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A B S T R A C T

We tackle a capacitated lot-sizing and scheduling problem (CLSP) with the main objective of minimizing
changeover time in the production of metal parts for car seats. Changeovers occur when a machine (or
production line) is reconfigured to produce a different product or part, leading to production downtime and loss
of efficiency. In this study, we first provide a mixed-integer programming (MIP) formulation of the problem.
We test the limits of solving the problem with commercial mathematical programming software. We also
propose two approaches to tackle instances found in practice for which the mathematical programming model
is not a viable solution method. Both approaches are based on partitioning the entire production of a part into
production runs (or work slots). In the first approach, the work slots are assigned to machines and sequenced by
a metaheuristic that follows the search principles of the GRASP (greedy randomized adaptive procedure) and
VNS (variable neighborhood search) methodologies. In the second approach, we develop a Hexaly Optimizer
(formerly known as LocalSolver) model to assign and sequence work slots. The study provides insights into
how to minimize changeovers and improve production efficiency in metal parts manufacturing for car seats.
The findings of this study have practical implications for the auto-part manufacturing industry, where efficient
and cost-effective production is critical to meet the demands of the market.
1. Introduction

The efficient scheduling of machines is a crucial aspect of man-
ufacturing processes, including the production of metal parts for car
seats. Machine scheduling involves determining the order and timing
of tasks to be performed on each machine to minimize production time,
increase productivity, and reduce costs. We present a study on machine
scheduling in the manufacturing of metal parts for car seats. We pro-
pose a mathematical model for scheduling the production runs of metal
parts on a set of machines, considering machine availability, processing
times, and changeover times. The model is solved using a mixed-integer
linear programming approach. We also develop heuristic approaches
to tackle problem instances of the size found in practical settings.
Our computational testing focuses on determining the conditions under
which the problem can be tackled by solving the MIP formulation with
a commercial mathematical programming software and at what point
it is advisable to switch to a heuristic-based approach.

Our approach of first formulating the problem as a mathematical
program and test its limits is typical in the production literature. It
also mimics the approach taken in industry, where companies first
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try to solve optimization problems with general solvers before em-
barking on the development of specialized solutions. This is why in
addition to a mathematical programming solver (Gurobi) we tried
Hexaly, a heuristic-based general-purpose solver. Once we verified that
a problem-specific solution method was necessary and that metaheuris-
tics were the appropriate optimization technology, we chose to pursue
two prominent approaches: Greedy Randomized Adaptive Search Pro-
cedures (GRASP) (Feo & Resende, 1995; Resende & Ribeiro, 2016) and
Variable Neighborhood Search (VNS) (Bamoumen, Elfirdoussi, Ren,
& Tchernev, 2023; Kyriakakis, Aronis, Marinaki, & Marinakis, 2023;
Yildiz, Ozcan, & Cevik, 2023). Our motivation for this selection is
based on the documented success of these methodologies in production
scheduling and related combinatorial problems, such as those associ-
ated with vehicle routing. Our literature review convinced us to focus
on construction and improvement methods, where GRASP and VNS
surfaced as the best choices. The pseudo-greedy GRASP constructions
produce a sampling of solutions with a controlled diversification that
provides effective starting points for VNS. The flexibility embedded in
the VNS structure allows for controlling the depth of the search applied
to each of the solutions constructed by the first phase of GRASP.
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Fig. 1. Example of the internal structure of a car seat, formed by metal parts.
1.1. Problem description

The problem consists of scheduling the production of metal parts
for car seats on a set of production lines. Fig. 1 shows an example
of the internal structure of a car seat, formed by several metal parts
with various degrees of similarity. For instance, the lateral parts are
symmetrical. But the bottom parts are quite different from the rails.
Parts that are similar belong to the same profile family.

Each part has a preferred (‘‘home’’) line and one or two secondary
lines. Each part belongs only to one profile family. There are two types
of changeovers, one with a long changeover time and another with a
short changeover time. A long changeover time occurs when changing a
line to produce parts from two different profile families. When changing
a line to produce parts within the same profile family, the changeover is
short. Demand for each part is estimated for several weeks in a planning
horizon. A scheduler must decide on the production sequences for each
line and the lot sizes to cover the estimated demand while minimizing
the total changeover time.

1.2. Illustrative example

The following example illustrates the problem that we are tackling.
Suppose that five parts must be produced to meet demand in a planning
horizon of 5 weeks. For this simple example, we make three assump-
tions: (1) the production facility consists of a single machine capable
of producing the five parts, (2) there are no tool restrictions, (3) long
changeovers are 10 h and a short changeover requires 3 h. A week
consists of 10 shifts of 7.5 h for a total of 75 production hours. Table 1
shows the data for this example. The part numbers are in column 1.
Column 2 shows the profile family for each part. The production rates,
expressed in parts per hour (PPH), are shown in column 3. Finally,
columns 4 to 8 show the inventory positions of each part. The inventory
positions consider the initial inventory and the weekly demand. The
negative numbers indicate the shortages that must be addressed by the
production schedule.
2 
Table 1
Data for illustrative example.

Part Profile PPH Week 1 Week 2 Week 3 Week 4 Week 5
P61045.01 61045 360 1300 −1800 −5800 −5800 −8200
P61045.02 61045 240 1200 400 −1400 −3600 −7800
P61045.03 61045 120 −1200 −2400 −4800 −7200 −18 000
P61048.01 61048 360 6400 4410 −1750 −2150 −3500
P61048.02 61048 300 1500 −900 −1800 −3500 −7000

Table 2
Feasible production sequence and lot sizing for the illustrative example.

Run Part Quantity Start Duration End Week

1 P61048.01 3600 0 10 10 1
Changeover 10 3 13 1

2 P61048.02 7000 13 23.3 36.3 1
Changeover 36.3 10 46.3 1

3 P61045.03 3440 46.3 28.7 75 1
P61045.03 7440 75 62 137 2
Changeover 137 3 140 2

4 P61045.01 3600 140 10 150 2
P61045.01 4600 150 12.8 162.8 3
Changeover 162.8 3 165.8 3

5 P61045.02 7800 165.8 32.5 198.3 3
Changeover 198.3 3 201.3 3

6 P61045.03 2847 201.3 23.7 225 3
P61045.03 4273 225 35.6 260.6 4

Table 2 shows a feasible production schedule consisting of 6 pro-
duction runs (of a minimum of 10 h), 1 long changeover, and 4 short
changeovers, for a total of 22 h of changeover time. No changeover
time is charged for setting up the machine for the first production run.

A lower bound on the minimum number of changeovers of each
type and on the total changeover time can be obtained by relaxing
the due date constraints. This relaxation allows the completion of the
total production of each part in a single run. The optimal sequence for
this relaxed problem would be to produce all the parts with the same
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profile before changing the machine to produce all the parts with the
next profile. For this example, the sequence that orders the production
runs by the part numbers (i.e., all parts in the 61045 profile family are
produced first followed by all parts in the 6048 profile family) provides
a lower bound for the changeover values. The lower bounds are:

• Long changeovers: 1
• Short changeovers: 3
• Changeover time: 19

A long changeover occurs when changing from P61045.03 to
61048.01. The short changeovers are the changes associated with
he following pairs of parts (P61045.01, P61045.02), (P61045.02,
61045.03), and (P61048.01, P61048.02). The solution in Table 2

differs from the lower bound by one short changeover. The splitting
of the production run is necessary because it is not possible to produce
all 18000 units of P61045.03 in a single production run and at the same
time meet all the demand obligations in week 2. Some production runs
are divided into two rows in Table 2 to account for the week in which
the parts are added to the inventory. For instance, production run #3
adds 3440 parts to the inventory of P61045.03 in week one and 7440
parts to the inventory in week 2.

1.3. Literature review

It is well known that no two production scheduling problems are
he same. There are common elements to many production schedul-
ng problems, such as sequence dependency, lot size determination,
nd assignment of jobs to machines. However, even the smallest of
ifferences can cause major changes in standard models and solution
pproaches. In a variety of practical settings, changeover times can
ave a significant impact on production efficiency and equipment uti-
ization. Discrete-time mixed-integer programming formulations have
een used to model scheduling problems in production environments
ith single and multiple parallel machines (Velez, Dong, & Maravelias,

2017). Due to the complexity of mixed-integer programming (MIP)
ormulations that model sequence dependency, solution approaches
uch as column-generation (Kang, Malik, & Thomas, 1999) and genetic

algorithms (Roychowdhury, Allen, & Allen, 2017) have been proposed.
When the problems also include lot sizing, the models become even

ore complex because in addition to sequencing the production runs
n each machine, the length of the runs must be determined, resulting
n what is known as capacitated lot-sizing and scheduling problems

(CLSP). The CLSP literature is vast and includes mathematical program-
ming models, as well as heuristics, and metaheuristic approaches. A
ecent detailed literature review of the CLSP literature can be found
n De Armas and Laguna (2020).

Resource sharing, which is common in many production environ-
ments, adds to the complexity of the scheduling problem. The issue
is that a limited number of additional resources (such as pallets, op-
rators, tools, molds, etc.) are necessary to produce different parts or
roducts. Therefore, optimization models must consider the limited
vailability of these additional resources when scheduling production
n parallel machines (Özpeynirci, Gökgür, & Hnich, 2016). Edis, Oguz
nd Ozkarahan (Edis, Oguz, & Ozkarahan, 2013) present a compre-

hensive review and discussion of work on parallel machine scheduling
problems with additional resources.

In our review of the existing literature, we found that the CLSP
ackled by Xiao, Zhang, Zheng, and Gupta (2013) is closest to the

problem we faced when we engaged with the car seat manufacturing
facility we studied. The article is motivated by the production of
semiconductors. The CLSP considers sequence-dependent setup times,
time windows, machine eligibility, and preference constraints. They op-
timize an objective function consisting of a weighted sum of inventory
holding cost, backlog cost, setup time cost, and machine preference
cost. They propose an MIP formulation, which they solve using Cplex.
They also propose a relax-and-fix algorithm to find initial solutions
3 
that are then subjected to fix-and-optimize process consisting of a
local search with a neighborhood modification phase. The relax-and-fix
approach is a rolling-horizon process with overlapping time intervals.
That is, they use a shift forward strategy to solve a sequence of smaller
MIP problems by fixing the binary variables for previous periods,
enforcing the binary restrictions for the current periods, and relaxing
the binary variables for future periods. The fix-and-optimize search is
based on a neighborhood scheme that selects a machine to optimize
ll its associated variables while maintaining the variables of all other

machines fixed. A hybrid fix-and-optimize approach that alternates
between machine-based decomposition and time-based decomposition
is also developed and tested. The experimental results show that Cplex
can solve problems with a planning horizon of 14 periods, 10 machines,
and 10 to 14 items. The size of these instances corresponds to the real-
world application that motivated the research project. Larger instances,
with the same number of periods with up to 15 machines and 20 items
are solved with the proposed heuristics. The average deviations from
he lower bounds found by Cplex are about 12%.

The size of the problems that Xiao, et al. tackle is significantly
maller than the ones we found in the manufacturing facility that
e studied. Also, production managers in our study were concerned
ith first finding solutions with no backlog (i.e., zero inventory short-
ges) and within those solutions they wanted the one with the least
hangeover time. For these reasons, we did not attempt to either
eproduce Xiao, et al.’s approach or request their code for inclusion
n our computational testing.

Koch et al. (2022) formulate a mixed-integer programming model
or the production of off-the-road tires. Their formulation includes
 large number of constraint sets to model setup times, upstream
esources saturation, and customer prioritization, among other things.
he model is multi-objective in nature, however, the problem is solved
s a single objective with weight values provided by a Taguchi design
f experiments. The MIP is not able to solve problems of realistic size

and therefore a decomposition approach is suggested. This approach
consists of solving a lot sizing problem followed by solving a machine
assignment problem. Koch, et al. show that their decomposition ap-
proach provides solutions that are better than those constructed by a
human scheduler.

2. Mathematical programming formulation

Our mixed-integer program assigns parts to machines, determines
the production sequence within each period and each machine, and
establishes the sizes of each lot. The first two decisions are modeled
with binary variables and the third is a set of continuous variables.

he model that we first formulated attempted to directly capture
the goals of the production managers. The main goal was to find a
solution with zero shortages. Once that was accomplished, the goal
was to minimize the total changeover time. Finally, subject to the two
previous minimization efforts, an attempt was made to find a solution
where machine preferences were maximized. Therefore, we modeled
the problem as a hierarchical program where minimizing shortages had
the highest priority, followed by minimizing total changeover time, and
finishing with the maximization of machine preferences. Preferences
were expressed in the form of priority values, where the highest pri-
ority was zero. In this way, maximizing total machine-preference was
equivalent to minimizing priority values.

Parameters

𝐽 : Set of parts
𝐾 : Set of machines
𝑇 : Set of periods
𝑟𝑗 𝑘 : Production rate (units per hour) of part 𝑗 on machine

𝑘. If machine 𝑘 is not capable of producing part 𝑗 then
𝑟𝑗 𝑘 = 0.
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𝑐𝑖𝑗 : Changeover time from part 𝑖 to part 𝑗. If parts 𝑖 and 𝑗
belong to the same profile family, the changeover is
short. A long changeover (𝑐𝑙 𝑜𝑛𝑔) is incurred when parts
𝑖 and 𝑗 belong to two different profile families.

𝑑𝑗 𝑡 : Inventory position of part 𝑗 in period 𝑡. The inventory
position subtracts the demand in each period from the
beginning inventory. The position becomes negative
when the accumulated demand exceeds the initial
inventory.

𝑞𝑘𝑡 : Capacity (given in number of hours) of machine 𝑘
available in period 𝑡.

𝑝𝑗 𝑘 : Priority for producing part 𝑗 on machine 𝑘, where
𝑝𝑗 𝑘 = 0 if 𝑘 is the preferred machine for producing part
𝑗. If 𝑘 is the second preferred machine for producing
part j then 𝑝𝑗 𝑘 = 1, and so forth.

Decision variables
𝐼−𝑗 𝑡 : Inventory shortage of part 𝑗 at the end of period 𝑡.
𝑠𝑗 𝑘𝑡 : Sequencing variable for part 𝑗 on machine 𝑘 in period

𝑡. The value of this variable indicates the relative
position of the part in the production sequence of
machine 𝑘 in period 𝑡.

𝑥𝑗 𝑘𝑡 : Number of production hours of part 𝑗 on machine 𝑘 in
period 𝑡. The lot size for part 𝑗 on machine 𝑘 in period
𝑡 is given by 𝑟𝑗 𝑘 𝑥𝑗 𝑘𝑡.

𝑦𝑖𝑗 𝑘𝑡 : Binary variable that equals 1 if part 𝑗 immediately
follows part 𝑖 on machine 𝑘 in period 𝑡.

𝑧𝑗 𝑘𝑡 : Binary variable that equals 1 if the setup for part 𝑗 is
carried over from period 𝑡 to 𝑡 + 1 on machine 𝑘.

Model
The hierarchical objective function consists of first minimizing the

total shortage. This is because in some scenarios it might not be
possible to find a solution for which all the demand can be met on
time. Shortages are equivalent to backlog quantities, except that these
quantities may remain unfulfilled throughout the planning horizon.

Minimize
∑

𝑗∈𝐽

∑

𝑡∈𝑇
𝐼−𝑗 𝑡 (1)

We then minimize the total changeover time.

Minimize
∑

𝑖∈𝐽

∑

𝑗∈𝐽∶𝑖≠𝑗

∑

𝑘∈𝐾

∑

𝑡∈𝑇
𝑐𝑖𝑗𝑦𝑖𝑗 𝑘𝑡 (2)

All other things being equal (i.e., total shortage and changeover
time), we would like to assign parts to their preferred machines.

Minimize
∑

𝑖∈𝐽

∑

𝑗∈𝐽∶𝑖≠𝑗

∑

𝑘∈𝐾

∑

𝑡∈𝑇
𝑝𝑗 𝑘𝑦𝑖𝑗 𝑘𝑡 (3)

The demand coverage constraints are formulated as follows:
∑

𝑘∈𝐾

𝑡′=𝑡
∑

𝑡′=1
𝑟𝑗 𝑘𝑥𝑗 𝑘𝑡′ + 𝐼−𝑗 𝑡 + 𝑑𝑗 𝑡 ≥ 0 ∀𝑗 and 𝑡 (4)

The capacity constraint for each machine limits the total production
time and the changeover time to the available time in each period.
∑

𝑗∈𝐽
𝑥𝑗 𝑘𝑡 +

∑

𝑖∈𝐽

∑

𝑗∈𝐽∶𝑖≠𝑗
𝑐𝑖𝑗𝑦𝑖𝑗 𝑘𝑡 ≤ 𝑞𝑘𝑡 ∀𝑘 and 𝑡 (5)

A set of constraints is needed to link the production and the
changeover variables. Production of part 𝑗 on machine 𝑘 in period 𝑡 can
only occur if machine 𝑘 is set up to produce part 𝑗 at the beginning of
the period or a changeover to part 𝑗 occurs during the period. This is
enforced by constraint set (6). When production is activated, constraint
et (7) enforces a minimum amount of production hours equivalent to

the time required for a long changeover.

𝑥𝑗 𝑘𝑡 ≤ 𝑞𝑘𝑡(𝑧𝑗 𝑘𝑡−1 +
∑

𝑦𝑖𝑗 𝑘𝑡) ∀𝑗 , 𝑘 and 𝑡 (6)

𝑖∈𝐽∶𝑖≠𝑗

4 
𝑥𝑗 𝑘𝑡 ≥ 𝑐𝑙 𝑜𝑛𝑔(𝑧𝑗 𝑘𝑡−1 +
∑

𝑖∈𝐽∶𝑖≠𝑗
𝑦𝑖𝑗 𝑘𝑡) ∀𝑗 , 𝑘 and 𝑡 (7)

The following set of constraints model the changeover flow. For
each part, machine, and period, the machine is either set to produce

or there is a change from another part into part 𝑗. When the machine
s set to produce part 𝑗, that is, at least one term on the left-hand side
f (8) is 1, then the machine must be changed to produce another part

or remain set to produce part 𝑗 in the following period. Constraints (9)
indicate that only one setup may be carried out from one period to the
next. That is, machines must be set to produce one part at the beginning
of each period. For period 1, the model chooses what to produce first.
or the following periods, the setup is carried over from the previous

period.

𝑧𝑗 𝑘𝑡−1 +
∑

𝑖∈𝐽∶𝑖≠𝑗
𝑦𝑖𝑗 𝑘𝑡 = 𝑧𝑗 𝑘𝑡 +

∑

𝑖∈𝐽∶𝑖≠𝑗
𝑦𝑗 𝑖𝑘𝑡 ∀𝑗 , 𝑘 and 𝑡 (8)

∑

𝑖∈𝐽
𝑧𝑗 𝑘𝑡 = 1 ∀𝑘 and 𝑡 (9)

Constraints (8) and (9) are not sufficient to model the production
sequence on each machine in each period because they allow ‘‘cycles’’.
These cycles are like ‘‘subtours’’ in a traveling salesperson problem.)

For instance, in our illustrative example, constraint (8) would allow the
ollowing sequence in period 𝑡:

(𝑃 61045.03, 𝑃 61048.01, 𝑃 61048.02, 𝑃 61048.02, 𝑃 61048.01, 𝑃 61045.03)

For P61045.03, constraint (8) is satisfied by making 𝑧𝑃61045.03,𝑡−1 =
𝑃 61045.03,𝑡 = 1 (we do not include machine index because there
s only one machine). For P61048.01 to be part of the sequence,

constraint (8) is satisfied by the following values of the 𝑦 variables
𝑦𝑃 61048.02,𝑃61048.01,𝑡 = 𝑦𝑃61048.01,𝑃 61048.02,𝑡 = 1. The same values satisfy
he constraint (8) for P61048.02. These variable values allow the

production of parts with two different profiles without charging for the
long changeover from the 61045 to the 61048 profile family.

The following set of constraints break cycles and create sequences
where a production run of a part appears no more than once in a
sequence of a period. The constraints assign a position value to each
part being produced on a machine in a period. These constraints are
an adaptation of the so-called Miller-Tucker-Zemlin (MTZ) subtour
limination constraints (Miller, Tucker, & Zemlin, 1960).

𝑠𝑖𝑘𝑡 − 𝑠𝑗 𝑘𝑡 ≤ |𝐽 |(1 − 𝑦𝑖𝑗 𝑘𝑡) − 1 ∀𝑖, 𝑗 , 𝑘 and 𝑡 (10)

When a changeover from part 𝑖 to part 𝑗 occurs on machine 𝑘 in
period 𝑡 (i.e., 𝑦𝑖𝑗 𝑘𝑡 = 1), then 𝑠𝑖𝑘𝑡 − 𝑠𝑗 𝑘𝑡 ≤ −1. That is the position of 𝑗
in the production sequence of machine 𝑘 in period 𝑡 must be greater
than the position of part 𝑖 by at least one unit. When 𝑦𝑖𝑗 𝑘𝑡 = 0, the
constraint is nonbinding. The model includes the typical binary (for
the 𝑦 variables) and non-negativity restrictions for all other decision
variables.

With the goal of improving upon the lower bounds of the linear
rogramming relaxation of our formulation, we tested an alternative set
f subtour elimination constraints. In particular, we implemented the
et of constraints proposed by Sarin, Sherali, and Bhootra (SSB) (Sarin,
herali, & Bhootra, 2005). The SSB constraints are a disaggregation of

the MTZ constraints and have been shown to produced tighter bounds
n the context of the asymmetric traveling salesmen problem. Unfor-
unately, the adaptation of the SSB constraints to our problem did not
roduced the desired effect. Therefore, our computational experiments
ith the mixed-integer programming formulation were done using the
TZ subtour elimination constraints.

After a few preliminary runs with this model and discussion of
the results with key personnel in the company, it was revealed that
he optimal solution did not change after optimizing the first two
bjectives. Furthermore, most parts were ‘‘naturally’’ being assigned to

their preferred machines because the production rate on these machines
is typically higher. Therefore, a decision was made to drop the third
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objective from the model. Additional analysis also showed that there
as no advantage in treating the first two objectives hierarchically.

Shortages are at least one order of magnitude larger than changeover
times, and therefore a straight sum of these two quantities accomplishes
he desire to give the minimization of shortages a priority. Therefore,
e simplify the objective function to the following expression:

Minimize
∑

𝑗∈𝐽

∑

𝑡∈𝑇
𝐼−𝑗 𝑡 +

∑

𝑖∈𝐽

∑

𝑗∈𝐽∶𝑖≠𝑗

∑

𝑘∈𝐾

∑

𝑡∈𝑇
𝑐𝑖𝑗𝑦𝑖𝑗 𝑘𝑡 (11)

Our computational experiments show that the model is most sen-
itive to an increase in the number of parts and periods. In the envi-
onment that we studied, the number of machines is relatively small.
owever, the number of parts is at least one order of magnitude larger

han the number of machines. The number of parts has a quadratic
effect on the number of binary variables associated with the produc-
tion sequencing (i.e., the y variables). This quadratic relationship is
exacerbated by any significant increase in the number of periods.

3. Metaheuristic approach

Metaheuristics play an important role in practical optimization
roblems because of their ability to produce high quality solutions in
ffordable computational times. Given the various constraints in this
roblem, we have designed a set of algorithmic elements that can be
ombined to configure an effective search procedure for this problem.

The description of our metaheuristic approach starts with the com-
utational model and is followed by the proposed solution construc-
ion methods along with the neighborhoods used to explore the solu-
ion space. We also describe an efficient computation of the objective
unction that we use within the search process.

3.1. Computational model

Let 𝐼 represent the instance that stores the set of problem features
escribed in Section 2. We also define 𝑆 = {𝑆1,… , 𝑆

|𝐾|

} as a set of |𝐾|

ists, where 𝑆𝑘 is the workload for machine 𝑘. The workload is a list
f work slots, with each work slot being a tuple 𝑤 = (𝑗 , 𝑙 , 𝑡𝑖, 𝑡𝑒), where
∈ 𝐽 is the index of the part, 𝑡𝑖 is the time when the work slot begins,
nd 𝑡𝑒 is the time when the work slot ends. Since 𝑟𝑗 𝑘 is the production
atio of part 𝑗 on machine 𝑘, a work slot produces 𝑙 𝑟𝑗 𝑘 units of part 𝑗,
here 𝑙 = 𝑡𝑒 − 𝑡𝑖 represents the slot duration (i.e., load).

Therefore, following the simplification described in Eq. (11), the
computation of the objective function  for a given solution 𝑆 is given
by the sum of the total 𝑐 ℎ𝑎𝑛𝑔 𝑒𝑜𝑣𝑒𝑟 time and the total 𝑠ℎ𝑜𝑟𝑡𝑎𝑔 𝑒:
 (𝑆) = 𝑐 ℎ𝑎𝑛𝑔 𝑒𝑜𝑣𝑒𝑟(𝑆) + 𝑠ℎ𝑜𝑟𝑡𝑎𝑔 𝑒(𝑆) (12)

Let (𝑣, 𝑤) be a pair of consecutive work slots in machine 𝑘 such that
work slot 𝑣 produces part 𝑖 and work slot 𝑤 produces part 𝑗, then the
total changeover time for solution 𝑆 is given by:

𝑐 ℎ𝑎𝑛𝑔 𝑒𝑜𝑣𝑒𝑟(𝑆) =
∑

𝑘∈𝐾

∑

(𝑣,𝑤)∈𝑆𝑘

𝑐𝑣(𝑖)𝑤(𝑗) (13)

Note that in Eq. (13) we are omitting the 𝑙 and 𝑡 elements of the
work slot tuples because they do not participate in the calculation of
the changeover time. That is, only the indices of the jobs in slots 𝑣 and
𝑤 are required to calculate the changeover time. For the sake of clarity,
we follow the same logic below, that is, we only include the elements
of the work slot tuple that are needed for a given calculation.

The shortage of part 𝑗 in period 𝑡 is the difference between the
nventory position 𝑑𝑗 𝑡 and the production of part 𝑗 up to period 𝑡 in so-
ution 𝑆, denoted by 𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑗 𝑡(𝑆). Recall that the inventory position
or each part starts with the number of units in the initial inventory and
he position becomes negative when the cumulative demand exceeds
he initial inventory. Therefore the shortage for solution 𝑆 is calculated
s follows:

𝑠ℎ𝑜𝑟𝑡𝑎𝑔 𝑒(𝑆) = −
∑∑

𝑚𝑖𝑛(0, 𝑑𝑗 𝑡 + 𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑗 𝑡(𝑆)) (14)

𝑗∈𝐽 𝑡∈𝑇

5 
The cumulative production of part 𝑗 up to period 𝑡 depends on the
work slots scheduled to start prior to period 𝑡. A work slot could be
scheduled on machine 𝑘 in such a way that 𝑡𝑖 < 𝑡 and 𝑡𝑒 > 𝑡. In this case
only the units produced until period 𝑡, i.e., (𝑡− 𝑡𝑖)𝑟𝑗 𝑘, count towards the
nventory position of part 𝑗 at period 𝑡. The cumulative production of
art 𝑗 up to period 𝑡 is calculated as follows:

𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑗 𝑡(𝑆) =
∑

𝑘∈𝐾

∑

𝑤∈𝑆𝑘∧
𝑤(𝑗 ,𝑡𝑖 )<𝑡

(𝑚𝑖𝑛(𝑡, 𝑤(𝑗 , 𝑡𝑒)) −𝑤(𝑗 , 𝑡𝑖))𝑟𝑗 𝑘 (15)

Our procedure does not consider any downtime in addition to the
hangeover time. That is, if work slot 𝑣 producing part 𝑖 immediately
recedes work slot 𝑤 that produces part 𝑗, then the time 𝑤(𝑗 , 𝑡𝑖) when
ork slot 𝑤 begins depends on the time 𝑣(𝑖, 𝑡𝑒) when work slot 𝑣 ends
nd the changeover time between part 𝑖 and part 𝑗. That is, 𝑤(𝑗 , 𝑡𝑖) =
(𝑖, 𝑡𝑒) + 𝑐𝑖𝑗 .

3.2. Construction methods

The first construction approach consists of generating random so-
lutions. The process generates several work slots of random duration,
where the number of slots and their duration is enough to meet the
emand. Algorithm 1 shows the pseudo-code for this approach. The
rocedure starts with an empty solution 𝑆 and sets the uncover demand
𝑗 for part 𝑗 as the inventory position in that last period of the planning
orizon, i.e., 𝑑𝑗|𝑇 |. The procedure uses 𝐽 ′ as the set of parts with
ncovered demand and the main loop (line 4) terminates when this
et is empty. Within the main loop, a part 𝑗 is selected at random from
′ (line 5). A machine 𝑘 is randomly selected from 𝐾𝑗 , which is the set

of machines that are able to produce part 𝑗 (line 6). After a machine is
elected, the work slot duration 𝑙 is randomly chosen between 𝑐𝑙 𝑜𝑛𝑔 and
𝑎𝑥(𝑐𝑙 𝑜𝑛𝑔 , 𝑈𝑗∕𝑟𝑗 𝑘). This means that when 𝑈𝑗∕𝑟𝑗 𝑘 < 𝑐𝑙 𝑜𝑛𝑔 then 𝑙 = 𝑐𝑙 𝑜𝑛𝑔

(line 7). A new work slot 𝑤 is created in line 8 with the selected part
and duration. Note that the 𝑡𝑖 and 𝑡𝑒 values are determined when the
slot is added to the selected machine in line 9. This operation is denoted
with the ⊕ symbol to indicate that the work slot is added at the end
of the corresponding list. The number of uncovered units of demand
s updated in line 10, and 𝑗 is removed from the set of parts with
ncovered demand if the uncovered demand is less than or equal to
ero (lines 11 and 12). Finally, the solution is returned in line 13.

Algorithm 1: RandomConstruction (𝐼)
1 𝑆 ← ∅
2 𝑈𝑗 ← −𝑑𝑗|𝑇 | , ∀𝑗 ∈ 𝐽
3 𝐽 ′ ← 𝐽
4 while |𝐽 ′

| > 0 do
5 𝑗 ← SelectRandom(𝐽 ′)
6 𝑘 ← SelectRandom(𝐾𝑗 )
7 𝑙 ← SelectRandom(𝑐𝑙 𝑜𝑛𝑔 , 𝑚𝑎𝑥(𝑐𝑙 𝑜𝑛𝑔 , 𝑈𝑗∕𝑟𝑗 𝑘))
8 𝑤 ← {𝑗 , 𝑙}
9 𝑆𝑘 ← 𝑆𝑘 ⊕ 𝑤
10 𝑈𝑗 ← 𝑈𝑗 − 𝑙 𝑟𝑗 𝑘
11 if 𝑈𝑗 ≤ 0 then
12 𝐽 ′ ← 𝐽 ′ ⧵ {𝑗}

13 return 𝑆

Algorithm 1 generates a diverse set of work slots with enough units
o cover the demand as long as the search finds a sequence for which
he production is completed on time to avoid shortages. We refer to
his construction method as 𝑅𝑁 𝐷.

In addition to the simple random construction, we have designed a
construction method based on the Greedy Randomized Adaptive Search
Procedure (GRASP) (Feo & Resende, 1995; Resende & Ribeiro, 2016).

RASP uses a pseudo-greedy strategy to build diverse solutions. Our
greedy function measures the contribution to the objective function that
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results from assigning a work slot to a machine. Therefore, we need to
build a set of work slots with enough capacity to meet demand. The
maximum machine time needed to produce all the units demanded of
part 𝑗 is given by:

𝑙𝑚𝑎𝑥𝑗 = −𝑑𝑗|𝑇 |∕ar g min
𝑘∈𝐾𝑗

𝑟𝑗 𝑘 (16)

This maximum time is obtained by dividing the number of units
equired in the last period, −𝑑𝑗|𝑇 |, by the minimum production rate
mong the machines able to produce 𝑗. By choosing the lowest rate
e guarantee that the set of work slots will be enough to produce

the units needed to satisfy the demand. For each part 𝑗 we create
⌊𝑙𝑚𝑎𝑥𝑗 ∕𝑐𝑙 𝑜𝑛𝑔⌋ − 1 work slots with a load 𝑙 = 𝑐𝑙 𝑜𝑛𝑔 and one work slot with
a load 𝑙 = 𝑐𝑙 𝑜𝑛𝑔 + 𝑙𝑚𝑎𝑥𝑗 mod 𝑐𝑙 𝑜𝑛𝑔 . This is what Algorithm 2 does.

Algorithm 2: GenerateWorkSlots (𝐼)
1 𝑊 ← ∅
2 for 𝑗 ∈ 𝐽 do
3 𝑙𝑚𝑎𝑥𝑗 ← −𝑑𝑗|𝑇 |∕ar g min

𝑘∈𝐾𝑗

𝑟𝑗 𝑘
4 for 𝑙 = 1, ..., ⌊𝑙𝑚𝑎𝑥𝑗 ∕𝑐𝑙 𝑜𝑛𝑔⌋ − 1 do
5 𝑙 ← 𝑐𝑙 𝑜𝑛𝑔
6 𝑤 ← {𝑗 , 𝑙}
7 𝑊 ← 𝑊 ∪ {𝑤}

8 𝑙 ← 𝑐𝑙 𝑜𝑛𝑔 + 𝑙𝑚𝑎𝑥𝑗 mod 𝑐𝑙 𝑜𝑛𝑔
9 𝑤 ← {𝑗 , 𝑙}
10 𝑊 ← 𝑊 ∪ {𝑤}

11 return 𝑊

Our construction method uses 𝑊 as the set of elements that remain
to be selected at each step of the process. The pseudocode of the
construction method is shown in Algorithm 3. The procedure starts with
a call to 𝐺 𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑊 𝑜𝑟𝑘𝑆 𝑙 𝑜𝑡𝑠(𝐼) that returns 𝑊 (line 1). The first work
slot to be assigned is chosen at random in line 2. The part 𝑗 associated
with the work slot is identified in line 3 and a machine 𝑘 is randomly
selected from the set of machines capable of producing part 𝑗 in line
4. The work slot 𝑤 is added to machine 𝑘 in line 5. The chosen work
slot 𝑤 is removed from the set of work slots in line 6 and the main
loop of the method begins, iterating while 𝑊 is not empty. The main
loop starts by creating the so-called candidate list 𝐶 𝐿 in line 8. This list
s formed by pairs (𝑤, 𝑘) corresponding to the feasible assignments of
ork slots. That is, each work slot 𝑤 is associated with all the machines

𝑘 able to produce the part assigned to the work slot (𝑘 ∈ 𝐾𝑤(𝑗)). Once
he 𝐶 𝐿 is built, a pair (𝑤, 𝑘) is selected by either a GreedyRandom
r a RandomGreedy strategy, which we explain below, attending to
he value of the 𝛼 parameter. The selected work slot 𝑤 is included in
he selected machine 𝑘 of the partial solution 𝑆 in line 10, and 𝑊 is
pdated in line 11. Finally, the solution is returned in line 12.

Algorithm 3: GRASPConstruction (𝐼 , 𝛼)
1 𝑊 ← GenerateWorkSlots(𝐼)
2 𝑤 ← SelectRandom(𝑊 )
3 𝑗 ← 𝑤(𝑗)
4 𝑘 ← SelectRandom(𝐾𝑗 )
5 𝑆𝑘 ← 𝑆𝑘 ⊕ 𝑤
6 𝑊 ← 𝑊 ⧵ {𝑤}
7 while |𝑊 | > 0 do
8 𝐶 𝐿 ← {(𝑤, 𝑘) ∶ 𝑤 ∈ 𝑊 ∧ 𝑘 ∈ 𝐾𝑗}

9 (𝑤, 𝑘) ←
{

GreedyRandom(𝑆 , 𝐶 𝐿, 𝛼)
RandomGreedy(𝑆 , 𝐶 𝐿, 𝛼)

10 𝑆𝑘 ← 𝑆𝑘 ⊕ 𝑤
11 𝑊 ← 𝑊 ⧵ {𝑤}

12 return 𝑆

The selection of a (𝑤, 𝑘) pair at each step of the construction
rocedure is done based on two strategies associated with the GRASP
6 
methodology, namely, greedy random and random greedy. Both strate-
gies build a so-called restricted candidate list 𝑅𝐶 𝐿 that is a subset of
the elements in 𝐶 𝐿. In greedy random, the restricted candidate list 𝑅𝐶 𝐿
is the best (according to the greedy function) 𝛼% elements in 𝐶 𝐿. Then,
an element (that is, a (𝑤, 𝑘) pair) is chosen at random from 𝑅𝐶 𝐿. In
the random greedy strategy, the 𝑅𝐶 𝐿 consists of 𝛼% randomly selected
elements from 𝐶 𝐿. Then, the best (according to the greedy function)
element from 𝑅𝐶 𝐿 is selected.

The greedy function calculates the change in the objective function
alue of a solution 𝑆 due to adding work slot 𝑤 to machine 𝑘. We define
his change as 𝛥(𝑤, 𝑘, 𝑆), as shown in Eq. (17), where 𝑆′

𝑘 ← 𝑆𝑘 ⊕ 𝑤.

𝛥(𝑤, 𝑘, 𝑆) =  (𝑆) −  (𝑆′) (17)

Since the objective is to minimize  (𝑆), the larger the value of
the greedy function the better. The construction process starts with
n empty solution that has a large objective function value equal to
he maximum shortage and zero changeovers. Shortage is reduced and
hangeovers are potentially increased with the sequential addition of

work slots. The greedy function, however, maintains a positive value
during the construction process because shortage cannot be negative
and no additional workslots are added if shortage becomes zero. Algo-
ithm 4 shows our implementation of the greedy random. The minimum
nd maximum values of the greedy function, 𝛥𝑚𝑖𝑛 and 𝛥𝑚𝑎𝑥, associated
ith the elements in 𝐶 𝐿 are calculated in lines 1 and 2, respectively.
hen, the greedy value threshold for membership in the 𝑅𝐶 𝐿 is found

in line 3. This threshold, denoted as 𝜃, depends on the value of the
𝛼 ∈ [0, 1] parameter. The restricted candidate list 𝑅𝐶 𝐿 is built in line 4
with those elements whose greedy value is larger or equal to 𝜃. Finally,
a pair (𝑤, 𝑘) is randomly selected from the 𝑅𝐶 𝐿 in line 5 and returned
in line 6. The smaller the value of 𝛼, the greedier the selection, while
the larger the value, the more random. We refer to this construction
method as 𝐺 𝑅.

Algorithm 4: GreedyRandom (𝑆 , 𝐶 𝐿, 𝛼)
1 𝛥𝑚𝑖𝑛 = min

(𝑤,𝑘)∈𝐶 𝐿𝛥(𝑤, 𝑘, 𝑆)
2 𝛥𝑚𝑎𝑥 = max

(𝑤,𝑘)∈𝐶 𝐿𝛥(𝑤, 𝑘, 𝑆)
3 𝜃 = 𝛥𝑚𝑎𝑥 − 𝛼 ⋅ (𝛥𝑚𝑎𝑥 − 𝛥𝑚𝑖𝑛)
4 𝑅𝐶 𝐿 ← {(𝑤, 𝑘) ∈ 𝐶 𝐿 ∶ 𝛥(𝑤, 𝑘, 𝑆) ≥ 𝜃}
5 (𝑤, 𝑘) ← SelectRandom(𝑅𝐶 𝐿)
6 return (𝑤, 𝑘)

Algorithm 5 shows the pseudo-code of the random greedy strategy.
n this case, 𝛼 determines the size of the RCL (line 1), whose elements

are randomly selected in line 2. Then, the pair (𝑤, 𝑘) with the largest
reedy function value is selected in line 3. The interpretation of 𝛼 is
nalogous to the one in the greedy random strategy in that smaller 𝛼
alues produce a larger 𝑅𝐶 𝐿 and a greedier selection. We refer to this
onstruction method as 𝑅𝐺.

Algorithm 5: RandomGreedy (𝑆 , 𝐶 𝐿, 𝛼)
1 𝑠𝑖𝑧𝑒 ← max(⌊(1 − 𝛼) ⋅ |𝐶 𝐿|⌋, 1)
2 𝑅𝐶 𝐿 ← SelectRandomSet(𝐸 𝐶 𝐿, 𝑠𝑖𝑧𝑒)
3 (𝑤, 𝑘) ← ar g max

(𝑤′ ,𝑘′)∈𝑅𝐶 𝐿𝛥(𝑤
′, 𝑘′, 𝑆)

4 return (𝑤, 𝑘)

In sum, we propose three methods to construct solutions: the simple
andom construction (𝑅𝑁 𝐷), the greedy random GRASP construction

(𝐺 𝑅), and the random greedy GRASP construction (𝑅𝐺).

3.3. Neighborhood structures

A solution 𝑆 to the problem is defined as a list of work slot lists,
one for each machine (see Section 3.1). A typical search neighborhood



J.M. Colmenar et al. Computers & Industrial Engineering 198 (2024) 110634 
Fig. 2. Example of an insert move.
for such a solution representation consists of insert and exchange moves.
These moves can occur both within or across machines. Fig. 2 shows an
example with two machines (𝑘1 and 𝑘2), four parts (labeled 1 to 4), and
three periods (𝑡1 to 𝑡3), where the time is represented by the horizontal
axis. We assume that parts 1 and 2 belong to one profile family, and
parts 3 and 4 belong to another profile family (see Section 1.2). In
Fig. 2(a), the list of work slots for machine 𝑘1 includes parts 1, 3 and
1. The dashed blocks between each pair of work slots represent the
changeover times, which in this case is long because parts 1 and 3
belong to different profile families. The list for 𝑘2 includes work slots
for parts 2, 1, 3 and 4. In this case the changeover time between 2 and
1 and between 3 and 4 is short because these parts belong to the same
profile family.

Fig. 2(b) shows the result of inserting the second work slot from
machine 𝑘2 after the first work slot on machine 𝑘1, highlighted with
green background. The effect of the move is two-fold. On the one
hand, the total changeover time is reduced, since the short changeover
between work slots for parts 2 and 1 on machine 𝑘2 disappeared, and no
changeover has been added on machine 𝑘1. On the other hand, the work
slots with gray background have changed their starting time. Therefore,
the number of units produced in each period changed. In the case of
7 
the green work slot of part 1, its entire duration now fits within period
𝑡1, however the production rate could be different due to the change
of machines. Therefore, the number of units of part 1 completed by
the end of period 𝑡1 may have changed. Production for part 2 does not
change after the move. The entire production of part 3 is still completed
by the end of 𝑡2 but the number of units produced by the end of 𝑡1 might
have changed. The production for part 4 is now completed before the
end of period 𝑡2.

Fig. 3 shows an example of the exchangemove between the last work
slot in machine 𝑘1 and the third work slot in machine 𝑘2, highlighted
in green and blue background, respectively. Again, both the total
changeover time and the production units are affected.

For a solution 𝑆, we define the neighborhood associated with an
insert move, 𝑖𝑛𝑠𝑒𝑟𝑡(𝑆), as the set of solutions generated after all feasible
insertions of work slots. An insertion is feasible if the receiving machine
is capable of producing the part associated with the work slot being
inserted. Similarly, we define the neighborhood associated with an
exchange move, 𝑒𝑥𝑐 ℎ𝑎𝑛𝑔 𝑒(𝑆), as the set of solutions generated after all
the feasible exchanges of work slots. Here again the machines must be
capable of the producing the jobs associated with the work slots that
they are receiving.
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Fig. 3. Example of an exchange move.
Preliminary experiments designed to test the performance of inser-
tions and exchanges within a solution improvement method showed
that insertions alone were sufficient for an efficient exploration of the
search space. We could not detect significant benefits of employing both
neighborhoods at the same time, given that attractive exchanges were
identified by a combination of insertions. In other words, the size of
𝑒𝑥𝑐 ℎ𝑎𝑛𝑔 𝑒 is smaller than the size of 𝑖𝑛𝑠𝑒𝑟𝑡. Therefore, we chose 𝑖𝑛𝑠𝑒𝑟𝑡
as the neighborhood for our best improvement local search. We refer to
this local search as 𝐿𝑆.

We also identified situations where the search stagnated due to
the way the set of work slots 𝑊 is created. Consider the situation
in Fig. 4(a), in which we assume that there are no shortages. In
this situation, there is no insert of a single work slot that can re-
duce the changeover time. However, by merging individual work slots
into larger blocks, as shown in Fig. 4(b), we create opportunities for
changeover time reduction. For instance, moving the merged work slot
for part 1 on machine 𝑘2, shown with a green background, to the second
position on machine 𝑘1 results in a solution where the total changeover
time is reduced, as shown in Fig. 4(c).

This observation lead us to create a 𝑖𝑛𝑠𝑒𝑟𝑡 neighborhood search
with merged work slots. We use this neighborhood to perform a merged
8 
local search. Once a local optimum is reached, the merged blocks
are once again separated into individual work slots to continue the
exploration. We refer to this local search as 𝑀 𝐿𝑆.

3.4. Search procedures

We used the components introduced in the previous sections to
configure two full search methods, a Greedy Randomized Adaptive
Search Procedure (GRASP) and a Variable Neighborhood Search (VNS).
GRASP (Feo & Resende, 1995; Resende & Ribeiro, 2016) is a well-
known metaheuristic that has been applied to many different industrial
problems (Bamoumen et al., 2023; Kyriakakis et al., 2023). Our GRASP
proposal is outlined in Algorithm 6. The input parameters of our GRASP
are the problem instance 𝐼 , the value of 𝛼, and the processing time limit
𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡. The initial number of iterations 𝑖 is set to zero and the best
solution 𝑆⋆ is set to empty. Then, the main loop consists of constructing
(line 4) and improving (line 5) solutions. The best solution is updated
every time a new one is found (lines 6 and 7). The procedure returns the
best solution found (line 9). Four versions of GRASP are possible using
construction methods 𝐺 𝑅 or 𝑅𝐺 and improvement methods 𝐿𝑆 or
𝑀 𝐿𝑆. Note that within the GRASP philosophy of constructing solutions
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Fig. 4. Collapsing insertion.
in pseudo-greedy fashion, using the 𝑅𝑁 𝐷 construction method would
not be appropriate.

VNS (Hansen & Mladenović, 2001; Mladenović & Hansen, 1997)
is also a well-known metaheuristic that has been applied to many
different optimization problems, including the CLSP (Yildiz et al.,
2023) and several other industrial problems (Mogale, De, Ghadge, &
Tiwari, 2023; Wagner & Mönch, 2023). Our proposal is a multi-start
form of VNS, as shown in Algorithm 7. The input parameters are the
problem instance 𝐼 , the 𝛼 value, the processing time limit 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡,
9 
and a VNS-specific parameter 𝑚𝑎𝑥𝑆 ℎ𝑎𝑘𝑒𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒 that controls the
maximum level of randomization associated with the Shake method.
The procedure starts with the initialization of the number of iterations
and the best solution. Then, the maximum number of random moves
in the Shake method is calculated as a fraction of the total number of
parts (line 3). According to this calculation, 𝑚𝑎𝑥𝑆 ℎ𝑎𝑘𝑒𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒 must
be within [0, 1]. A solution is constructed in line 5 and then, the inner
VNS loop begins with 𝑠ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠 = 1. The Shake method is executed
to modify the incumbent solution in line 8, obtaining a new solution 𝑆′.
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Algorithm 6: GRASP (𝐼 , 𝛼 , 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡)
1 𝑖 ← 0
2 𝑆⋆ ← ∅
3 while 𝑡𝑖𝑚𝑒 < 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡 do
4 𝑆 ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝𝚒𝚘𝚗(𝐼 , 𝛼)
5 𝑆′ ← 𝙸𝚖𝚙𝚛𝚘𝚟𝚎𝚖𝚎𝚗𝚝(𝑆)
6 if  (𝑆′) <  (𝑆⋆) then
7 𝑆⋆ ← 𝑆′

8 𝑡𝑖𝑚𝑒 ← 𝙿𝚛𝚘𝚌𝚎𝚜𝚜𝚃𝚒𝚖𝚎()

9 return 𝑆⋆

As stated in Section 3.3, our improvement methods are based on insert
moves. Therefore, we use the exchange move for the Shake method.
In particular, the method executes 𝑠ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠 random exchanges.
The resulting solution is improved in line 9 obtaining a new solution
𝑆′′, which is compared with the current best, updating both 𝑆⋆ and
𝑠ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠 accordingly in lines 10 to 14. The best solution 𝑆⋆ is
eturned in line 16 after the multi-start loop ends.

Algorithm 7: VNS (𝐼 , 𝛼 , 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡, 𝑚𝑎𝑥𝑆 ℎ𝑎𝑘𝑒𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒)
1 𝑖 ← 0
2 𝑆⋆ ← ∅
3 𝑚𝑎𝑥𝑆 ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠 ← 𝑚𝑎𝑥𝑆 ℎ𝑎𝑘𝑒𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒 × |𝐽 |
4 while 𝑡𝑖𝑚𝑒 < 𝑡𝑖𝑚𝑒𝐿𝑖𝑚𝑖𝑡 do
5 𝑆 ← 𝙲𝚘𝚗𝚜𝚝𝚛𝚞𝚌𝚝𝚒𝚘𝚗(𝐼 , 𝛼)
6 𝑘 ← 1
7 while 𝑠ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠 ≤ 𝑚𝑎𝑥𝑆 ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠 do
8 𝑆′ ← 𝚂𝚑𝚊𝚔𝚎(𝑆 , 𝑠ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠)
9 𝑆′′ ← 𝙸𝚖𝚙𝚛𝚘𝚟𝚎𝚖𝚎𝚗𝚝(𝑆′)
10 if  (𝑆′′) >  (𝑆⋆) then
11 𝑆⋆ ← 𝑆′′

12 𝑠ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠 ← 1

13 else
14 𝑠ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠 ← 𝑠ℎ𝑎𝑘𝑒𝑀 𝑜𝑣𝑒𝑠 + 1
15 𝑡𝑖𝑚𝑒 ← 𝙿𝚛𝚘𝚌𝚎𝚜𝚜𝚃𝚒𝚖𝚎()

16 return 𝑆⋆

The construction method in VNS could be any of those defined in
Section 3.2, namely, 𝑅𝑁 𝐷, 𝐺 𝑅, or 𝑅𝐺. The improving methods could
be the local search procedures described in Section 3.3, that is, 𝐿𝑆 or
𝑀 𝐿𝑆. We configure an additional version by using a variable neigh-
borhood descent (VND) as the Improvement method for our VNS.
VND combines more than one local search in the same way that VNS
loops around various ‘‘shake’’ levels (Hansen, Mladenović, Brimberg, &
Pérez, 2019). In our case, we configure two VND processes with 𝐿𝑆
nd 𝑀 𝐿𝑆. In the first configuration (𝐿𝑆 → 𝑀 𝐿𝑆), the solution to be
mproved is subjected to 𝐿𝑆 as long as the solution improves. When
he solution stops improving the local search is switched to 𝑀 𝐿𝑆. If an
mproved solution is found with 𝑀 𝐿𝑆, then the local search switches

back to 𝐿𝑆. This is repeated until no improvement is found while
pplying 𝑀 𝐿𝑆. The second configuration (𝑀 𝐿𝑆 → 𝐿𝑆) operates in
he same way as the first one with the order of the local searches

switched. The three construction methods (𝑅𝑁 𝐷, 𝐺 𝑅, and 𝑅𝐺) and
he two VNDs (𝐿𝑆 → 𝑀 𝐿𝑆 and 𝑀 𝐿𝑆 → 𝐿𝑆) result in six possible
NS configurations.

4. Efficient move value calculations

One of the main drawbacks of the trajectory-based search methods
s the potentially large number of evaluations that may be required
o explore a neighborhood because search directions are mainly deter-

mined by the change in the objective function associated with a move
10 
(i.e., the so-called move value). The move value is the change of the
objective function associate with a transition from the current solution
𝑆 to a neighbor solution 𝑆′. In this section, we describe efficient ways
for calculating insert and exchange move values. In our context, these
values are the combined effect of changes in the changeover time and
the total shortage.
𝑚𝑜𝑣𝑒𝑉 𝑎𝑙 𝑢𝑒 =  (𝑆) −  (𝑆′)

= 𝛥𝑐 ℎ𝑎𝑛𝑔 𝑒𝑜𝑣𝑒𝑟(𝑆 , 𝑆′) + 𝛥𝑠ℎ𝑜𝑟𝑡𝑎𝑔 𝑒(𝑆 , 𝑆′)
(18)

In order to simplify the equations associated with the calculation of
hangeover time, we assume that the index of the parts in the work slots

corresponding to two partial workload lists in 𝑆 are (..., 𝑖− 1, 𝑖, 𝑖+ 1,…)
and (..., 𝑗 − 1, 𝑗 , 𝑗 + 1,…). These workloads may be on either the same
machine or two different machines. The difference in changeover time
after an insert of the work slot with part 𝑗 to the position immediately
following the work slot with part 𝑖 is given by:
𝛥𝑐 ℎ𝑎𝑛𝑔 𝑒𝑜𝑣𝑒𝑟(𝑆 , 𝑆′) =𝑐𝑖𝑗 + 𝑐𝑗 ,𝑖+1 + 𝑐𝑗−1,𝑗+1

− 𝑐𝑖,𝑖+1 − 𝑐𝑗−1,𝑗 − 𝑐𝑗 ,𝑗+1
(19)

The partial workload lists corresponding to 𝑆′ after the insert are
(..., 𝑖− 1, 𝑖, 𝑗 , 𝑖+ 1,…) and (..., 𝑗− 1, 𝑗+ 1,…). The difference in changeover
ime after an exchange of the work slot with part 𝑖 and the work slot

with part 𝑗 is given by:
𝛥𝑐 ℎ𝑎𝑛𝑔 𝑒𝑜𝑣𝑒𝑟(𝑆 , 𝑆′) =𝑐𝑖−1,𝑗 + 𝑐𝑗 ,𝑖+1 + 𝑐𝑗−1,𝑖 + 𝑐𝑖,𝑗+1

− 𝑐𝑖−1,𝑖 − 𝑐𝑖,𝑖+1 − 𝑐𝑗−1,𝑗 − 𝑐𝑗 ,𝑗+1
(20)

The partial workload lists corresponding to 𝑆′ after the insert are
(..., 𝑖− 1, 𝑗 , 𝑖+ 1,…) and (..., 𝑗− 1, 𝑖, 𝑗+ 1,…). The computational complexity
s reduced from quadratic, if we were to use Eq. (13), to linear.

The computation of the change in total shortage is not as straight-
forward as in the case of the changeover time. As seen in the figures in
Section 3.3, the starting time of the work slots with gray background,
positioned after those that move, could change. Therefore the move
could alter the number of parts that are completed within each period
after the starting time of the affected work slots. Our strategy to reduce
the time to calculate the change in total shortage consists of keeping
track of the production of each part 𝑗 up to period 𝑡 on each machine
𝑘. We denote this value as 𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑘𝑗 𝑡(𝑆). The total production of part
𝑗 up to period 𝑡 is given by:

𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑗 𝑡(𝑆) =
∑

𝑘∈𝐾
𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑘𝑗 𝑡(𝑆) (21)

Let us assume that machines 𝑘 and 𝑘′ participate in a move that
transitions the solution from 𝑆 to 𝑆′. Then, the production of part 𝑗
up to period 𝑡 in solution 𝑆′ is equal to the production in solution 𝑆
plus the production on machines 𝑘 and 𝑘′ in solution 𝑆′ minus the
production on those machines in solution 𝑆:
𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑗 𝑡(𝑆′) =𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑗 𝑡(𝑆)

+ 𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑘𝑗 𝑡(𝑆′) + 𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑘′𝑗 𝑡 (𝑆′)

− 𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑘𝑗 𝑡(𝑆) − 𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑘′𝑗 𝑡 (𝑆)
(22)

The shortage is calculated for the (𝑗 , 𝑡) pairs for which 𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑗 𝑡(𝑆′) ≠
𝑝𝑟𝑜𝑑 𝑢𝑐 𝑡𝑖𝑜𝑛𝑗 𝑡(𝑆).

The GRASP construction methods described in Section 3.2 calculate
the contribution of a candidate work slot by evaluating the objective
function after the work slot is added to the candidate position. Con-
sidering that these operations are equivalent to making insert moves,
we use the strategies described here to expedite the calculations while
constructing solutions.

5. Hexaly optimizer model

To the best of our knowledge, the identical form of the CLSP
roposed in this paper cannot be found in the literature. In addition to

the mathematical model proposed in Section 2 and the metaheuristic
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proposals described in Section 3, we developed a Hexaly model with
the goal of establishing credible benchmarks. Hexaly1 (formerly Local-
olver) has a established reputation in industry and has been used as
 way of assessing performance of proposed procedures when exact
pproaches such as mathematical programming fail (Benoist, Estellon,
ardi, Megel, & Nouioua, 2011; Wang, Liu, Peng, Wang, & Punnen,

2023; Yarkoni, Raponi, Bäck, & Schmitt, 2022). To take advantage of
he general-purpose heuristic nature of Hexaly, we created the model
y using the same structure developed in Section 3.1. Therefore, the

main decision variables in our model are ordered lists of work slots, one
for each machine. The shortage and the changeover time are evaluated
using the equations that we developed for the heuristic procedure
(i.e., Eqs. (12), (13), and (14)).

The model does not impose an explicit limit on the number of work
lots assigned to a machine. Given a list of work slots, the capacity of
he machine determines the number of units produced of each part in

each period. If the end of a given period happens in the middle of a
work slot, our model calculates the number of units that belong to the
current period and those that belong to the next period. If the list of
work slots is such that a fraction of a work slot or even entire work slots
fall outside the last period in the planning horizon, then those units do
not contribute to the total production of parts. To reduce the search
space and avoid solutions that are clearly inferior, we add a constraint
to the Hexaly model to limit the total load assigned to each machine.
∑

𝑤∈𝑆𝑘

𝑤(𝑙) ≤
∑

𝑡∈𝑇
𝑞𝑘𝑡 + max

𝑤∈𝑊
(𝑤(𝑙)),∀𝑘 ∈ 𝐾 (23)

Constraint (23) restricts the total load assigned to each machine to
he available amount of production time plus the maximum load across

all work slots. The second term in the right-hand-side of the constraint
nables the assignment of a work slot that can partially contribute to
he total production. That is a work slot that starts within the last period
f the planning horizon but finished past the end of the period.

6. Experimental results

For the experiments reported in this section, the mathematical
model was programmed in Python 3.9 and executed using Gurobi
10.0.3. The Hexaly model has been executed using the latest version
vailable at the time of the writing, Hexaly Optimizer 12.0 (build
0231108), and the metaheuristic methods were coded in Java 20 using

the MORK framework2 (Martín-Santamaría, López-Ibáñez, Stützle, &
Colmenar, 2024). All the experiments were executed in a Ubuntu
virtual machine with 32 cores on a cluster using AMD EPYC 7643 CPUs.

6.1. Benchmark instances

Our instances have been generated from real data provided by a
ompany with which we collaborated. We omit company details for
ontractual reasons. Basing our instances on real data provides a better
esting platform than randomly generated instances because the data
hat the company shared with us captures actual demand patterns and
echnological differences in production equipment.

The data consists of 7 machines, 103 products, and 12 periods.
From these data, we randomly generated a set of 20 instances with
𝐾| = {2, 4, 6} and for |𝑇 | = {6, 8, 12}. Table 3 shows the instance id,

number of machines (|𝐾|), number of parts (|𝐽 |), number of periods
(|𝑇 |), total shortage (Shortage), and average production rate (Rate). The
total shortage is the sum of the inventory positions for all parts in
he last period of the planning horizon, i.e., 𝑆 ℎ𝑜𝑟𝑡𝑎𝑔 𝑒 =

∑

𝑗∈𝐽 𝑑𝑗|𝑇 |.
he average rate is calculate for all parts and machines, i.e., 𝑅𝑎𝑡𝑒 =
∑

𝑗∈𝐽
∑

𝑘∈𝐾 𝑟𝑗 𝑘)∕(|𝐽 ||𝐾|).

1 https://www.hexaly.com/.
2 https://github.com/mork-optimization/mork.
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Table 3
Test set of problem instances.

Instance |𝐾| |𝐽 | |𝑇 | Shortage Rate

CLM-01 2 25 6 −250 110 368
CLM-02 2 30 6 −401 058 465
CLM-03 2 41 8 −597 080 390
CLM-04 2 43 6 −533 195 297
CLM-05 2 49 8 −831 972 490
CLM-06 2 50 12 −1 363 816 399
CLM-07 2 58 12 −1 749 742 493
CLM-08 2 62 8 −1 054 148 316
CLM-09 2 71 12 −2 140 254 313

CLM-10 4 41 6 −560 228 139
CLM-11 4 60 8 −1 092 179 139
CLM-12 4 69 8 −1 188 313 180
CLM-13 4 77 12 −2 212 387 136
CLM-14 4 85 12 −2 472 100 179

CLM-15 6 52 6 −599 961 200
CLM-16 6 53 6 −627 337 193
CLM-17 6 77 8 −1 228 679 206
CLM-18 6 81 8 −1 298 756 197
CLM-19 6 91 12 −2 614 122 209
CLM-20 6 99 12 −2 764 574 193

The heuristic strategies described in Section 3 include parameters
hat required proper adjustment. To this end, we selected a repre-
entative subset of the instances to engage in parameter tuning and

algorithmic configuration. We selected the subset using the method
described in Martín-Santamaría, Cavero, Herrán, Duarte, and Colmenar
(2023) with the problem features in Table 3. The process resulted in the
ix instances highlighted in bold in Table 3 as the representative subset.

We refer to these instances as our training set.

6.2. Efficiency of move value calculations

Our first experiment assesses the benefits of the move value calcu-
lations described in Section 4. We ran three algorithm components 10
times using the training set while evaluating moves with full objective
function calculations and with the equations in Section 4. We wanted
to measure the effect on the construction of solutions, the improvement
method, as well as the full GRASP iterations (i.e., construction plus
improvement). For the construction, we used 𝐺 𝑅 (i.e., the greedy ran-
dom construction) with a random 𝛼 value. For the improvement method
we coupled 𝑅𝑁 𝐷 (i.e., a random construction) and 𝐿𝑆 (i.e., the local
search based on a first improvement strategy and insert moves). For the
full GRASP iterations, we combined 𝐺 𝑅 and 𝐿𝑆.

Table 4 shows the total execution time in seconds of the runs with
the full objective function calculation (𝐹 𝑢𝑙 𝑙), the partial calculation
based on the equations in Section 4 (𝑃 𝑎𝑟𝑡𝑖𝑎𝑙), and the improvement
given as a percentage reduction in computational time (𝐼 𝑚𝑝).

As indicated in Table 4, the average improvement in computational
time is of at least 95% across the three search elements. There is
 clear advantage in using the equations developed in Section 4 for

the calculation of the objective function when adding elements during
the construction of a solution or while searching neighborhoods in an
improvement method.

6.3. Algorithmic configuration

The algorithmic components described in Section 3 can be combined
to generate several configurations. In particular, our construction and
improvement methods can be combined to configure GRASP and VNS
methods. Instead of using trial-and-error or full-factorial with a limited
number of parameter values we use irace, an automated algorithm
configurator based on iterated racing (López-Ibáñez, Dubois-Lacoste,
Cáceres, Birattari, & Stützle, 2016). The input to irace consists of a
set of categorical or numerical parameters (or design components) and

https://www.hexaly.com/
https://github.com/mork-optimization/mork
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Table 4
Comparison of execution time, in seconds, between the full and partial computation of the objective function.
Instance 𝐺 𝑅 𝑅𝑁 𝐷 + 𝐿𝑆 𝐺 𝑅 + 𝐿𝑆

Full Partial Imp Full Partial Imp Full Partial Imp

CLM-03 26.20 3.89 85.15% 210.41 7.23 96.57% 208.68 7.13 96.58%
CLM-04 4.46 0.16 96.45% 149.56 4.43 97.04% 199.30 5.66 97.16%
CLM-07 101.35 2.79 97.25% 4 368.88 87.00 98.01% 15 277.71 314.35 97.94%
CLM-11 72.70 1.63 97.76% 1 792.80 26.89 98.50% 3 760.13 50.57 98.66%
CLM-12 72.95 1.90 97.40% 3 290.24 42.20 98.72% 5 452.84 84.40 98.45%
CLM-19 2525.42 38.53 98.47% 51 620.31 538.88 98.96% 185 637.22 2705.69 98.54%

Avg. 467.18 8.15 95.41% 10 238.70 117.77 97.96% 35 089.31 527.97 97.89%
t
g
t
o
i
k

f
b

t
s

n
B
D
r

t

Table 5
Overview of the parameter configuration for irace.

Parameter Range/Values Dependency

algorithm [GRASP, VNS] 𝑛𝑜𝑛𝑒
construction [GR, RG] If 𝑎𝑙 𝑔 𝑜𝑟𝑖𝑡ℎ𝑚 is GRASP

[RND, GR, RG] If 𝑎𝑙 𝑔 𝑜𝑟𝑖𝑡ℎ𝑚 is VNS
𝛼 [random, value] For 𝐺 𝑅 and 𝑅𝐺
𝑣𝑎𝑙 𝑢𝑒 [0.00, 1.00] If 𝛼 is 𝑣𝑎𝑙 𝑢𝑒
𝑚𝑎𝑥𝑆 ℎ𝑎𝑘𝑒𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒 [0.00, 0.50] If 𝑎𝑙 𝑔 𝑜𝑟𝑖𝑡ℎ𝑚 is VNS
improvement [LS, MLS, VND] If 𝑎𝑙 𝑔 𝑜𝑟𝑖𝑡ℎ𝑚 is GRASP
VND [LS → MLS, MLS → LS] If 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 is VND

their relationships and dependencies. The system searches for the best
onfiguration according to specified performance measure (e.g., the
verage objective function value of a set of problem instances). We
sed the previously defined training set instances for our algorithmic
onfiguration with irace.

Table 5 shows the parameters that irace explored. For categorical
arameters, the table shows the list of values. For numerical param-
ters, the table shows the range of values. The Dependency column
hows any connections with other decisions. For example, the set of
onstruction methods depends on the choice algorithm. The improve-
ent method for VNS is VND, which can be executed in two different
ays.

The maximum number of experiments for irace was set to 10,000
and all other parameters were set to their default values. The three best
configurations obtained are very consistent. The three suggest VNS as
the main algorithm, RG was chosen as the construction method, and
MLS → LS is suggested as the better VND configuration. The values for
𝛼 and for 𝑚𝑎𝑥𝑆 ℎ𝑎𝑘𝑒𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒 are within a very narrow range around
0.4.

The results of running irace confirmed the robustness of the
proposal. The outcome gave us a high degree of confidence in selecting
the best configuration for our competitive testing. The configuration is
the VNS procedure with random greedy constructions, and 𝛼 value of
0.4, 𝑚𝑎𝑥𝑆 ℎ𝑎𝑘𝑒𝑃 𝑒𝑟𝑐 𝑒𝑛𝑡𝑎𝑔 𝑒 = 0.44, and a MLS → LS strategy for VND.

6.4. Computational results

Our competitive testing consists of comparing our VNS with the
athematical programming approach (referred to as Gurobi) and the

Hexaly solutions. We established an execution limit of 3600 s for all
procedures. For VNS the time was divided in 30 runs with a time limit
of 120 s each. Table 6 shows the results of this experiment. For each
lgorithm we show the value of the objective function (Obj. Fun.) and
he deviation calculated against the best known solution (shown in bold
n the objective function columns). The last two rows of the table show
he average objective function values, the average deviation, and the
umber of times each procedure produced the best known solution.

The mathematical model reaches the best objective function value
n 7 out of the 20 instances. The Hexaly model produces 9 out of the
0 and our VNS 15 out of the 20. Of the three approaches, the solution
f the MIP with Gurobi seems to be the least reliable. While in most
f the instances it is able to produce solutions within 10% of the best
12 
Table 6
Performance comparison in the competitive testing.

Instance Gurobi Hexaly VNS

Obj. Fun. Dev Obj. Fun. Dev Obj. Fun. Dev

CLM-01 132 0.00% 132 0.00% 132 0.00%
CLM-02 199 0.00% 199 0.00% 199 0.00%
CLM-03 194 0.00% 194 0.00% 194 0.00%
CLM-04 94 692 0.64% 94090 0.00% 94 176 0.09%
CLM-05 27 631 20.94% 21846 0.00% 22 535 3.06%
CLM-06 47 358 23.59% 38 551 6.13% 36188 0.00%
CLM-07 1 070 902 2.64% 1 077 488 3.23% 1042675 0.00%
CLM-08 574 992 0.45% 572390 0.00% 578 255 1.01%
CLM-09 3 305 131 1.50% 3255513 0.00% 3 274 621 0.58%
CLM-10 202 0.00% 202 0.00% 202 0.00%
CLM-11 347 8.36% 318 0.00% 318 0.00%
CLM-12 8 631 14.33% 7 550 2.07% 7394 0.00%
CLM-13 335634 0.00% 353 290 5.00% 359 791 6.71%
CLM-14 445 667 5.35% 444 795 5.16% 421822 0.00%
CLM-15 257 0.00% 264 2.65% 257 0.00%
CLM-16 267 0.00% 274 2.55% 267 0.00%
CLM-17 404 1.49% 422 5.69% 398 0.00%
CLM-18 427 3.98% 445 7.87% 410 0.00%
CLM-19 660 9.24% 641 6.55% 599 0.00%
CLM-20 780 20.26% 623 0.16% 622 0.00%

Average 295 725.35 5.64% 293 461.35 2.35% 292 052.75 0.57%

# Best 7 9 15

known, it can also produce results that are more than 20% away from
the best. We could not find a pattern to determine the reasons for Gurobi
o struggle with some problem instances. Our Hexaly model is a very
ood option for tackling the instances in our test set. All the solutions
hat the Hexaly optimizer found are within 8% of the best. The best
ption according to these results is the proposed VNS. Only in one
nstance (CLM-13) it failed to produce a solution within 5% of the best
nown. We point out that none of the best known solutions in Table 6

are confirmed optima. We do not show optimality gaps because the MIP
ormulation does not have a strong relaxation and therefore Gurobi’s
ranch-and-bound process produces weak lower bounds.

Throughout our experimentation, we have verified that VNS tends
to find its final solution (i.e., the solution that is reported as best for
a given run) earlier in the search than either Gurobi or Hexaly. Since
he execution of the VNS proposal consists of 30 independent runs, we
how statistics associated with these runs in Table 7. For each instance,

the average objective function value is shown in column Avg. OF. The
umber of times that the best value is reached is shown in column #
est and the average deviation to the best value is shown in column %
ev. The last column (TTB (s)) shows the average time in seconds to
each the best solution.

On average, individual runs produce solutions close to the best
known values, with the exception of CLM-04 and CLM-05. The results in
Table 7 show the importance of running the VNS procedure multiple
imes. The sampling process that results from multiple runs produce

the desire results, as shown in Table 6. The average time to reaching
the best solution in each run seems to indicate that, given a fixed
computational budget, it might be worthwhile to experiment with an
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Fig. 5. Comparison of convergence speed. 𝑋-axis represents elapsed time in seconds. 𝑌 -axis contains the corresponding objective function value at any given time, using a
logarithmic scale.
increased number of runs that are shorter (e.g., 60 runs of 60 s instead
of 30 runs of 120 s).

In addition to the 20 instances in Table 3, we executed the three
solution methods on the complete instance provided by the company.
As mentioned above, this instance consists of 7 machines, 103 products
and 12 periods. The runs with a limit of one hour resulted in objective
function values of 720, 697, and 628 for Hexaly, Gurobi, and VNS,
respectively. The three methods found a solution without shortages.
13 
VNS produced changeover-time savings of 12.8% and 9.9% over the
solutions found with the Hexaly and Gurobi models, respectively.

A final view of the output data from our experiments confirms
the notion that the proposed VNS performs a more aggressive search
than the alternatives that we used for comparison. Fig. 5 shows the
evolution of the objective function value associated with the incumbent
solution for each procedure. For this figure, we use the 6 representative
instances and runs with time limits ranging from 12 s (for CLM-03)
to 200 (for CLM-19). We also show the evolution of the best objective
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Table 7
Details of VNS runs.

Instance Avg. of # Best Dev TTB (s)
CLM-01 132.23 29 0.18% 0.52
CLM-02 202.90 5 1.96% 0.85
CLM-03 197.50 18 1.80% 1.06
CLM-04 97 032.33 0 3.03% 3.48
CLM-05 26 157.03 0 16.07% 8.90
CLM-06 43 899.00 1 21.31% 28.61
CLM-07 1 074 679.00 1 3.07% 80.93
CLM-08 586 627.13 0 1.45% 16.89
CLM-09 3 311 037.47 0 1.11% 115.70
CLM-10 204.57 19 1.27% 0.49
CLM-11 333.53 1 4.88% 9.18
CLM-12 7 950.77 1 7.53% 15.26
CLM-13 383 049.90 0 6.46% 106.84
CLM-14 463 070.53 1 9.78% 116.79
CLM-15 258.63 23 0.64% 1.18
CLM-16 270.27 16 1.22% 1.08
CLM-17 403.73 11 1.44% 21.92
CLM-18 417.33 9 1.79% 21.86
CLM-19 637.80 1 6.48% 114.65
CLM-20 660.57 1 6.20% 114.47

Avg. 299 861.11 4.88% 39.03

function value of the full real-world instance on 3600-s run. We observe
that VNS reaches its best value faster than Hexaly and Gurobi. Not
surprisingly, Gurobi’s evolution is the slowest, although this could be
slightly improved by manipulating some of the software search param-
eters (i.e., MIPFocus). The Hexaly reaches a good compromise between
the other two alternatives and emerges as a viable way of solving the
CLSP in practice. Note that we have used logarithmic scale for the
objective function value in some of the instances to be able to show
the differences among the three approaches.

7. Conclusions and future work

Solving real-world problems is an important activity in the op-
erations research community. When the optimization problems are
associated with efficiency goals, such a minimizing waste or maximiz-
ing production time, companies look for quantifiable benefits while
considering the cost of the solution. Commercial optimization software
is appealing from the point of view of a potentially short develop-
ment time, which focuses on creating a suitable model. However,
optimization software for mathematical programming models has some
limitations if the model becomes too complex or large. Software such as
the Hexaly Optimizer is an attractive alternative because of its modeling
lexibility (e.g., models are not restricted to the framework of mathe-

matical programming) and the combination of techniques (e.g., exact
nd heuristic) embedded in its solution method.

The development of specialized solution methods typically requires
a greater level of commitment and effort. The advantage is that, for
ll practical purposes, there are no restrictions on the problem fea-
ures that could be included in a custom procedure. In this paper
e described the process that we followed to arrive to solutions that
ere satisfactory to the company in which we conducted this project.
e believe that additional enhancements are possible to improve the

erformance of the heuristic search that we proposed. There is also
he possibility of approaching the problem in an entirely different
ay within the framework of a matheuristic. For instance, it might be

nteresting to explore a decomposition approach based on separating
he work assignment and lot-sizing decisions from the sequencing
ecisions. A reduced mixed-integer linear programming could be solved
o optimize the size and assignment of production lots to machines.
his could be followed by the solution of a set of restricted quadratic
ssignment problems to optimize the sequencing of production runs on

ach machine in order to reduced changeover times.
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