-Tools finds feasible solutions
on approximately 60% of runs, timing out for the rest. ATHANOR tends to find higher quality solutions than Chuffed
and ATHANOR-REDUCED, and as a consequence has a slightly higher score at 600 seconds. This is in contrast to
Figure 11, where ATHANOR-REDUCED has a better score than ATHANOR because ATHANOR-REDUCED is able to
find feasible solutions for more runs, and thus gain points from other local search solvers that struggle to find feasible
solutions. For all instances, a solution exists where all boats are in the hosts set (and every boat crew stays on their
own boat throughout the schedule), however this solution is difficult for ATHANOR to find. The reasons for this are
explored below where we report experiments with larger instances of PPP.

9.6 Experiment 2: Scalability

The second experiment focuses on scalability of solvers when given very large instances. The hypothesis here is that
ATHANOR’s use of variable-sized data structures for both values and expressions (described in Sections 7.3 and 2.2
respectively) will allow it to scale gracefully and therefore outperform the other solvers for sufficiently large instances
of a given problem class.

We focus on four problem classes in this experiment: Bin Packing, Knapsack, PPP, and SONET. For the Knapsack
problem, other solvers outperformed ATHANOR in the first experiment. For PPP the results were inconclusive. For
the Bin Packing problem we found that other solvers are able to compete with ATHANOR in terms of solution quality,
despite the ESSENCE specification using a partition domain for the decision variable. The SONET problem is the only
other one with a nested type where another solver (OR-Tools) is able to compete with ATHANOR on solution quality.

9.6.1 Benchmark Instances

We generated new large instances for each of the four problem classes as follows.

Bin Packing: we made use of the Bin Packing generator proposed in [62]. The generator (BPPGen) was written in
Fortran and can be downloaded from the Bin Packing library BPPLib [63]. The problem size parameter is the number
of objects. For each problem size in {1000, 1500, 2000} we generated 50 instances using the default parameters
provided in the original generator, i.e., the lower bound and upper bound for the relative weight of items (as a fraction
of the bin capacity) are set to 0.2 and 0.7, respectively. The bin capacity is set to 10000.

Knapsack: we use Pisinger’s hard instance generator [50] to generate 20 instances for each problem size (i.e., the
number of items) in the set {10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000} (160 instances in total). The
parameters of the generator are set to their default values (range of coefficients: 1000, instance type: uncorrelated
spanner instances of type 11, number of tests in series: 1000).

Progressive Party Problem (PPP): we make use of the new generator described in Section 9.3.6 and generate 20
random instances for each problem size (expressed as ⟨number of boats,number of periods⟩) of ⟨80, 20⟩, ⟨120, 30⟩,
⟨160, 40⟩, and ⟨200, 50⟩ (80 instances in total). The capacity is kept in the range {10 . . . 100}.
SONET: we make use of the new generator described in Section 9.3.7 and generate 20 random instances for each of
the following problem sizes (written as ⟨number of nodes,number of rings⟩): ⟨160, 80⟩, ⟨180, 90⟩, and ⟨200, 100⟩.

9.6.2 Results

Results for the Bin Packing problem are plotted in Figure 15, showing a clear progression as the instance size increases
from 1000 to 2000 objects. ATHANOR quickly finds feasible solutions for all instances of all three sizes, whereas other
solvers either cannot find a feasible solution within the time limit or take significantly longer to do so. LNS-PG and
LNS-EB are able to find feasible solutions in some cases, and all other solvers are unable to solve any instance. In
summary, ATHANOR clearly scales better than any of the other solvers on this problem class.

Figure 16 summarises the reasons for failure of each solver on the largest Bin Packing instances. All the MiniZinc
solvers and SNS ran out of memory or time during translation, while the LNS solvers were able to start searching but
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Figure 15: Comparing all solvers on large instances of the Bin Packing problem (with 1000, 1500, or 2000 objects),
using the scoring system described in Section 9.4. Symmetry is broken for some combinations of problem class and
solver (as described in Section 9.5.1). Higher scores indicate better relative performance.
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Figure 16: Status of solver runs for Bin Packing (size 2000), Knapsack (size 80,000), PPP (size 160), and SONET
(size 200), for each solver in the scalability experiment. Note that solution-found indicates that a solver finds a
feasible solution within the time limit and that it does not exceed the memory limit during the run.
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Figure 17: Comparing all solvers on large instances of the Knapsack problem (with 10,000 to 80,000 objects), using
the scoring system described in Section 9.4. Higher scores indicate better relative performance.

in most cases they timed out before finding a feasible solution. Only LNS-PG finds any feasible solutions for the size
2000 instances.

For the Knapsack problem, we found that ATHANOR is able to find feasible solutions quickly and outperform the other
solvers for all 8 sizes, as shown in Figure 17. OR-Tools performs well up to size 60,000, but does not scale to the larger
sizes. For the size 80,000 instances, ATHANOR, LNS-EB, and LNS-PG are able to find an initial feasible solution for
all runs of all instances. ATHANOR has a higher score based on solution quality. The Knapsack problem contains a
single decision variable with type set of enum, and so can benefit from ATHANOR’s compact representation of sets,
as well as dynamic unrolling of expressions for the objective and constraint (all of which scale with the actual size of
the set, rather than its maximum possible size). Figure 16 shows that Chuffed and Yuck are limited by their memory
use, while OR-Tools and Oscar-CBLS time out before finding a feasible solution. SNS times out during translation
for the majority of the instances of size 80,000.

The results for large PPP instances are shown in Figure 18. Only Chuffed, ATHANOR, and ATHANOR-REDUCED were
able to find feasible solutions for any of the four sizes. On the size 160 instances, the solvers other than Chuffed failed
in several different ways (as shown in Figure 16). All solvers fail on instance size 200, indicating the scalability chal-
lenge of this problem. As discussed in Section 9.5, ATHANOR is hindered by the partition SwapParts neighbourhood
structure and ATHANOR-REDUCED is more effective. Most constraints of the PPP are easy to solve if we have a large
set of hosts (for example, adding a host increases the total host boat capacity so capacity constraints become easier to
solve). However, the solutions with large host sets are not easily reachable for ATHANOR. The second constraint in
particular (Figure 10 lines 11-12) is quantified with forAll h in hosts, therefore its violation may be reduced by
taking an element out of hosts. As a consequence, the second constraint will discourage ATHANOR from exploring
areas with large sets of hosts. By examining the UCB neighbourhood selector’s statistics across PPP instances we
found that in general the most frequently used neighbourhood templates all make changes to partitions within the
schedule (using the LiftSingle higher-order neighbourhood template to lift a partition from sched), while changes
to the set of hosts are less frequent. Removing an element from hosts is more frequent than adding an element to it,
and other neighbourhood structures do not change the size of hosts. Also, if the final constraint (Figure 10 line 14,
pairs of crews meet at most once) is removed, we found that ATHANOR finds a feasible solution for 53 of 200 runs on
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Figure 18: Comparing all solvers on large instances of PPP (with 80 to 200 boats), using the scoring system described
in Section 9.4. Symmetry is broken for some combinations of problem class and solver (as described in Section 9.5.1).
Higher scores indicate better relative performance.
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Figure 19: Comparing all solvers on large instances of the SONET problem (with 160 to 200 nodes), using the scoring
system described in Section 9.4. Symmetry is broken for some combinations of problem class and solver (as described
in Section 9.5.1). Higher scores indicate better relative performance.
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the 20 instances of size 200. Removing a very significant constraint on the schedule does make the problem easier but
not to the extent that ATHANOR can straightforwardly solve the largest instances. Taken together, these observations
suggest that ATHANOR is changing the set of hosts relatively infrequently and spending most of its time attempting to
satisfy constraints on the schedule for a fixed set of hosts.

Diversifying the search to include large sets of hosts could potentially help a future version of ATHANOR to find
feasible solutions to PPP. It is worth noting that each neighbourhood structure is treated as an independent action by
UCB, and there is no mechanism for UCB to learn useful sequences of actions. To reduce the violation of the capacity
constraints, ATHANOR would need to first add a new host and then redistribute the guest crews among the hosts.
However, ATHANOR does not have any incentive to apply the first action alone. Adding a host does not improve the
violation of the capacity constraints, might break the first constraint (that |parts(p)| = |hosts| for all partitions
in the schedule), and increases the objective value.

For the SONET problem (Figure 19) we found that ATHANOR can quickly produce high-quality solutions for all three
sizes of instances (including all runs of all instances of size 200). LNS-PG is also able to find feasible solutions up to
size 180 but it is not competitive with ATHANOR with respect to solution quality. Other solvers are failing for a variety
of reasons, as shown in Figure 16.

In summary, our hypothesis that ATHANOR will scale better than the other solvers is largely supported by the results.
The exception is the Progressive Party Problem where ATHANOR was unable to find feasible solutions for large
instances. For sufficiently large instances of Bin Packing, Knapsack, and SONET, ATHANOR performs substantially
better than the other solvers.

10 Experiments with Specialised Global Constraints

Some of our benchmark problems can be modelled using global constraints that represent the entire problem or a
substantial part of it (such as the knapsack constraint). We refer to these global constraints as specialised to distinguish
them from others (such as allDifferent and element) that are widely used across otherwise entirely distinct problem
classes. Implementations of specialised global constraints can include sophisticated reasoning that is specific to a
problem class (for example, Shaw’s propagator for the bin packing constraint [42]), therefore we consider them to
be similar to problem-class-specific solvers and excluded them from the experiments reported in Section 9. In this
section we compare ATHANOR to seven other solvers (as in Section 9) on four problem classes with specialised global
constraints. The MiniZinc and Choco models for the four problems are briefly described here, and are available in the
experimental repository.

• The Knapsack problem is entirely captured with a knapsack global constraint [64] stated on 0/1 variables.

• Bin Packing is modelled with a bin packing global constraint that includes load variables for each bin [42].
The load variables are used in the objective (to minimise the number of non-empty bins).

• TSP is modelled with a global circuit constraint [65] stated on a successor representation of the sequence.
The objective is modelled using element constraints to look up the distances between adjacent locations.

• CVRP is converted to a single sequence of locations using multiple dummy locations to mark the start and
end of the delivery routes.21 The successor representation is used with a circuit constraint, combined with a
redundant predecessor representation with a second circuit constraint. Other decision variables represent load
and arrival time for each location (accumulated as a vehicle traverses a delivery route), enabling the capacity
constraint and the objective (minimise total travel time) to be stated straightforwardly. The MiniZinc model
includes a custom search order that branches on the successor variables first.

We use the same benchmark instances as in Section 9. For Bin Packing, some larger instances have been generated for
the scalability experiment. Table 7 shows which of the solvers implement the specialised global constraints. ATHANOR
and SNS use the same ESSENCE specification as in Section 9.

Among the four problems, Bin Packing is the only one where symmetry breaking is available (with both MiniZinc and
Choco models). We evaluated the two Choco LNS solvers, Yuck, OR-Tools, Chuffed, and Oscar-CBLS both with and
without symmetry breaking. Experimental results indicate that the version without symmetry breaking outperforms
the one with symmetry breaking for all solvers on this problem except Chuffed. In all plots shown in this section, we
present results for Chuffed with symmetry-breaking constraints and the rest without those constraints.

21The model used here is very closely based on the MiniZinc benchmark: https://github.com/MiniZinc/
minizinc-benchmarks/
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Problem Chuffed OR-Tools Oscar-CBLS Yuck Choco LNS

Knapsack ✓
Bin Packing ✓ ✓
TSP, CVRP ✓ ✓ ✓ ✓

Table 7: Implementation of specialised global constraints by each solver. A tick indicates that the solver implements
the constraint natively (and, for MiniZinc solvers, that the native implementation is used by MiniZinc). Otherwise the
global constraint is decomposed before reaching the solver.

10.1 Experiment 1: Evaluation of Athanor Neighbourhoods

As in Section 9.5, the first experiment compares ATHANOR with the other seven solver configurations using all four
problem classes for which we have a specialised global constraint model. We are testing the first hypothesis: that
ATHANOR will generate effective neighbourhoods and neighbourhood structures from the high-level structure avail-
able in the ESSENCE specifications. If the hypothesis is true, we expect ATHANOR to be competitive with the spe-
cialised global constraint models.

ATHANOR is compared with other local search solvers in Figure 20. For the Bin Packing problem, ATHANOR remains
the leading solver but by a smaller margin than in Section 9, and the relative performance of Yuck in particular is much
improved by using the specialised global constraint. For CVRP, once again it is the LNS solvers that are the closest
challengers. ATHANOR remains the best-performing solver but by a smaller margin. On the Knapsack problem, the
two LNS solvers and Yuck perform better than ATHANOR, with all three showing a big improvement when using the
specialised global constraint model.22 Finally, for TSP the LNS solvers and Yuck are substantially improved by using
the specialised global constraint model, and ATHANOR is not the best-performing solver for this problem class.

Figure 20: Performance of ATHANOR compared to other local search solvers with specialised global constraints
using the scoring system described in Section 9.4. Higher scores indicate better relative performance.
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ATHANOR is compared to the systematic solvers in Figure 21. For Bin Packing and CVRP, the results are qualitatively
similar to those in Section 9 but ATHANOR is leading by a smaller margin. On the Knapsack problem, the results are
very similar to those without the specialised global constraint. Finally, for TSP the performance of OR-Tools is far
better with the specialised global constraint, and in this experiment it outperforms ATHANOR.

22The knapsack global constraint is decomposed for Yuck. The MiniZinc model of Knapsack used in Section 9 has a set variable,
while in this section we use an array of 0/1 variables as required for the global constraint. Yuck exhibits better performance on the
0/1 model.
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Figure 21: Performance of ATHANOR compared to systematic solvers with specialised global constraints using the
scoring system described in Section 9.4. Higher scores indicate better relative performance.
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10.2 Experiment 2: Scalability

As in Section 9.6, the second experiment focuses on scalability of solvers when given very large instances. The
hypothesis is that ATHANOR’s use of variable-sized data structures for both values and expressions will allow it to
scale gracefully and therefore outperform the other solvers for sufficiently large instances of a given problem class.
For Bin Packing we found that other solvers were able to compete with ATHANOR and reduce its score over time
in the first experiment (although ATHANOR still has the highest score at 600 seconds). For the Knapsack problem,
several other solvers were able to outperform ATHANOR on instances with 20 to 10,000 objects (Figures 20 and 21).
We perform scalability experiments for Bin Packing and Knapsack, and we also discuss TSP below.

Figure 22 shows the relative performance of the solvers on the Bin Packing problem as instance size is scaled up
to 20,000 objects. We use the same instances as in Section 9.6 up to size 2000, and the larger ones were generated
with the same generator and parameters. The LNS solvers and Yuck scale better when using the specialised global
constraint, but ultimately the outcome is the same as in Section 9: ATHANOR scales to larger instances than any of the
other solvers.

The results on the smallest instances in this experiment are quite different from those presented in Figure 20 and
Figure 21. This is caused by differences in the instance distribution (other than their size). Here the instances of size
1000 are drawn from one distribution (i.e. generated with one generator using one set of parameters). The normal size
instances of Bin Packing are drawn from multiple distributions and have 60 to 1000 objects.

Knapsack is represented as a set of integers in ESSENCE, so ATHANOR can take advantage of the variable-sized
compound type and corresponding variable-sized expressions in the constraint and the objective function. As we scale
up the number of objects to 80,000, ATHANOR scales better than all other solvers from size 60,000 upwards, as shown
in Figure 23.

The knapsack global constraint enables the LNS solvers to perform very well at size 10,000, much better (relative to
other solvers) than in Section 9. However as the size is increased the LNS solvers struggle to find a feasible solution.
For instances of size 80,000, all solvers other than ATHANOR and SNS have a score of 0 after 600 seconds have
elapsed. In contrast, in Section 9 we reported that the LNS solvers perform well, even up to size 80,000. It seems the
overhead of propagating the knapsack constraint is not worthwhile for the largest instances.

Finally, several other solvers outperformed ATHANOR on the TSP when using the circuit constraint. There is no
fundamental reason to expect ATHANOR to scale better than the other solvers. The ESSENCE specification for TSP
(Figure 6) does not contain any decision variables with variable-sized compound types: the only decision variable is a
fixed-length sequence. Also, it does not contain any expressions that unroll dynamically (either in a constraint or the
objective function). Therefore we have not performed a scalability experiment for TSP. The success of Yuck on the
TSP suggests there may be neighbourhood structures or local search techniques that could be added to ATHANOR to
improve its performance on the TSP and related problems.
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(c) Size 2000
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(d) Size 5000
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(e) Size 10,000
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(f) Size 20,000
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Figure 22: Comparing all solvers with the bin packing global constraint model (except ATHANOR and SNS) on
large instances of the Bin Packing problem (with 1000, 1500, 2000, 5000, 10,000, or 20,000 objects), using the
scoring system described in Section 9.4. Higher scores indicate better relative performance.

10.3 Summary

ATHANOR compares well to both systematic and local search solvers, even when the other solvers are using specialised
global constraints (which we define as global constraints that encapsulate all or a very substantial part of the problem).
This is a remarkable result, given that the implementation of a specialised global constraint can include arbitrary
problem-class-specific reasoning.
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Figure 23: Comparing all solvers with the knapsack global constraint model (except ATHANOR and SNS) on large
instances of the Knapsack problem (with 10,000 to 80,000 objects), using the scoring system described in Section 9.4.
Higher scores indicate better relative performance.

The most acute examples are the Knapsack and Bin Packing problems. The knapsack global constraint encapsulates
the entire Knapsack problem, while the bin packing constraint includes almost the entire problem. They both have
sophisticated propagators for systematic CP solvers [64, 42]. Even so, ATHANOR scales well and outperforms all
other solvers on the largest instances of Knapsack and Bin Packing. On the TSP, ATHANOR is competitive but is
not the leading solver, however for CVRP (another tour problem that uses the circuit global constraint) ATHANOR
outperforms all other solvers.

11 Conclusions

In this work, we have proposed ATHANOR, a general-purpose constraint-based local search solver. Compared to
existing constraint solvers, ATHANOR’s novelty lies in its ability to search directly on the high-level description of a
problem written in the ESSENCE constraint modelling language. This key idea offers two unique advantages. Firstly, it
allows the solver to effectively exploit the (high-level) structure of a given problem and automatically derive a rich set
of neighbourhood structures for the search. Secondly, by working directly with variable-sized data structures and the
use of dynamic memory allocation, ATHANOR is able to scale gracefully with the size of the given problem. The twin
benefits of the proposed approach result in an effective and highly scalable solver, as demonstrated in our experiments
across seven combinatorial optimisation problems. We compared ATHANOR with general purpose local search solvers
(Choco LNS, Oscar-CBLS, Yuck, and SNS) and with systematic solvers that have conflict learning (Chuffed and OR-
Tools). The experimental results are complex, but in summary ATHANOR shows a clear advantage for five of the
seven problem classes. The two exceptions are the Travelling Salesperson Problem (TSP) and the Progressive Party
Problem (PPP). The ESSENCE specification of TSP does not have favourable characteristics for ATHANOR (such as a
nested domain, or a domain with a variable-sized compound type). In this case, ATHANOR is outperformed by solvers
using a specialised global constraint. The limitation in performance on PPP can be attributed to the simplicity of the
neighbourhood structure selection mechanism inside the solver, which does not allow the search to recognise effective
combinations of neighbourhood structures that need to be applied in sequence.
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There are several directions to expand on this work. The design of ATHANOR provides the opportunity to investi-
gate other ways of designing neighbourhoods and neighbourhood structures, taking advantage of both the high-level
structure and recursive nature of variables. Our experiments show that our current domains can already compete with
other state of the art solvers, but we believe this area of research could lead to significant improvements over our
current system. Firstly, as described above, the employment of more sophisticated neighbourhood structure selection
mechanisms can potentially help the solver to overcome the limitation in performance found in our experiments on
PPP or similar problems, where the effectiveness of a neighbourhood structure can only be observed if it is used in
combination with others. This topic has been intensively studied by the hyper-heuristic community (see, e.g. [66, 67]).
In addition to learning to select the best neighbourhood combinations on-the-fly, a recently emerging family of tech-
niques is to learn selection strategies in a data-driven fashion via the use of deep reinforcement learning [68]. Similar
approaches have shown promising results in different areas, such as heuristic selection in planning solvers [69]. A sec-
ond direction for future research is on expanding on the neighbourhood templates. By investigating the effectiveness
of various problem-specific neighbourhood templates commonly used in the metaheuristics community (e.g., [12])
and integrating them into the neighbourhood template library of ATHANOR, we can potentially enhance the solver’s
ability in exploiting the inherent structure present in combinatorial optimisation problems. This may lead to signifi-
cant improvement in the solver’s performance. However, it is important to note that such expansion will also make
the neighbourhood structure selection problem much more challenging, which will likely require developing more
effective learning techniques. Finally, there are several design choices in ATHANOR that are currently set in an ad-hoc
manner. A thorough investigation into those choices and their impact on the solver’s performance, together with the
development of effective algorithm configuration techniques [70, 71, 72] to automate such design choices are other
important avenues for future work.
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[13] Özgür Akgün, Alan M. Frisch, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Conjure:
Automatic generation of constraint models from problem specifications. Artificial Intelligence, 310:103751,
2022.

[14] Laurent Michel and Pascal Van Hentenryck. Localizer. Constraints, 5:43–84, 2000.
[15] Christos Voudouris, Raphael Dorne, David Lesaint, and Anne Liret. iOpt: A software toolkit for heuristic search

methods. In Principles and Practice of Constraint Programming, pages 716–729. Springer, 2001.
[16] Pascal Van Hentenryck and Laurent Michel. Constraint-based local search. The MIT press, 2009.
[17] Laurent Michel and Pascal Van Hentenryck. Constraint-Based Local Search, pages 223–260. 2018.
[18] Pascal Van Hentenryck and Laurent Michel. Synthesis of constraint-based local search algorithms from high-

level models. In AAAI, pages 273–278. AAAI Press, 2007.
[19] MA Hakim Newton, Duc Nghia Pham, Abdul Sattar, and Michael Maher. Kangaroo: An efficient constraint-

based local search system using lazy propagation. In Principles and Practice of Constraint Programming, pages
645–659. Springer, 2011.

[20] Renaud De Landtsheer and Christophe Ponsard. OscaR.cbls: an open source framework for constraint-based
local search. Proceedings of ORBEL, 27, 2013.
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A Example of triggers and incremental evaluation with the sum operator

The sum operator in ATHANOR has one operand, which must be a sequence of the integer nodes which are to be added
together. Like the set type, the sequence type makes use of an extended set of trigger notifications:

• valueAdded(index, x): x has been added to the sequence at position index, moving all later elements up
one index.

• valueRemoved(index,x): x, which was at position index, has been removed, moving all later elements down
one index.

• subsequenceChanged(startIndex,endIndex): One or more of the elements in the sequence between posi-
tions startIndex (inclusive) and endIndex (exclusive) have a new value.

• positionsSwapped(index1,index2): elements at positions index1 and index2 have swapped positions.

• memberHasBecomeUndefined(index): The value of the element at position index has become undefined.

• memberHasBecomeDefined(index): The value of the element at position index has become defined.

The following example shows how the sum operator is incrementally updated using the sequence notifications. We
assume that the sum constraint has already been fully evaluated. The sum expression is represented by the following
state:

• value: The result of summing the integers in the sequence.

• cmv (cached member values): a copy of the values in the sequence. Values currently undefined are stored as
0.

• undefined : The number of undefined values in the sequence.

The sum is then incrementally updated as changes arrive. The sum implementation accepts the valueAdded,
valueRemoved, subsequenceChanged and positionsSwapped triggers, and incrementally updates both the value and
cmv . When memberHasBecomeUndefined is received, the value is still kept up to date (except for the undefined value,
which is treated as 0), and undefined is incremented. While undefined > 0, the sum node returns undefined as its
value. memberHasBecomeDefined decrements undefined , and when it reaches 0 the sum node returns value .

The only time a full re-evaluation of value, cmv, and undefined are performed is when valueChanged,
hasBecomeUndefined or hasBecomeDefined are triggered, as these do not provide any incremental information.

B Value Representation and Incremental Hashing

In this section we describe the internal representation and the hash function of each type supported by ATHANOR.
A hash function is a function that takes a string of arbitrary length and maps it to a hash – a fixed length string. In
ATHANOR, hash functions are used to quickly compare data structures by comparing their hashes rather than by re-
cursively comparing the entire data structure. Comparing by hash can improve performance by orders of magnitude.
However, hash functions have the limitation that multiple input values can have the same hash value – this is termed
a hash collision. In general the utility of a hash function depends on the extent to which it satisfies multiple proper-
ties [73], but here we are only concerned with collision resistance. Collision resistance is the difficulty of finding two
strings X and Y such that X ̸= Y and hash (X) = hash (Y ). We need strong collision resistance in ATHANOR be-
cause hash values are used to compare values for equality: to maintain type correctness (with sets, injective functions,
and partitions among others); and in several constraint types (allDifferent and subset among others). In this section
we define a hash function for the types supported by ATHANOR, describe how it can be computed incrementally (i.e.
updated efficiently when a change is made to a data structure), and discuss the consequences of a hash collision.

In the following subsections we define a hash function hash (v), where v is an expression of any supported ESSENCE
type, and show how the hash function is updated incrementally following a change δ. The hash function produces a 64-
bit value. We make use of an existing hash function named mix, which has the property that two similar input strings
have (with high probability) widely different hashes. MurmurHash3 [74] (128-bit) is used for the mix function, and its
output is reduced to 64 bits with XOR. The concrete types are dealt with simply. When v is an integer, hash (v) = v
and when v is Boolean, hash (v) = toInt(v) (i.e. 0 or 1). Enumerated types are represented internally with integers
and the integer hash function is used.
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B.1 Sets and Multisets

Sets are represented internally using an extensible array of references to the elements (in no particular order), and a
hash set (i.e. a hash table containing only keys rather than key-value pairs) of the elements to enable fast membership
tests. Insertion and deletion occur at the end of the array; an element to be deleted must be swapped with the last
element prior to deletion. For a multiset, the hash set is replaced with a hash table mapping each element to the
number of occurrences of that element.

We take the approach of hashing each element of the set or multiset, then combining the hashes of the elements into a
hash for the container. The hashes are combined with a commutative function because sets and multisets are unordered
containers and may be stored in any order. We use an associative and commutative binary operator µ to combine the
hashes of the elements. This also allows for incremental updates to a hash. When adding an element i to the set s that
has a cached hash value h, the new hash h′ can be calculated as h′ ← µ (h,hash (i)). If an element i1 is removed, the
new hash h′ is calculated as h′ ← µ

(
h, (hash(i1))

−1
)
, where x−1 is defined such that it will “cancel out” x in the

hash. The choice of the combining operator µ is important. Consider a simple choice of addition:

hash (s) = hash (s1) + hash (s2) + . . .+ hash (sn)

Addition produces a hash function with a high probability of hash collisions. As ATHANOR hashes the integer i to i,
the sets {2, 8}, {4, 6} and {1, 2, 3, 4} would all hash to 10. Our solution to this problem is based on Clarke et al. [75]:
the hash of each element is hashed again with a function calledmix, so that similar elements no longer have similar
hashes. Therefore, hash (s) where s is a set of elements s1, s2, . . . , sn is defined as:

hash (s) = mix (hash (s1)) + mix (hash (s2)) + . . .+mix (hash (sn))

The hash function for multisets is identical to the one for sets. Note that compared to a set, a multi-set allows multiple
occurrences of the same element. As the hashes are added (after mixing), this can reduce the strength of the hash
– as we use 64-bit hashes, then all multi-sets which contain 264 identical values will hash to 0. However, memory
constraints make this practically infeasible – even if a multiset had 232 occurrences of the same value, the hash value
would still be able to encode 264−32 = 232 distinct values.

B.2 Sequences and Tuples

Sequences are represented with an extensible array of references to elements. In this case the order is preserved when
adding or deleting elements at any index of the array. Sequence hashing reuses the method for incrementally hashing
sets by treating the sequence as a set of tuples (i, j), where j is a member in the sequence and i is its index (position)
in the sequence. Assuming we have a method for hashing tuples (see below), we can calculate a new hash h′ from an
existing hash h for the following operations:

• Element e added to end of sequence with index i: h′ ← h+mix (hash ((i, e)))

• Element e removed from end of sequence, its index was i: h′ ← h−mix (hash ((i, e)))

• Element e with index i changed for element e′: h′ ← h−mix (hash ((i, e))) + mix (hash ((i, e′)))

The hashing method for tuples is very simple and does not allow for incremental updates. The hashes of the members
of the tuple are concatenated into a sequence, and the sequence is then hashed with MurmurHash3 (used as in the mix
function). We have found that tuples in ESSENCE are usually short, and the lack of incremental updates does not cause
a performance problem in practice. If necessary, the method of incrementally hashing sequences can also be applied
to tuples.

B.3 Functions

A function consists of a defined set, a range set, and a mapping from elements of the first to elements of the second.
The range is stored as an extensible array of references to elements. If the function is total and the defined set is a
contiguous set of integers (or tuples of integers, each drawn from a contiguous set), then the defined set is not stored;
instead indexes into the range array are calculated directly from the defined values. Otherwise, the defined set is
stored in an extensible array and a hash table stores the mapping from defined values to the index of their image in the
range array. Functions are treated as a set of tuples (preimage, image) for the purpose of hashing. As a consequence,
functions use the method for incrementally hashing sets.
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B.4 Partitions

Given a partition with n elements, the partition representation maintains an array of partition elements e and an array
of integers p used to map each element e[i] to a label p[i]. Those with the same integer label are in the same part (cell)
of the partition. For incremental hashing, a partition is treated as a set of sets. In order to maintain the hash of each of
the parts (each of the inner sets in our set of sets), we use a third array hp of hashes:

∀i ∈ I. hp[i] =
∑

j∈I,p[j]=i

mix (hash (e[j]))

Since we are treating each part of a partition as an individual set, we hash the part in the same way as a set. We then
define the hash of the entire partition similarly, treating the partition as a set of sets. Since in the previous step we
have defined the hash of each part (or each inner set of our set of sets) we can apply the same mix/sum operations to
combine the hashes, as follows.

hash (partition) =
∑
i∈I

mix (hp[i])

When an element is moved from one part to another, the hash of the partition is updated incrementally by removing
the hashes of both parts (p1 and p2) from the hash of the partition, incrementally updating the hashes of both p1 and
p2, then restoring the updated hashes back into the partition hash. The update is performed in constant time assuming
that the hash and mix functions are constant time.

B.5 Hash Collisions

The path taken through the search space by ATHANOR can, in extremely rare cases, be affected by a hash collision.
This can cause incorrect solutions, so all solutions must be verified before they are returned to the user. ATHANOR
includes a function to verify that solutions are correct. This function has only ever found incorrect solutions when we
purposefully reduce the size of the hash to 8 bits, to check it behaves correctly. The problem arises when a constraint
requires that two elements of a compound type are equal, or (in a negated context) that two elements of a compound
type are different. The elements are checked for equality or disequality by comparing their hashes – this greatly
improves performance, but can lead to incorrect solutions if a hash collision occurs.
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