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Abstract

This case study tackles a real-world problem of a transportation company that is modeled
as a scheduling optimization problem. The main goal of the considered problem is to
schedule the maximum number of jobs that must be performed by vehicles over a specific
planning horizon in order to minimize the total operational costs. Here, each customer
request corresponds to a job composed of multiple operations, such as loading, unloading,
and mandatory jobs, each associated with a specific location and time window. Once a job
is allocated to a vehicle, all its operations must be executed by that same vehicle within
their designated time constraints. Due to the imposed limitations, not every job can feasibly
be scheduled. To address this challenge, two distinct methodologies are proposed. The first,
a Holistic approach, solves the entire problem formulation using a black-box optimizer,
serving as a comprehensive benchmark. The second, a Divide-and-Conquer approach,
combines a heuristic greedy algorithm with a binary linear programming, decomposing
the problem into sequential subproblems. Both approaches are implemented using the
solver Hexaly. A comparative analysis is conducted under different scenarios and problem
settings to highlight the advantages and drawbacks of each approach. The results show
that the Divide-and-Conquer approach significantly improves computational efficiency,
reducing time by up to 99% and vehicle usage by around 15-20% compared to the Holistic
method. On the other hand, the Holistic method better ensures that mandatory jobs are
completed, although at the cost of more resources.

Keywords: scheduling problem; commercial constraints; time windows; divide-and-
conquer algorithm; Hexaly

MSC: 90B06; 90B90

1. Introduction

In a globalized economy, the efficiency and effectiveness of transportation networks
are crucial for sustaining competitive advantage across industries [1]. Companies face
increasing demands, fluctuating costs, and environmental constraints, compelling them to
operate with heightened efficiency and precision. To address these challenges, optimization
techniques have become indispensable tools, enabling improved transportation system
performance, reduced operational costs, and minimized environmental impact [2]. Among
these techniques, assignment, scheduling, and routing problems stand out as three of the

Mathematics 2025, 13, 3547

https://doi.org/10.3390/math13213547


https://doi.org/10.3390/math13213547
https://doi.org/10.3390/math13213547
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0004-2058-9171
https://orcid.org/0000-0003-3022-3865
https://orcid.org/0000-0003-1702-4941
https://doi.org/10.3390/math13213547
https://www.mdpi.com/article/10.3390/math13213547?type=check_update&version=2

Mathematics 2025, 13, 3547

20f31

most extensively studied combinatorial optimization problems, each playing a critical role
in enhancing transportation network efficiency [3-5].

In the following, we briefly describe each of these problems, emphasizing their practi-
cal relevance and broad applicability in real-world scenarios, which make them fundamen-
tal for addressing operational challenges.

1.  The assignment problem is an optimization problem in which the objective is to assign
a set of resources (e.g., machines, vehicles, or drivers) to a set of jobs or tasks (e.g.,
delivery routes) in the most efficient way. The goal is typically to minimize costs
or maximize efficiency while respecting constraints, such as capacity, skill levels, or
regional restrictions.

2. The scheduling problem involves determining the optimal sequence and timing for
a set of tasks or jobs assigned to machines to maximize efficiency, minimize costs,
or achieve specific objectives within given constraints. In the context of transporta-
tion, the scheduling problem is critical for coordinating resources, such as vehicles,
drivers, and loading and unloading operations, to ensure timely delivery and efficient
utilization of assets.

3. The routing problem plans the optimal set of routes for a fleet of vehicles to deliver
goods or provide services to a set of locations (e.g., customers or delivery points)
in such a way that operational costs are minimized while satisfying all delivery
constraints.

Therefore, the main differences among the previous problems are summarized in
Table 1:

Table 1. Differences among assignment, scheduling, and routing problems.

Assignment

Scheduling

Routing

Allocate resources (ma-

Determine the optimal
timing and sequence of

Find the optimal
routes for a fleet of

Objective . " tasks (jobs) to the as- vehicles (resources)
chines) to tasks (jobs).  gjoned resources (ma- to serve a set of cus-
chines). tomers (tasks).
Who or which resource ~ When should each task Which routes should
Question should perform every be performed and in each vehicle take?
task? what order?
Scheduling the se-
quence of deliveries
L . for a fleet of vehicles Determining the most
Assigning drivers to R . .
. to avoid idle time, efficient routes for a
Example  vehicles to perform the

or planning driver fleet of vehicles to per-
shifts to meet demand form the deliveries
while respecting labor

regulations.

deliveries.

It is important to emphasize that a strictly disjoint classification among these three
problems is not possible as most real-world problems integrate key characteristics of all
three families. In particular, the problem of interest in this paper focuses on optimizing the
internal operations of a transportation company operating in Spain. Although this type
of problem is usually modeled as a routing problem [6,7], in this research, the problem is
modeled as a scheduling problem given that this formulation better captures its temporal
constraints and sequential decision-making, even though it shares characteristics with
assignment and routing problems. In general, a scheduling problem seeks to determine
the optimal allocation of resources (machines) to a sequence of jobs, also referred to as
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tasks, over a planning horizon, aiming to satisfy a set of constraints and optimize specific
performance criteria. Different variants of the problem arise depending on the considered
constraints and performance criteria. This problem is fundamental across fields such as
manufacturing, transportation, computing, and digital system design. Broadly speaking
(see, for example, [8]), the main characteristics of scheduling problems are as follows:

*  Jobs must be assigned to a limited number of machines. In the present study, compat-
ible customer job requests (hereinafter referred to as jobs) are assigned to machines
(hereinafter referred to as vehicles).

*  Jobs must be completed in a specific order, respecting dependencies and the necessary
sequence between them. In this work, each customer pays for a job that is performed
by different operations: loading, unloading, and/or mandatory jobs.

*  Precedence constraints may be imposed. These require the operations of each job to
be executed in a specific order, which must be respected.

¢  Time constraints may be considered, such as predefined time windows for jobs. In our
case study, not only must time windows be satisfied but labor regulations must also be
complied with, including maximum daily working hours and mandatory rest periods.

. Resource constraints may be imposed as the number of resources (e.g., machines,
functional units, or vehicles) is typically limited. In the problem addressed here, the
number of vehicles is limited, and the compatibility between jobs and vehicles must
be taken into account.

¢  The main objective is to optimize certain criteria, such as minimizing total completion
time, maximizing resource utilization, or reducing resource consumption, among
others. In our case study, the objective is to minimize the total cost, particularly travel
costs and penalty costs incurred when a job remains unplanned.

Therefore, as previously explained, and given that we are dealing with a transportation-
focused problem, the resources or machines consist of a fleet of vehicles, which must be
allocated efficiently to fulfill as many jobs as possible while keeping the overall costs low.

From a theoretical point of view, the number of papers dealing with scheduling
problems (and all the variants) is large, but this number rises considerably if we focus on
a practical point of view [9]. It is worth mentioning that a conclusion derived from that
work is the relevance of a good adaptation of the search algorithm to the characteristics of
the problem in order to solve real-life problems with that approach. In similar studies, the
routing component is often omitted, as in this work, since movements between locations
are treated as discrete tasks that do not require explicit route optimization [10].

To mention just a few of the most recent and similar papers to the considered problem,
we refer the reader to [11]. The authors consider a problem with multiple facilities and one
or more vehicles located in the facilities. The objective is to reduce the cost of producing and
distributing customer orders while determining the allocation of customers to each vehicle,
the grouping of customer orders into batches, the scheduling of production for each batch,
the number of vehicles assigned to each facility, and the sequence of customer visits during
each tour. Moreover, supplementary constraints are established: each customer must be
visited only once; the total area, weight, volume, and other specifications of the products
loaded into the vehicles must not surpass the vehicle capacity; each vehicle is required
to commence and conclude its route at the same facility; subsequent to the completion of
a batch production, all the products within that batch must be delivered by a specified
deadline; the demands of customers allocated to a facility must not exceed that facility’s
capacity; and all production and distribution activities must be concluded within the
designated timeframe.

The recent paper by [12] addresses a single-depot electric vehicle scheduling problem.
The authors offer a scheduling approach utilizing mixed-integer linear programming to cre-
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ate bus blocks that integrate electric vehicles, ensuring the effective execution of each block
while accounting for recharging needs between blocks and during non-operational hours.
Blocks can be seamlessly repeated on consecutive days due to the incorporation of next-day
operability requirements. They address a case study in Chicago. They solve the problem
by generating blocks in the first stage and then focus on optimizing block combinations to
facilitate recharging between consecutive blocks while considering operational constraints
to plan the vehicle schedules. They use four solution approaches, namely mixed-integer
linear programming, a Divide-and-Conquer algorithm, a greedy heuristic, and a simulated
annealing metaheuristic.

Another interesting problem very close to the one tackled in this research is published
by [13]. The scheduling challenge for airport ferry vehicles is modeled as an unrelated
parallel machine scheduling problem by the authors. Finding methods to assign a finite
number of ferry vehicles to remote stand flights is the challenge. The service times and
time windows are deterministic and known beforehand, so the only decision involves the
allocation of ferry vehicles. To solve the problem, they propose a variable neighborhood
descent algorithm.

Building on this line of research, off-the-shelf solvers like Hexaly have recently been
proven to be effective and efficient for dealing with routing problems. For instance, Ref. [14]
presents a novel formulation for solving the Pickup and Delivery Problem with Time
Windows considering driver breaks, solving it with three solvers: Gurobi, Google OR-Tools,
and Hexaly. In particular, Hexaly shows better performance for the classic formulation
without considering driver breaks, while neither Gurobi nor Google OR-Tools are able to
provide solutions for the problem with the new constraints derived from driver breaks. This
research guides us in considering Hexaly over other solvers, such as Gurobi or OR-Tools.

The effectiveness of black-box solvers has also been demonstrated in other routing
contexts. For example, in Drone Routing and Scheduling with Flexible Multiple Visits
(DRSFMV) [15], a case study using real traffic census data from three southern California
counties was used to evaluate different models and network configurations. While the
mathematical formulation solves small and medium instances efficiently, it struggles with
large-scale networks. In contrast, Hexaly achieves high-quality solutions even for large and
complex instances, further highlighting its efficiency and robustness across different types
of routing problems.

The Divide-and-Conquer strategy has been used in several works related to routing
and scheduling problems. In [16], the VRPDiv approach is introduced, a Divide-and-
Conquer framework designed to scale any existing VRP solver to handle instances with
up to ten thousand targets (10k) by dividing them into smaller manageable clusters. The
framework intelligently selects from a pool of clustering algorithms based on instance
properties and assigns agents while considering cluster demand, time windows, and
capacity limitations. VRPDiv is successfully integrated into the Bing Maps Multi-Itinerary
Optimization (MIO) online service, enabling it to solve 10k target instances in under 10 min,
demonstrating significant performance gains, including a 9.8% improvement in itinerary
durations and a 40% improvement in target allocation compared to relevant baselines. The
research presented in [17] also proposes a Divide-and-Conquer algorithm but with a focus
on parallel computation. This method partitions the original complex problem into smaller
independently solvable subproblems that can be executed in parallel. By utilizing a novel
flow graph construction and graph min-cut concepts, the resulting algorithm efficiently
identifies viable AP and BP pairs, significantly outperforming existing approaches by
achieving higher routing performance at a much faster speed.

In the context of scheduling problems, Ref. [18] proposes an optimization algorithm
based on the Divide-and-Conquer strategy combined with Particle Swarm Optimization
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(PSO) to effectively solve large-scale Job Shop Scheduling Problems (JSSPs), with the
objective of minimizing total weighted tardiness. The algorithm adopts a non-iterative
framework: it first uses a simulated annealing (SA) procedure to find an optimal decom-
position policy for the vast set of operations. Based on this policy, the original problem
is broken down into smaller subproblems, which are then sequentially solved by a PSO
algorithm to directly produce a feasible solution for the entire scheduling challenge. This
approach significantly improves search guidance and convergence speed, resulting in
better-quality solutions and a substantial reduction in computational time compared to
previous iterative decomposition methods. Analogously, Ref. [19] presents the Divide-
and-Conquer Workflow Scheduling (DQWS) algorithm, a novel approach for scheduling
complex computational workflows in the cloud with the primary objective of minimizing
execution cost while strictly respecting a user-defined deadline. The algorithm employs a
Divide-and-Conquer strategy inspired by the workflow’s critical path. DQWS iteratively
identifies and schedules the critical path—the longest path in the workflow—then removes
it, effectively dividing the remaining tasks into smaller, less complex mini-workflows. This
process continues until only simple chain-structured workflows, known as linear graphs,
are left for the final scheduling phase. Through experimental validation using various
scientific workflows, DQWS demonstrates superior performance over competing methods,
successfully meeting deadlines while simultaneously achieving lower monetary costs for
workflow execution.
The main contributions of this paper are outlined below.

*  We address a challenging case study from a transportation company, modeled through
a mathematical formulation with a linear objective function and highly combina-
torial constraints, such as time windows, break times, and maximum driving or
working times.

*  The case study is first solved using the complete mathematical formulation as a
benchmark, hereinafter referred to as the Holistic approach.

*  We propose a hybrid algorithm, hereinafter Divide-and-Conquer, that combines a greedy
construction phase with mathematical optimization to efficiently solve the problem.

e Computational experiments on 64 instances validate the effectiveness of the Divide-and-
Congquer algorithm, showing superior performance compared to the Holistic approach.

*  The proposed framework exhibits high scalability and practical applicability to do-
mains such as network design, transportation, and social network analysis.

The remainder of this paper is structured in the following way. Section 2 details the
considered problem. Section 3 explains the two methodologies that we have implemented
to tackle the problem. Section 4 shows and discusses the different scenarios for reviewing
the pros and cons of every methodology. Finally, Section 5 concludes the paper and includes
future lines of research.

2. Problem Description

In this section, we will formally describe the problem considered in this paper. As
previously introduced, we are modeling a problem of interest in a transportation company
as a scheduling problem. This transportation company conducts its business activity
throughout the Iberian Peninsula and plans its activity over a predefined planning horizon,
in this case five working days within a week. The main purpose of the problem is to
schedule jobs on machines represented by vehicles in this company while ensuring the
following requirements.

The company owns a heterogeneous fleet of vehicles, so each vehicle has specific
characteristics in terms of capacity. Furthermore, each vehicle is uniquely assigned to a
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single driver and is associated with a different depot. Therefore, the scheduling of each
vehicle during the planning horizon must begin and end at its designated depot location.

Each customer requests the transportation company to perform a job consisting of
a number of operations. The job may be accepted or rejected. An operation involves the
loading and/or unloading of items in different locations, which must be completed in
a defined order. Therefore, each operation of an accepted job has an associated precise
location, and it must be within one of several time windows. It is assumed that not
all jobs are accepted or completed; therefore, rejected jobs incur a penalty, in this case
10,000 monetary units, since it has been modeled as money lost. This figure is derived from
historical data provided by the transportation company and reflects typical payments per
job in the operational context. Using this value, the model is calibrated to reproduce realistic
cost structures and economic performance. Furthermore, each operation requires a fixed
service time that is known beforehand. A vehicle cannot handle two jobs simultaneously,
meaning that each job must be completed sequentially; furthermore, the vehicle must be
compatible with the assigned jobs.

The travel cost (distance and time) between every pair of operation locations is deter-
ministic and known beforehand. In our specific problem, distance and time are correlated
measures since we assume that vehicles travel at 75 km/h. A constant speed is chosen
based on the recommendation of company experts. This recommendation is considered
reasonable as it aligns with the estimated average truck speed across different road types in
Spain, which is approximately 75 km/h based on legal speed limits and typical operational
conditions rather than on direct measurement. It should be noted that this simplification
does not compromise the validity of the proposed methodology. There is a cost per kilome-
ter traveled, in this case 1 monetary unit. Therefore, we can translate this travel cost into
monetary units, length units, or time units as appropriate.

For scheduling purposes, once a vehicle has completed a job, it is possible to schedule
another one if the location of the first operation of the possible next job is within a given
operating range. The operating range refers to the maximum distance a vehicle can travel
empty between the location where it completed a job and the location of the next job. If
no jobs exist within this distance, the vehicle is locked at the current location and is not
available until the next planning horizon.

Summarizing, our goal is to assign jobs to vehicles, ensuring that each operation of a
job is performed within a specified time window. This involves determining which vehicle
will handle each job, taking into account factors such as vehicle capacity, proximity between
the last operation of the former job and the first operation of the latter job, and when the
operations for that job are scheduled.

The objective function is to minimize total cost, including both the cost per kilo-
meter traveled and penalties for jobs that are not completed. By integrating these ele-
ments, the goal is to complete the maximum number of jobs while taking into account
transportation costs.

Once the baseline information has been provided, we will incorporate a pair of busi-
ness constraints into the described problem. The first one is mandatory scheduled stops,
specific for each vehicle. These will be treated as special jobs with one single operation
within a short imposed time window. These mandatory jobs could represent driver needs,
such as medical appointments, or vehicle maintenance, such as workshop servicing. The
second one will take into account rest periods for drivers, called breaks. In particular, as
we are considering a planning horizon of five working days within a week, the labor rest
regulations must be respected. Every driver must rest at least 11 h per day. Furthermore, it
is necessary to ensure that the driving time between consecutive breaks does not exceed
9 h per day, while the total working time is limited to a maximum of 15 h per day.
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Figure 1 depicts a simple schema to better understand the problem of interest. In
our particular case, machines are represented by vehicles, with the only imposition of
starting and ending at their depot location, and they must also respect the labor regulations.
Furthermore, customers request jobs to be scheduled by paying a cost. Every job consists
of operations that have an associated location, service time, and time window. These
operations could be loading, unloading, or mandatory jobs.

Operating range

()

Compatibility

&
<

® Depot location
® Labor regulations (time)

¢ Location
¢ Service time
¢ Time window

Figure 1. Problem schema.

To close this section, Figure 2 includes an illustrative example with two vehicles
(denoted by V; and V) and seven job requests from customers (denoted by Ji, ..., J7)
that must be scheduled in a planning horizon of five working days within a week. In
this particular case, jobs 1, 3, 5, 6, and 7 have two operations, denoted by O;; and Oj
fori = 1,3,5,6,7, which may represent loading and unloading operations, each one
in a different location; job 2 has one single operation, Op;, which likely represents a
mandatory job in a given location and has two associated time windows, while job 4 has
three operations, which may first represent a loading operation in a given location, Oy,
and then two unloading operations in two different locations, Oy, and Oy3. The columns of
Figure 2a include the processing times for each operation and represent the start time of
each operation. Note that, for simplicity in this illustrative example, it is assumed that all
operations have the same duration and that the distance and travel time between operations
are equal. In addition, Figure 2b shows the time/distance matrix between operations, and
the last column, denoted by TW, specifies their associated time windows.

The Gantt chart is depicted in Figure 2c. Jobs 1, 3, and 6 are scheduled on the first
vehicle, while the second vehicle is assigned jobs 2, 4, and 5. As can be observed, the first
vehicle will start operations 1 and 2 of job 1 at times 0 and 3, respectively; then, operations 1
and 2 of job 3 are scheduled at times 7 and 10, respectively. Finally, the first vehicle ends the
planning horizon, performing operations 1 and 2 of job 6 at times 17 and 22, respectively.
Meanwhile, the second vehicle starts its activity at time 2 with the only operation of job 2;
then, the three operations of job 4 are scheduled at times 6, 9, and 13, respectively. To finish
the schedule of the second vehicle, the two operations of job 5 are planned at times 17 and
23. It is important to note that the gaps between operations in the Gantt chart represent the
travel time between consecutive operations. Suppose that the cost per unit of distance is
1 pm and that the penalty for not scheduling a job is 10 um. The total distance traveled by
the vehicles is therefore 23 units, resulting in a travel cost of 23 x 1 = 23 pm. Since job 7
was not scheduled, a penalty of 10 pm is added. Consequently, in this case, the objective
function value would be 23 4 10 = 33 pm.
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Job Jit Jit 2 JE! JE! J1 J1 Ja J5 J5 Js J6 J7 J7
Operation || Oy; | O1p | Ox1 | O31 | O3 | Og1 | Ogp | Og3 | Os1 | Osp | O1 | Os2 | O71 | Op2
Vi 0] 31 -17 107 -1 -]- : T2 ] - -
v - - - - 13|17 | 23| - - - -
(a)

Operation || O1; | Op | Oa1 | O31 | O3p [ Oy1 | Ogp | O3 | Os1 | Osp | Oq1 | Og2 | O71 | Opp ™
On 0 [ 1 |3 | 2] 45|67 [ 45673809 [0,4]
O1n 1 0 4 5 5 6 7 8 5 6 7 8 9 10 3,6]
Omn 3 alo |5 6| 2134|786 7| 8] 9/ 2569
O31 2 3 5 0 1 6 7 8 3 4 5 6 7 8 [6,10]
O3 4 5 6 1 0 8 9 10 5 6 5 8 9 10 [10,14]
Oy 5 6 2 6 8 0 1 2 7 8 4 5 6 7 5,9]
O 6 7 3 7 9 1 0 2 8 9 5 6 7 8 [9, 12}
Og3 7 8 4 8 10 2 2 0 2 10 6 7 8 9 [12, 16]
Os1 4 5 7 3 5 7 8 2 0 4 2 3 5 6 [16,20]
Osp 5 6 8 4 6 8 9 10 4 0 3 4 6 7 [22,25]
Og1 6 7 6 5 7 4 5 6 2 3 0 3 4 5 [16,20]
Og2 7 8 7 6 8 5 6 7 3 4 3 0 5 6 [21,25]
On s | 9o | s | 7| 9|6 | 7|8 |5 |6 /| 4|5/ 0] 2 [18,22]
O 9 10 9 8 10 7 8 9 6 7 5 6 2 0 [20,24]

(b)
Monday Tuesday Wednesday Thursday Friday
Vehicle 1

J1
J3
Je

2
Ja
J5

Vehicle 2

(o)

Figure 2. [llustrative example with two vehicles and six jobs. (a) Processing times for each job and
operation. (b) Time/distance matrix between operations and time windows. (c¢) Gantt chart of the
vehicle schedules where each color corresponds to a different job.

Before presenting the detailed linear mathematical formulation of the problem, the
reader is referred to Notations, which summarizes the notation for all sets, parameters,
and decision variables necessary to understand the model. This table provides a compre-
hensive overview that facilitates comprehension and ensures clarity when interpreting the
subsequent formulation.

Thus, the objective function of the problem is formulated to minimize the total cost
over the planning horizon, which includes both travel costs and penalties for unscheduled
jobs. The objective function explicitly accounts for these components, ensuring that the
scheduling of services is optimized while unscheduled jobs are penalized accordingly.

min ¢ Y Y dpgYpgo Y G YD Y, Xpo 1)

veV p,qe0 j€j veVje] pe0;

=Y i+ Y (e ) dpgYpgo— D¢ Y Xpo)

j€] veV p.g€0 j€l pe0;
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Furthermore, the following constraints must be satisfied:
Each job is assigned to exactly one vehicle.
Y xp<1 YoeV (2)
peO
Xpo = Xgo ‘v’p,qEO]- Vie] YveV 3)

A vehicle cannot perform a job if the two are incompatible. This ensures that all
assignments respect compatibility constraints between jobs and vehicles.

%jp<Cp VjEJ] Yoev @

All operations must respect their respective time windows:

p

Y Zpk = ) Xpo ¥p €O 5)

k=1 veV

sp > sth -z Vke{1,...,n,} YpeO  (6)
—+sp—0—DpSet’;~zpk—|—M~(l—zpk) Vke{l,...,n,} VpeO (7)

where M is a sufficiently large constant (big-M), which renders the constraint inactive
whenever z,, = 0.

Each vehicle must execute its assigned operations sequentially, ensuring that no two
operations overlap in time or with scheduled breaks.

(sp+Dp+tpg +BT-|{b€ B’ |5y, +Dp <b <54}]) Ypgo <55 Ypp Yp,g€0 YoV 8)

Below, an equivalent linear form of the nonlinear constraints presented in (8) is given:

Spqw < sp Vp,ge O YveV )
Spqo < MYpgo Vp,ge O YoeV (10)
Spgo > 8p — M(1 = Ypgo) Vp,geO YveV 11)
Spqo = 0 Vp,geO YveV (12)
Shgo < 8¢ Vp,geO YoeV 13)
Spgo < Mypgo V¥p,geO YoeV (14)
Spgo = Sg = M(1 = Ypgo) Vp,geO YveV (15)
Spqo >0 Vp,g€eO YoeV (16)
Upbgo < Ypqo Vp,g €O YveV VbeB (17)
Upbgo < Wpbg Vp,geO YveV VbeB® (18)
Upbgo = Ypgo + Wphg — 1 Vp,ge O YveV VbeB’ (19)
Uppgo = 0 Vp,qeO YveV VbeB’ (20)
Spqo + (Dp + tpg) Ypgo + BTbEB Vpbgo < Spgo Vp,ge0 YoeV (1)
5o

sp+Dp <b+ M(1—wpy,) Vp,ge O YveV VbeB’ (22)
b <sg+ M(1—wpy) Vp,ge O YoeV VbeB’ (23)
,m.bnb (24)

where M is a sufficiently large constant (big-M), which renders some constraints
inactive whenever Wypg = 0 and others whenever Ypgo = 0.
The operating range between operations of a vehicle must be satisfied.

dpg - Ypgw <ORp Vp,q€O|p€0;,q€0)i#j YveV Vi—je] (25)
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*  Vehicles must comply with labor regulations:

- Vehicles must not take breaks during the execution of an operation:

- —b>e— . - ) s i s
{s,, BT—b>e-M-(1-xp), ifb>s, VpeO WheB Voev 26)

b—(sp+Dp)>e—M-(1—-xp), ifb<sp,
where M is a sufficiently large constant (big-M), and € is a small positive number
to avoid exact equality.
- Vehicles must not exceed the maximum working time.

b—(b'+BT)<WT V{bV'}eB’" YoeV 27)
— Vehicles must not exceed the maximum driving time.

CDTy: Cumulative driving time of vehicle v until the break b

CDTy = ). tyypo VDEB’ YoeV (28)
rthO|5q§b

DTBjy: Driving time of vehicle v between the break b and the previous break
DTBy = CDT; — max (CDTy,)<WT Vbe B’ YoeV (29)
b'eBo|b <b

The nonlinear constraint is reformulated in an equivalent linear form:

MCDT}: Maximum cumulative driving time of vehicle v up to break b

MCDTy > CDTj, vV € B® b <b YoeV (30)
DTBy: Driving time of vehicle v between break b and the previous break
DTBy = CDT{ — MCDT; < DT VYbe B’ YveV (31)

It is worth noting that, although the model has been fully linearized, the con-
straints derived from the real-world case study result in a large and complex formula-
tion, highlighting the practical challenges of representing operational conditions within an
optimization framework.

3. Proposed Approaches

This section presents two different methodologies that have been implemented to
tackle the real-world challenge addressed in this paper. Both approaches handle the
problem from a different perspective.

In the first approach, presented in Section 3.1, we address the comprehensive problem
by means of a scheduling problem formulation, including all the problem peculiarities.
For example, even though in most of the scheduling problems the objective function is
to minimize the makespan, i.e., the maximum completion time, we focus on minimizing
the total cost by means of the maximization of the number of completed jobs since the
company does not need to schedule all jobs. In this methodology, we solve the whole
problem without considering any simplification to speed it up. It is important to emphasize
that this first approach is proposed mainly as a formulation of the problem and is intended
to serve as a benchmark. While it provides a comprehensive view of the problem and
robust solutions, its computational cost can be high.

The second approach, described in Section 3.2, is designed to solve the problem by
means of an enumeration procedure that generates initial feasible solutions, followed
by a straightforward binary linear programming model that selects the best one. This
methodology is implemented by using a partition of the whole planning horizon into
periods, and it assigns jobs to vehicles in each period recursively. Then, once the jobs are
allocated to vehicles in every period, an exact algorithm determines the best option to
schedule the vehicles that will be used in the whole planning horizon.

Both approaches have been implemented using Hexaly (Hexaly is a global optimiza-
tion solver that offers nonlinear and set-oriented modeling APIs). This solver integrates
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a wide range of exact and heuristic methods to tackle complex optimization problems.
From classical techniques like Simplex and Interior-Point to advanced approaches such as
surrogate modeling, large neighborhood search, and statistical learning for autotuning, its
flexibility allows it to adapt to various problem types. We refer the reader to [20] or [21] to
deeply understand these procedures. It is worth mentioning that, although we use Hexaly’s
Constraint Programming APIs and thus have control over the modeling of constraints, the
internal solver operates as a black-box optimizer.

3.1. Holistic Algorithm

We name this proposal the Holistic algorithm since the entire problem is modeled
by incorporating in the scheduling problem all particular constraints considered by the
transportation company to obtain high-quality solutions. As previously introduced, the
solution obtained using this algorithm will be used as a benchmark solution for comparison
purposes. Therefore, with this comprehensive perspective, we are able to address the
entire problem.

We have opted by Hexaly to implement the Holistic algorithm because of its advanced
capabilities to model features representing realistic situations. The implementation lever-
ages the Hexaly solver, utilizing its decision variable structures, such as list-type variables
used to define the operations assigned to each vehicle, and interval-type variables em-
ployed to represent specific service times; see [22]. The use of these specialized structures
significantly reduces the number of decision variables, thereby accelerating the optimiza-
tion process by allowing more iterations within the same computational time. Furthermore,
when modeling the problem using Hexaly, these variables can be employed as parameters
in the definition of constraints, simplifying both the development and interpretation of
the model.

Next, the mathematical formulation presented in Section 2 is implemented as a com-
putational model using Hexaly. Again, we refer the reader to Notations, which summarizes
the notation for all sets, parameters, and decision variables necessary to implement the
Holistic approach.

As in the formulation proposed in Section 2, the objective function (1) of the considered
problem minimizes the total cost incurred when scheduling the service over the considered
planning horizon. This function is implemented in Hexaly as follows:

min ¢ ) )Y dpy+Y ci—Y ) ¢ (32)

veV {p,q} CR? j€J veV jeRY
=Yt (e )}, dpg— ) cp) (33)
j€J veV {p.q} CR? jER?

To solve this problem using Hexaly, it is necessary to implement the following constraints:

e Each job is assigned to exactly one vehicle, so the sets {R”},cy must be mutually
exclusive. See Constraints (2) and (3) presented in Section 2.

* A vehicle cannot perform a job if the two are incompatible, in accordance with
Constraint (4) in Section 2.

Cp=0 = j¢R’ Yje] YoeV (34)

*  All operations must respect their respective time windows, as stated in Constraints (5)—(7),
Section 2.

ke{y.,np}(sp 2 stp) A (ep < ety) Wpeo (35)
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¢  Each vehicle must execute its assigned operations sequentially, ensuring that no
two operations overlap in time, nor overlap with scheduled breaks, as defined in
Constraint (8), Section 2.

ep+tpg+BT-[{beB’ e, <b<s;}[<s;, V{pg}C |J O; YoeV (36
jeR?

*  The duration of each operation is computed as follows, subtracting the end time and
the start time. These are Hexaly-specific constraints, which define the length of the
time interval for each operation.

ep—sp=Dp VpeO

e The operating range between operations of a vehicle must be fulfilled, as defined in
Constraint (25), Section 2.

dpqSORp V{P/Q}g U O]-|pEOi,qGO]-,i7éj YoeV (37)
jERY

*  Vehicles must comply with labor regulations:

- Vehicles must not take breaks during the execution of an operation; see Con-
straint (26):

(sp—BT>b)V (b>e,) VbeB’ Vpe |JO YoeV (38)
JER?

— Vehicles must not exceed the maximum working time, as specified in
Constraint (27):

b— (V' +BT)<WT V{bb'}eB’ VYoeV (39)
— Vehicles must not exceed the maximum driving time, as defined in Constraint (29):

CDTy = Y tpy VbeBY YoeV (40)
{p.at€Ujcre Ojlsg<b

DTB, = CDT, — , ma‘bx b(CDTf,) <DT VbeB’ VveV (41)
IEBZ) /<

3.2. Divide-and-Conquer Algorithm

The proposed methodology is an efficient two-stage hybrid approach named Divide-
and-Conquer (D&C) algorithm, designed to tackle the complex scheduling problem and
yield a near-optimal solution. This approach strategically decomposes the problem into
sequential stages: greedy heuristic for initial sequence generation and binary linear pro-
gramming (BLP) for optimized selection. This integration allows for effective exploration
of the solution space, rigorously enforcing all constraints while systematically enhancing
solution quality.

3.2.1. Greedy Heuristic

The initial stage employs a greedy heuristic procedure to create feasible sequences of
jobs to vehicles. This process is instrumental in establishing the foundation for subsequent
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optimization. The heuristic is organized into three main phases: initialization, expansion,
and finalization.

The algorithm begins by identifying all candidate jobs that can feasibly serve as the
first job for each vehicle departing from its depot. A job is considered feasible if it satisfies
three essential conditions:

1.  Compeatibility: the job is compatible with the vehicle.

2. Operation range: the location of the first operation of the job is within the maximum
operating range of the vehicle (the maximum distance a vehicle can travel empty from
its current location).

3. Time window: the vehicle can reach the location of the job within a specified
time window.

Once the initial set of feasible candidate jobs is enumerated, the expansion stage begins
the iterative process of sequence construction. For each initial candidate job, a preliminary
sequence is created and added to the expansion list, which dynamically tracks all sequences
currently being developed. The algorithm then iteratively extracts a sequence from the
expansion list, identifying the last job in the sequence. Then, a new list of unplanned
candidate jobs is generated based on spatial and temporal feasibility relative to the last job
in the sequence. For each valid candidate, the current sequence is extended and the new
and longer sequence is reinserted into the expansion list.

During this sequence generation, each time a new job is appended, the sequence can
transition into one of three states:

1.  Feasible and expanding: the sequence remains on the expansion list as it can be
further extended.

2. Final sequence: the sequence must terminate with a return to the depot location (for
instance, if the remaining time is insufficient for a new job), and it is moved to the
final set of solutions.

3. Infeasible: the sequence violates any constraint and it is immediately discarded.

The finalization stage collects all sequences that can no longer be feasibly expanded.
To manage computational complexity, a parameter called N, is defined, which sets a
predefined limit on the total number of constructed sequences, halting generation once this
threshold is exceeded.

To ensure operational realism and efficiency, the heuristic incorporates several critical
mechanisms. Any candidate job requiring the vehicle to arrive more than 24 h before
the time window opens is immediately excluded, focusing sequence growth on more
efficient solutions. The total driving time and total working time since the last break are
continuously tracked through counters. If assigning a new candidate job causes either
counter to exceed the permitted maximum, a break is inserted, resetting both counters.
Sequences that omit explicitly required mandatory jobs are automatically discarded during
generation, ensuring all constructed sequences meet core operational requirements. The
candidate lists are generated dynamically. From the depot, jobs are filtered by compatibility,
operating range, and time window and then sorted by the earliest possible arrival time.
Following a job, the algorithm evaluates the empty travel distance and transition time
between the last operation of the current job and the first operation of the next job, ensuring
time window compeatibility.

3.2.2. Optimized Selection via Binary Linear Programming

The second stage is responsible for the optimal selection of which generated sequences
are ultimately scheduled for each vehicle. The greedy heuristic provides the set of all
feasible sequences, but the scheduling process itself is optimized using an exact algorithm,
a binary linear programming (BLP) formulation, which aims to minimize the total cost.
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Notice that the optimal selection is performed over the generated sequences and there-
fore does not guarantee global optimality of the solution since the sequences have been
generated heuristically.

The objective is to find a schedule that minimizes the total operating cost, which
includes the cost of executed services and the penalty cost for unplanned jobs. The reader
is referred to Notations for the complete notation.

min  c- ) Y af-di+) i (1= )Y ) (42)

veV ieSv je] veVieS]?
s.t. Y17 <1 WweV (43)
ieS?
Y. Y <1 vje] (44)
veVieS}’
7/ €{0,1} VieS’ veV (45)

Equation (42) represents the total incurred cost (objective function), encompassing
the cost of transportation services (first term) plus the penalty cost for any job that is not
scheduled (second term). Equation (43) ensures that each vehicle v € V is assigned to at
most one sequence i € 5°. Equation (44) enforces that each job j € | is scheduled by at
most one vehicle across all selected sequences. Finally, Equation (45) defines the decision
variables 7! as binary, where 77 = 1 if sequence i is assigned to vehicle v and 0 otherwise.

3.2.3. Incremental D&C Strategy

Given that the exhaustive enumeration of all possible sequences grows exponentially
with the problem size, the D&C algorithm implements an incremental planning strategy
controlled by parameter T, which defines how the planning horizon is partitioned into
periods. In our case, in order to avoid significant suboptimal solutions, we implemented
the following T values:

e Full-horizon planning (I = 1): the algorithm solves the problem over the entire
planning horizon, generating sequences that span the full horizon.

e  Two-period incremental strategy (T = 2): the planning horizon is divided into two
periods. The algorithm first solves the problem for the initial two days and then
extends the resulting partial plan to cover the remainder of the planning horizon.

¢  Three-period incremental approach (T = 3): the most aggressive partitioning starts by
generating sequences containing a single initial job, subsequently expanding them to
cover the first three days, and finally extending them to the full planning horizon.

The two stages (greedy algorithm and exact BLP algorithm) are repeated iteratively
until all partitioned periods within the planning horizon have been optimized. Crucially,
the optimal scheduling decisions made in previous periods condition the starting location
and time for the subsequent sequence generation of the period.

The iterative nature of the D&C approach is graphically illustrated in Figure 3. We
have a planning horizon divided into two periods (T = 2), the first period comprises
Monday (M), Tuesday (T), and Wednesday (W), while the second period includes the
remaining days, Thursday (T) and Friday (F). The process is sequential: first, the greedy
heuristic enumerates feasible sequences for the first period (each one represented using
lines of different colors and patterns), and then the BLP selects the optimal sequence. The
end point of this optimal sequence (depicted as a smooth grey line) becomes the new
starting point for repeating both stages in the second period, yielding a complete optimized
schedule across the entire horizon.
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Figure 3. D&C schema.

4. Computational Results

In this section, we present and discuss the outcomes of the two approaches described
in Section 3. They have been executed via a computer equipped with an AMD Ryzen 9
5950x 16-core processor (32 threads, AMD Inc., Santa Clara, CA, USA) and 128 GB of RAM.
Both approaches have been implemented using Hexaly 13.0.2.

This section is structured as follows. First, the real-world instances considered in the
study are described. Then, several scenarios are defined to enable the comparison between
the two proposed approaches. Finally, a detailed case study is presented and discussed.

We would like to remark that, to solve every instance using the Holistic algorithm, we
establish a time limit for the solver of 30 min (1800 s). In contrast, when applying the D&C
algorithm, the total time is allocated across the different periods of the planning horizon
and, in turn, between the two defined stages (greedy algorithm and exact algorithm). Here,
the total time limit of 1800 s is evenly distributed across the periods. When the greedy
algorithm requires a significant portion of the computational time, 60 s are reserved to
guarantee the execution of the exact algorithm.

4.1. Description of the Instances

We will solve 16 real-world instances provided by the transportation company. In all
16 instances, jobs required by customers are located all around Spain, specifically along the
Iberian Peninsula. An example of the distribution of operations on the peninsula can be
seen in Figure 4, where the operations of instance 1 are depicted, each circle represents a
single operation.

These original 16 real-world instances have different characteristics. Operations
have to be scheduled to satisfy a hard time window in a specific day. We say that such
operations have a fixed appointment. However, other operations are allowed to be scheduled
considering soft time windows specifically, at any time within the opening hours during
the appointment day, that is, with an associated wider time window. Furthermore, some
operations have a flexibility level regarding the day to be scheduled. We have codified
flexibility 0, named null flexibility, if the operation may be scheduled in a specific day and
flexibility 1, named a day flexibility, if the operation may be scheduled one day before or one
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day after the original appointment, all eligible days being equally valid for assignment. It
is important to note that these flexibilities apply exclusively to operations that are marked
with this flexibility level and do not affect other operations or the depot.
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Figure 4. Operations’ distribution.

Table 2 includes the main characteristics of the considered instances, that is, number of
jobs paid by customers (column 2), number of operations (column 3), number of operations
that have fixed appointments (column 4), and, finally, the percentage of operations with
fixed appointments (column 5). Note that, in the original instances of Table 2, all operations
have null flexibility.

Table 2. Instance characteristics.

Instance #Jobs #Operations #Fixed Appointment % Fixed Appointment
1 79 158 87 55.06%
76 155 93 60.00%

3 80 160 122 76.25%
4 70 146 120 82.19%
5 69 143 101 70.63%
6 87 175 135 77.14%
7 115 235 173 73.62%
8 124 257 162 63.04%
9 133 270 180 66.67%
10 147 306 189 61.76%
11 143 300 165 55.00%
12 130 277 102 36.82%
13 16 32 24 75.00%
14 132 280 80 28.57%
15 139 280 90 32.14%
16 157 334 124 37.13%

To test a richer set of instances, we have modified the characteristics of the original
set of 16 instances, resulting in a total of 64 instances. Then, the first subset is the original
set of instances. The second set assumes that all operations have dynamic flexibility, that
is, they could be scheduled one day before and after the original appointment. The third
set considers that all operations have no fixed appointment while preserving the original
flexibility level, that is, regarding the day to be scheduled. Finally, the last set removes the
fixed appointment and the flexibility level, so here we are allowing the maximum flexibility
to schedule the operations.

Table 3 includes descriptive statistics for the four subsets of 16 instances regarding the
jobs requested by customers, providing an overview of the instance sizes. The first column
of the table shows the metrics: the mean number of jobs (Mean); the standard deviation
of the number of jobs (Std); the minimum number of jobs (Min); the first quartile (Q1),
representing the number of jobs that 25% of the customers requested at most; the median
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(Me), representing the number of jobs that 50% of the customers requested at most; the third
quartile (Q3), representing the number of jobs that 75% of the customers requested at most;
and the maximum number of jobs (Max). Columns 2, 3, 4, and 5 detail these metrics for the
four subsets, named original, a day flexibility, no fixed appointment, and maximum flexibility.

Table 3. Descriptive statistics of number of jobs for the set of instances.

Original A Day Flexibility No Fixed Appointment Maximum Flexibility
Mean 106.06 107.25 108.44 110.69
Std 38.78 39.22 38.83 40.82
Min 16.00 16.00 16.00 16.00
Q1 78.25 79.00 80.25 81.75
Me 119.50 120.00 122.50 123.00
Q3 134.50 135.00 138.25 138.25
Max 157.00 158.00 155.00 163.00

As can be observed in Table 3, the four subsets exhibit similar descriptive statistics to
avoid introducing bias when comparing them. The observed difference in the number of
jobs is attributable to a validation process, which removes inaccessible jobs, i.e., those that
cannot be reached due to distance or time constraints. Consequently, instances with more
flexible time windows result in a greater number of valid jobs.

4.2. Parameter Selection and Tuning

The Holistic algorithm does not require parameter tuning for its application, whereas
the D&C algorithm involves several parameters that must be tuned. Before proceeding
with a comparative evaluation of the two algorithms, a dedicated subsection is provided to
that end for the D&C approach.

The first experiment focuses on establishing the appropriate number of periods in the
planning horizon, T; see Section 3.2.3. To that end, and in order to avoid overfitting, this
preliminary experimentation is performed over a subset of 11 representative instances from
a total of 64 instances. As our case study considers a planning horizon of five working
days within a week, we have executed the algorithm for one, two, and three periods, that
is, T=1,T = 2,and T = 3, respectively; see Figure 5.

1x10°

Objective Value

20 40 60 80 100 120 140 160
Number of Jobs

Figure 5. Objective function values across different numbers of periods.

The results presented in Figure 5 indicate that T = 2 consistently yields the best
solutions. This outcome can be explained as follows: for T = 1, the problem is less granular
but more complex to solve, resulting in worse solutions within the same computation time;
in contrast, for T = 3, solutions are too granular and obtained faster but are suboptimal.

The second experiment, depicted in Figure 6, investigates the practical limit for the
number of sequences generated per period, Nseq. A preliminary test was conducted, varying
Njseq between 5000 and 500,000, in order to evaluate the impact on computation time and

system stability.
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Figure 6. Trade-off between generation time and sequence generation limit.

Figure 6 shows the mean trade-off between generation time and sequence generation
limit for our subset of instances. As shown in Figure 6, setting the limit to 100,000 sequences
per period provides a reasonable balance between solution quality and computation time.
It is worth noting that, during experimentation, memory usage was observed to exceed
90% when generating 200,000 sequences or more. This fact highlights the potential risk of
instability for higher sequence limits.

Based on these results, for the subsequent experiments, we will set the planning
horizon to two periods, T = 2, and the maximum number of sequences generated per
period is limited to one hundred thousand, Ns¢; = 100,000.

4.3. Comparison Among Scenarios

Once the instances have been described, we will move on to solve them with the aim
to compare the two approaches proposed in this paper. However, we have considered
different scenarios to cover all the possibilities that can be encountered in a real situation.

¢ The first scenario considers that there are no mandatory jobs and labor regulations are
not respected. Results are shown in Figure 7a and Table 4.

*  The second scenario assumes that there are mandatory jobs and we do not respect the
labor regulations. Results are included in Figure 7b and Table 5.

*  The third scenario considers that there are no mandatory jobs but we respect the labor
regulations. Results are enclosed in Figure 7c and Table 6.

*  The last scenario supposes that there are mandatory jobs and labor regulations are
respected. Results are included in Figure 7d and Table 7.

Tables 4-7 include the same metrics by rows as Table 3: Mean, Std, Min, Q1, Me,
Q3, and Max related to the number of jobs that have been planned (#Jobs), the number
of vehicles needed to plan such jobs (#Vehicles), the total cost measured in thousands of
EUR, i.e., the objective function value, and, finally, the time required to obtain the best
objective function value, i.e., the time to best (in seconds) denoted by TTB. These metrics are
computed in each of the four considered scenarios and by each algorithm (by column). In
all tables, we can observe that greater flexibility in the instances requires longer execution
times for their resolution using any of the two methodologies than using the original
instances. Additionally, we note that, on average, the D&C algorithm achieves better
results than the Holistic algorithm in significantly shorter execution times in all the sets
of instances. Furthermore, the D&C algorithm uses fewer vehicles to plan the jobs to be
performed, which can be translated into greater customer satisfaction and resource savings
for the transport company. It is important to note that the cost of vehicles is not included in
the objective function as the company owns its vehicles, but, if a vehicle is not in use, the
company employee can perform other work activities.

Next, we will briefly discuss each of the tables separately.
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If we focus on Table 4, the D&C algorithm outperforms the Holistic algorithm in all
metrics: number of jobs that have been planned, number of vehicles needed to plan such
jobs, total cost, and time required to obtain the best objective function value. Then, in the
first scenario, we observe greater stability in all metrics. In this scenario, the D&C algorithm
outperforms the Holistic algorithm in 45 out of the 64 instances, approximately 70% of
the instances.

If we look at Table 5, while the D&C algorithm schedules a greater number of customer
jobs, utilizing fewer vehicles and achieving faster computation times, it fails to adequately
prioritize mandatory jobs. This shortcoming results in significant penalties in the objective
function, thereby explaining its inferior overall performance compared to the Holistic
algorithm in this scenario. However, even though the objective function value is worse, we
cannot necessarily conclude that the D&C algorithm underperforms the Holistic algorithm
since more jobs are planned and fewer vehicles are used, which translates into customer
satisfaction and better resource utilization since those vehicles can be used for other types
of duties.

As shown in Table 6, despite having more flexibility, the constraints regarding the
breaks means that we have a more restrictive and rigid operation in both methodologies.
Even in this situation, the objective function value of the D&C algorithm is better than that
of the Holistic one, outperforming it in 58 out of the 64 instances, approximately 90% of
the instances. Note that the execution time is less sensitive to flexibility, especially in the
Holistic methodology.

Finally, when we examine in more detail in Table 7, we observe that, in both method-
ologies, greater flexibility in the set of instances contributes to an improvement in the
objective function value. Furthermore, we find that, despite the improvement in the Holis-
tic algorithm in this fourth scenario, the D&C algorithm still plans a higher number of
jobs with fewer vehicles and in less time, as in the second scenario. However, since it does
not sufficiently prioritize the mandatory jobs during the construction phase, it is heavily
penalized by the objective function definition.

Figure 7 displays bar charts and line charts. In the bar charts, gray bars and black
bars represent the runtime (in seconds) of the Holistic algorithm and the D&C algorithm,
respectively. In the line charts, the solid line and the dashed line represent the objective
function value (total cost in thousands of EUR) obtained by the Holistic algorithm and the
D&C algorithm, respectively.

A convergence study was conducted to analyze the evolution of the objective value
over the execution time of both methodologies, as illustrated in Figure 8. The x-axis shows
the time, and the y-axis depicts the objective function value at every time. The resulting
plots reveal distinct behaviors in their search dynamics. The Holistic focuses on continuous
incremental improvements, achieving substantial gains early, while later enhancements
become increasingly marginal. This persistent search for minor improvements explains its
higher TTB. Conversely, the D&C explores a discrete and finite search space, which leads
to faster stabilization of the objective value and consequently lower TTB. Additionally, the
D&C’s greedy heuristic stage delays the appearance of initial objective evaluations, so the
initial feasible solutions begin to appear later along the computational horizon (see the
X-axis).
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Table 4. Descriptive statistics of Scenario 1.

Original A Day Flexibility No Fixed Appointment Maximum Flexibility

Holistic D&C Holistic D&C Holistic D&C Holistic D&C

Mean 55.69 61.06 56.06 62.44 57.62 65.00 58.19 64.75

Std 13.45 18.95 13.78 20.23 13.41 19.12 14.47 17.94

@ Min 14.00 13.00 14.00 12.00 15.00 14.00 15.00 12.00

'§ 01 51.75 52.00 51.75 54.00 53.75 57.00 52.00 57.75

* Me 58.50 62.50 59.00 64.00 59.00 65.00 60.00 65.50

Q3 62.50 69.25 64.25 70.25 66.00 74.50 67.25 74.50

Max 73.00 95.00 74.00 102.00 75.00 98.00 76.00 90.00

Mean 13.50 12.81 13.06 12.69 13.00 11.19 12.38 12.56

® Std 2.80 2,51 2.74 2.75 2.58 2.54 2.70 2.85

% Min 4.00 5.00 4.00 4.00 4.00 4.00 4.00 4.00

% Q1 13.75 12.00 12.75 12.00 12.75 10.75 11.75 11.75

Z Me 14.50 13.00 13.50 13.50 14.00 11.00 13.00 13.00

Q3 15.00 15.00 15.00 14.25 14.00 13.00 14.00 14.25

Max 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00

Mean 522.41 473.01 530.00 471.73 526.21 457.37 542.40 481.85

- Std 284.47 229.05 294.28 231.95 288.62 234.39 301.94 265.84

8 Min 24.31 35.61 24.31 44.31 14.85 24.25 14.85 44.55

= Q1 280.04 271.37 271.71 283.31 287.63 262.29 288.50 282.27

S Me 598.74 543.65 582.05 545.00 607.51 504.57 621.28 531.30

= Q3 752.05 662.25 766.85 651.31 779.18 645.90 796.71 674.05

Max 952.27 824.64 1011.54 830.13 902.85 842.28 931.60 910.28

Mean 480.00 36.94 766.56 252.50 800.44 189.75 1237.50 657.62

Std 518.23 61.25 693.35 275.40 517.05 162.94 558.27 255.65

@ Min 1.00 1.00 1.00 0.00 7.00 1.00 121.00 1.00

= o1 58.75 2.50 53.00 6.75 441.75 70.25 989.25 523.50

Me 252.00 7.00 713.50 181.00 764.50 166.50 1404.00 730.00

Q3 922.00 37.25 1439.50 403.75 1255.25 303.25 1692.75 814.25

Max 1713.00 223.00 1688.00 702.00 1688.00 495.00 1788.00 975.00
Table 5. Descriptive statistics of Scenario 2.

Original A Day Flexibility No Fixed Appointment Maximum Flexibility

Holistic D&C Holistic D&C Holistic D&C Holistic D&C

Mean 55.94 61.88 55.88 59.81 57.56 64.00 57.62 63.81

Std 13.26 19.88 12.85 19.33 13.54 21.05 13.84 19.73

2 Min 15.00 8.00 15.00 8.00 15.00 10.00 14.00 8.00

=X Q1 52.50 53.25 53.50 54.50 52.00 53.75 52.75 55.50

¥* Me 59.50 64.50 59.50 62.00 62.50 65.50 60.50 63.00

Q3 63.25 73.00 63.00 71.75 65.25 73.00 64.00 76.75

Max 71.00 94.00 70.00 88.00 72.00 103.00 74.00 94.00

Mean 15.00 13.06 15.00 11.81 15.00 11.19 15.00 12.06

0 Std 0.00 3.04 0.00 3.02 0.00 2.76 0.00 2.67

< Min 15.00 3.00 15.00 3.00 15.00 3.00 15.00 4.00

% 01 15.00 12.75 15.00 11.00 15.00 10.50 15.00 11.00

> Me 15.00 14.00 15.00 12.00 15.00 12.00 15.00 12.00

* Q3 15.00 15.00 15.00 13.25 15.00 13.00 15.00 14.00

Max 15.00 15.00 15.00 15.00 15.00 14.00 15.00 15.00

Mean 1925.64 2662.44 1937.21 2880.33 1932.70 2707.73 1953.96 2726.18

2 Std 287.54 289.43 302.60 22553 289.51 288.13 316.42 225.43

8 Min 1423.79 2206.08 1423.79 2434.90 1424.45 2199.12 1434.20 2360.83

= Q1 1688.09 2362.59 1687.63 2763.73 1695.01 2482.05 1685.57 2568.39

° Me 1982.31 2723.14 1987.15 2868.24 1993.42 2706.44 2005.97 2749.09

= Q3 2155.44 2873.66 2187.99 3044.90 2165.30 2899.00 2223.54 2879.42

Max 2358.11 3122.06 2413.53 3212.82 2311.22 3346.24 2416.13 3154.01

Mean 685.62 41.62 1020.50 254.62 891.38 209.50 1329.56 674.81

Std 544.19 73.88 679.07 276.98 624.70 172.23 485.55 261.63

™ Min 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00

E Q1 362.50 4.00 276.75 7.75 331.75 84.00 1112.75 533.75

Me 581.50 9.50 1151.50 182.50 936.50 196.50 1477.50 754.00

Q3 1138.25 39.25 1667.25 405.75 1459.50 330.00 1703.25 834.25

Max 1713.00 284.00 1743.00 712.00 1781.00 560.00 1768.00 1009.00
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Table 6. Descriptive statistics of Scenario 3.

Original A Day Flexibility No Fixed Appointment Maximum Flexibility

Holistic D&C Holistic D&C Holistic D&C Holistic D&C

Mean 44.06 55.44 47.62 58.62 50.81 60.75 59.56 62.56

Std 10.18 15.82 13.08 16.96 11.70 16.22 14.06 16.44

2 Min 11.00 11.00 11.00 12.00 12.00 10.00 14.00 12.00

cX Q1 42.75 48.50 42.50 50.75 48.75 55.00 54.50 58.25

¥* Me 45.50 55.50 45.50 59.50 53.50 64.00 63.00 63.00

Q3 50.00 68.25 54.75 72.25 56.00 70.25 68.00 71.25

Max 53.00 73.00 66.00 83.00 64.00 80.00 74.00 84.00

Mean 13.88 13.38 13.94 13.81 13.88 12.31 14.38 13.31

» Std 2.73 2.73 2.79 2.54 2.83 2.57 2.50 2.77

% Min 4.00 4.00 4.00 5.00 4.00 4.00 5.00 4.00

% Q1 14.00 13.00 14.75 13.75 14.00 11.75 15.00 13.00

2 Me 15.00 14.00 15.00 15.00 15.00 13.00 15.00 14.00

* Q3 15.00 15.00 15.00 15.00 15.00 14.00 15.00 15.00

Max 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00

Mean 637.22 527.24 615.18 508.47 595.49 498.29 534.57 503.58

2 Std 319.03 260.97 297.08 247.06 310.90 258.24 302.72 293.98

8 Min 52.94 52.83 52.94 43.97 44.18 63.04 24.48 44.45

= Q1 347.47 302.68 355.20 298.96 317.86 262.34 279.69 246.90

° Me 698.17 588.68 691.65 587.41 711.32 576.48 580.17 570.37

= Q3 901.60 702.43 814.75 708.77 892.84 697.94 788.04 686.37

Max 1062.53 938.09 1101.41 909.56 932.78 861.34 1008.43 1026.58

Mean 1107.88 594 988.06 187.50 1228.38 63.56 1226.00 637.12

Std 546.75 9.96 528.47 273.59 515.86 91.39 527.87 256.17

@ Min 3.00 1.00 2.00 1.00 235.00 1.00 108.00 1.00

[ Q1 807.50 0.00 793.75 1.00 983.50 17.00 1066.50 523.25

Me 1132.50 0.50 1055.00 23.50 1385.50 26.00 1472.00 674.50

Q3 1578.50 5.00 1417.25 348.75 1629.75 62.25 1569.25 807.25

Max 1784.00 37.00 1619.00 710.00 1786.00 327.00 1711.00 971.00
Table 7. Descriptive statistics of Scenario 4.

Original A Day Flexibility No Fixed Appointment Maximum Flexibility

Holistic D&C Holistic D&C Holistic D&C Holistic D&C

Mean 40.31 54.75 43.00 57.06 47.62 61.56 55.81 57.94

Std 11.40 16.04 13.76 18.46 10.32 17.56 12.20 16.94

2 Min 12.00 8.00 5.00 7.00 13.00 10.00 15.00 8.00

=X Q1 37.25 49.50 36.00 48.25 44.00 57.00 51.75 54.50

¥* Me 42.00 56.50 45.50 60.00 50.50 61.00 59.50 61.00

Q3 49.25 64.25 53.00 70.00 53.00 71.50 62.00 63.25

Max 54.00 76.00 62.00 80.00 59.00 86.00 68.00 87.00

Mean 14.94 12.75 15.00 13.19 15.00 12.62 15.00 12.00

0 Std 0.25 3.26 0.00 3.31 0.00 3.18 0.00 2.73

< Min 14.00 2.00 15.00 2.00 15.00 2.00 15.00 4.00

% 01 15.00 12.00 15.00 12.00 15.00 12.00 15.00 11.75

= Me 15.00 13.00 15.00 15.00 15.00 13.00 15.00 12.00

Q3 15.00 15.00 15.00 15.00 15.00 15.00 15.00 13.25

Max 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00

Mean 2111.82 2804.04 2085.53 2994.46 2077.38 2805.77 1983.24 2999.42

2 Std 336.80 296.08 307.29 334.49 348.87 258.09 324.08 284.06

8 Min 1551.41 2241.27 1521.34 2478.10 1443.90 2272.65 142391 2502.39

= Q1 1789.69 2563.69 1797.46 2701.30 1773.41 2670.96 1694.94 2781.50

° Me 2169.89 2784.48 2144.43 3031.20 2166.75 2806.23 2030.40 3010.34

= Q3 2401.51 3061.61 2301.25 3263.67 2315.94 2981.78 2283.56 3229.01

Max 2634.60 3241.57 2615.08 3613.53 2586.89 3227.35 2438.38 3421.63

Mean 1025.06 6.62 936.12 191.38 1362.25 65.00 1421.19 652.25

Std 635.39 10.26 469.39 278.41 488.65 92.61 295.10 262.85

™ Min 2.00 1.00 121.00 1.00 576.00 1.00 761.00 1.00

E Q1 544.25 0.00 758.00 1.75 851.25 19.00 1289.75 540.75

Me 1291.50 0.50 997.00 22.00 1646.50 31.00 1440.50 685.50

Q3 1528.75 9.00 1141.00 357.75 1759.25 62.25 1655.00 828.75

Max 1793.00 38.00 1664.00 730.00 1795.00 335.00 1771.00 1000.00
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Figure 7. Comparison plots for Scenarios 1 to 4. (a) Scenario 1. (b) Scenario 2. (c) Scenario 3.
(d) Scenario 4.
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Figure 8. Convergence of the objective value for both algorithms. (a) Convergence of the Holistic
algorithm. (b) Convergence of the D&C algorithm.

4.4. Case Study

In this section, we will study the behavior under four different scenarios in a single
real instance; specifically, we have selected the week of 20 May 2024.

In this instance with one-hundred-fifteen customers that request a job, five of them are
composed of three operations and the remaining two operations. To solve scenarios 2 and
4, a set of 29 mandatory jobs have been considered.

Table 8 shows the results of this case study under the different scenarios and with both
methodologies. The first column specifies the scenario, the second column indicates the
approach with which it has been resolved, columns 3 to 5 show the number of vehicles
that have been scheduled during the planning horizon, the number of jobs scheduled
in those vehicles, and the number of mandatory jobs scheduled, and columns 6 and 7
compute the total distance traveled (in thousands of kilometers) by all the vehicles and
the total cost incurred (in thousands of EUR), which is our objective function. Finally, the
last two columns detail the time to obtain the best solution, TTB, and the total time that
the algorithm is being executed, TT, both in seconds. It is important to note that the total
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cost and the distance are not correlated since the penalties for not completing certain jobs
are high.

Table 8. Summary of the results obtained from the case study.

Scenario Approach #Vehicles #Jobs #Mandatory Distance Total Cost TTB TT
1 Holistic 14 61 0 20.03 560.03 29 1798
D&C 12 64 0 24.14 534.15 6 6

2 Holistic 15 66 15 23.83 1913.83 603 1799
D&C 12 67 7 2691 2706.91 8 8

3 Holistic 15 50 0 19.12 669.12 1651 1799
D&C 14 58 0 24.11 594.11 1 1

4 Holistic 15 45 15 23.34 2123.34 1633 1799
D&C 11 51 5 17.07 3057.07 1 1

As we previously introduced, the first scenario considers no mandatory jobs and no
breaks. Here, the D&C algorithm clearly outperforms the Holistic approach across every
metric. It uses fewer vehicles (12 vs. 14), achieves a 5% lower objective function value in
terms of costs, and it reaches the solution in just 6 s; see Scenario 1 in Table 8.

If we move on to the second scenario where mandatory jobs are now considered
but still without scheduling breaks, we can state that the Holistic method performs more
compulsory jobs (fifteen vs. seven), resulting in a better objective function, but the algorithm
still demonstrates better overall performance since it uses two fewer vehicles and schedules
one more job (sixty-seven vs. sixty-six) by solving the problem in only 8 s, which is a
significant advantage over the 603 s required by the Holistic approach; see Scenario 2 in
Table 8.

In the third scenario, where we do not consider mandatory jobs but breaks are sched-
uled, the method shows a clear advantage in terms of efficiency. It uses fewer vehicles (14
vs. 15) and achieves a better objective function value. Furthermore, the computational time
difference is remarkable. The Holistic methodology takes 1651 s to attach the solution, while
the D&C approach achieves results in less than one second, which is nearly instantaneous;
see Scenario 3 in Table 8.

Finally, for the fourth scenario where everything is scheduled, mandatory jobs and
breaks, the trend persists; that is, the algorithm uses fewer vehicles (11 vs. 15), covers
a shorter distance, schedules more jobs (51 vs. 45), and finds the solution in less time.
However, the Holistic approach completes more mandatory jobs, which is an important
consideration for the objective function; see Scenario 4 in Table 8.

Summarizing, in view of the results in Table 8, the D&C approach consistently demon-
strates superior computational efficiency. In all the tested scenarios, it drastically reduces
the time to build solutions (TTB) compared to the Holistic method, with reductions ranging
from approximately 79% to nearly 99% (see column 8). This efficiency is accompanied by
a notable reduction in the number of vehicles required, with a decrease of around 6-26%
on average across the scenarios (see column 3). On the other hand, the Holistic method
excels in handling mandatory jobs. In scenarios with non-zero mandatory jobs, Holistic
consistently completes more of these jobs than D&C (e.g., in Scenario 2, fifteen mandatory
jobs vs. seven completed by D&C; in Scenario 4, fifteen vs. five; see column 5). However,
this comes at the cost of increased computational time and, in several cases, higher resource
usage, including a larger fleet of vehicles (see columns 8, 9, and 3).

To conclude this section, we refer the reader to Tables A1-A4, where detailed infor-
mation regarding the number of jobs planned and the total distance traveled is included.
Specifically, the first column includes the vehicle identification (Vehicle ID); the second
and third columns include the number of jobs planned in each vehicle by the Holistic
and D&C algorithms, respectively; and, finally, the fifth and sixth columns show the dis-
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tance traveled (in thousands of kilometers) by each vehicle using the Holistic and D&C
algorithms, respectively. As stated in Section 2, the travel cost is set to 1 monetary unit
per kilometer, while the penalty cost is 10,000 monetary units since, in the considered
instances and across all the scenarios, each vehicle travels between approximately 10,000
and 30,000 km, corresponding to a total travel cost ranging from 10,000 to 30,000 monetary
units (see columns 4 and 5 of Tables A1-A4). Therefore, the penalty cost is of the same
order of magnitude as the total travel cost of a vehicle, ensuring that the model sets high
priority to assigning all jobs while still minimizing overall travel distance. Note that, in
this way, travel and penalty costs are balanced in the objective function so that neither
dominates the results unfairly.

5. Conclusions and Future Research

In this paper, we have solved a scheduling problem arising in a transportation com-
pany. Here, our objective is to schedule jobs into vehicles in order to minimize the total cost
incurred even though, in most scheduling problems, the objective function is to minimize
the makespan. Furthermore, our scheduling problem includes all the constraints imposed
by the company and other legal regulations.

We have considered two approaches to solve the problem. On the one hand, a com-
prehensive or Holistic algorithm is implemented where constraints are considered. On the
other hand, a Divide-and-Conquer algorithm is proposed in which a greedy heuristic and
a binary linear programming are combined.

The Divide-and-Conquer algorithm demonstrates greater overall efficiency, excelling
in both resource utilization and computational time. It consistently finds high-quality
solutions faster than the Holistic approach, making it a strong contender in scenarios where
rapid problem-solving and minimized resource usage are crucial. Considering the time
to obtain the best solution across all the scenarios, Divide-and-Conquer has an average
of 257.78 s (95% CI: [219.24, 296.32]) compared to 1031.65 s (95% CI: [959.09, 1104.21]) for
the Holistic approach. Additionally, the average number of vehicles used is lower for the
Divide-and-Conquer approach compared to the Holistic approach (12.55 vs. 14.25). When
planning mandatory jobs, the Holistic approach outperforms the Divide-and-Conquer
methodology in terms of objective value. In these cases, the objective value is slightly
higher for the Divide-and-Conquer approach (2822.54 on average and 95% CI: [2770.99,
2874.11] thousands of EUR) compared to the Holistic approach (2000.93 on average and 95%
CI: [1945.91, 2055.95] thousands of EUR). However, even though, in terms of mandatory jobs
and total cost, the Holistic approach outperforms the Divide-and-Conquer algorithm, the
latter always schedules a higher number of jobs and requires fewer vehicles. This results
in increased customer satisfaction and enhanced resource utilization for the transport
company. Since the company owns its fleet, vehicle-related costs are not considered in
the objective function, and, consequently, when a vehicle is not in use, the corresponding
employee can be assigned to other productive activities. It is important to emphasize that,
in scenarios where mandatory jobs are not considered, the Divide-and-Conquer algorithm
achieves better results than the Holistic algorithm across every considered metric, the
objective value being slightly higher for Holistic (562.94 and 95% CI: [511.37, 614.50]
thousands of EUR) compared to Divide-and-Conquer (490.19 95% CI: [446.92, 533.46]
thousands of EUR). For the case study, this translates into an improvement not only in cost
but also in customer satisfaction and the efficient use of human resources in the company.

Future research could explore incorporating intelligent assumptions to reduce the
number of generated sequences, potentially eliminating the need for this arbitrary cap. In
addition, to improve the performance of the Divide-and-Conquer approach when dealing
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with mandatory jobs, it would be desirable to incorporate this objective intelligently into
the sequence construction stage.
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Notations
Sets Definitions
14 Set of vehicles
Im Set of mandatory jobs
Jc Set of job requests from customers
J=ImU]Jc Set of jobs
O=UO0; Set of operations where O; is the set of operations of job j, Vj € |
€]
sY Set of feasible job sequences that may be assigned to vehicle v, Vv € V
o Set of feasible job sequences that may be assigned to vehicle v that
/ contain

jobj,YoeV,Vje]
W, = {[st;,et;] lni 1 Setof time windows of operation p, Vp € O,
each represented by a closed interval,
where 1), is the number of time windows of operation p

Parameters Definitions

G Binary parameter that takes value 1 if job j and vehicle v are compatible,
vie],VoeV

tpg Time from operation p to operation g, Vp,q € O

dpq Distance from operation p to operation g, Vp,q € O

c Cost paid per unit of distance traveled

¢ Cost paid if job j is not scheduled, Vj € |

ORyp Operating range of p, Vp € O

Dy Duration of operation p, Vp € O

BT Break time to satisfy the labor regulations

DT Maximum driving time to satisfy the labor regulations

WT Maximum working time to satisfy the labor regulations

d? Total distance traveled for the sequence i and vehicle v, Vi € S, Vv € V
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Decision variables

Definitions for the Mathematical model

MCDTY
by
Sp
Spao

!
Spyo
Upbgqo

Binary variable that takes value 1 if operation p is assigned to vehicle v,
VpeOVYveV

Binary variable that takes value 1 if operation p precedes operation g

for vehicle v, Vp,q € O,Vv € V

Binary variable that takes value 1 if window k is selected for operation p,
VpeO,Vkel...np

Binary variable that takes value 1 if break b is scheduled between
operationpand q,Vp,q €O Vbe B’ VoeV

Continuous variable representing the maximum cumulative driving time
Start time of the k-th break of vehicle v, Vo € V

Start time of operation p, Vp € O

Continuous variable representing s, - ypqo, Vp € O,Vq € O,Vv € V,Vb € B?
Continuous variable representing s, - ypgqo, Vp € O,Vq € O,Vv € V,Vb € B?
Binary variable representing g0 - wppy, Vp € O,Vq € O,Vv € V,Vb € BY

Decision variables

Definitions for the Holistic algorithm

RU
Bv
(sp,ep)

List of jobs for vehicle v, Vv € V
List of start times of breaks for vehicle v, Vo € V
Interval start time and end time of operation p, Vp € O

Decision variables

Definitions for the Divide-and-Conquer algorithm

vy

Binary variable that takes value 1 if operation i is assigned to vehicle v,
Vie S, VveV

Appendix A. Scenario 1: Detailed Results by Vehicle

Table A1l. Comparison between Holistic and D&C approaches in Scenario 1: detailed results

by vehicle.
Holistic D&C Holistic D&C
Vehicle ID #Jobs #Jobs Distance Distance
45 5 0 1.49 0.00
47 8 6 1.17 1.38
52 4 10 1.74 3.00
56 6 4 1.10 2.09
57 2 9 0.84 3.83
59 6 3 1.72 2.55
60 1 8 0.78 2.24
63 3 1 1.78 0.98
64 4 7 1.10 2.16
74 2 0 0.87 0.00
78 7 4 1.01 2.09
80 6 3 2.98 2.13
92 3 2 2.40 0.62
102 4 7 1.05 1.09
Total 61 64 20.03 24.15
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Vehicles Scheduler Scenario 1 Holistic
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Figure A1. Gantt diagram for Holistic approach in Scenario 1.
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Figure A2. Gantt diagram for the Divide-and-Conquer approach in Scenario 1.

Appendix B. Scenario 2: Detailed Results by Vehicle

Table A2. Comparison between Holistic and D&C approaches in Scenario 2: detailed results by vehicle.

Holistic D&C Holistic D&C
Vehicle ID #Jobs #Jobs Distance Distance
45 6 9 1.04 2.78
47 4 0 1.77 0.00
50 8 0 1.65 0.00
52 6 8 1.29 2.02
56 0 6 0.00 2.11
57 8 3 2.67 2.51
59 4 6 2.81 3.04
60 6 8 2.54 3.37
63 3 3 1.81 1.85
64 4 7 1.35 1.45
74 3 4 1.39 3.15
78 6 4 1.11 2.09
80 1 1 2.23 1.33
92 2 0 1.05 0.00
102 5 8 1.12 1.19
Total 66 67 23.83 26.91
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Vehicles Scheduler Scenario 2 Holistic
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Figure A3. Gantt diagram for Holistic approach in Scenario 2.
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Figure A4. Gantt diagram for the Divide-and-Conquer algorithm in Scenario 2.

Appendix C. Scenario 3: Detailed Results by Vehicle

Table A3. Comparison between Holistic and D&C approaches in Scenario 3: detailed results

by vehicle.
Holistic D&C Holistic D&C
Vehicle ID #Jobs #Jobs Distance Distance
45 5 4 0.93 2.25
47 5 6 1.97 1.73
50 2 7 1.39 2.51
52 3 2 1.24 0.62
56 1 0 0.52 0.00
57 3 7 0.86 1.83
59 2 3 0.70 2.07
60 4 6 2.64 2.52
63 3 4 1.62 2.28
64 4 4 1.05 2.23
74 3 2 1.69 1.21
78 4 4 1.11 1.25
80 4 3 1.73 1.88
92 2 5 1.02 1.30
102 5 1 0.66 0.42
Total 50 58 19.12 14.96
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Vehicles Scheduler Scenario 3 Holistic
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Figure A5. Gantt diagram for Holistic approach in Scenario 3.
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Figure A6. Gantt diagram for the Divide-and-Conquer algorithm in Scenario 3.

Appendix D. Scenario 4: Detailed Results by Vehicle

Table A4. Vehicle comparison between Holistic and D&C approaches in Scenario 4: detailed results

by vehicle.
Holistic D&C Holistic D&C
Vehicle ID #Jobs #Jobs Distance Distance
45 3 0 0.78 0.00
47 2 3 1.57 2.34
50 4 6 1.14 1.26
52 4 5 0.78 1.62
56 2 7 2.15 2.88
57 3 0 2.95 0.00
59 3 0 0.83 0.00
60 2 5 1.61 1.34
63 3 2 2.40 1.43
64 3 7 1.52 1.53
74 2 1 1.39 0.14
78 4 4 1.07 2.09
80 2 5 221 1.72
92 2 0 2.16 0.00
102 6 6 0.79 0.72
Total 45 51 23.34 17.07
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Figure A7. Gantt diagram for Holistic approach in Scenario 4.

Vehicles Scheduler Scenario 4 D&C
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Figure A8. Gantt diagram for the Divide-and-Conquer algorithm in Scenario 4.

References

1. Morash, E.A.; Ozment, J. The strategic use of transportation time and reliability for competitive advantage. Transp. ]. 1996, 36,
35-46.

2. Bharadiya, ].P. Artificial intelligence in transportation systems a critical review. Am. J. Comput. Eng. 2023, 6, 35-45. [CrossRef]

3. Seda, M. The assignment problem and its relation to logistics problems. Algorithms 2022, 15, 377. [CrossRef]

4. Kayhan, B.M,; Yildiz, G. Reinforcement learning applications to machine scheduling problems: A comprehensive literature
review. J. Intell. Manuf. 2023, 34, 905-929. [CrossRef]

5. Mor, A.; Speranza, M.G. Vehicle routing problems over time: A survey. Ann. Oper. Res. 2022, 314, 255-275. [CrossRef]

6.  Toth, P; Vigo, D. The Vehicle Routing Problem; SIAM: Philadelphia, PA, USA, 2002.

7. Toth, P; Vigo, D. Vehicle Routing: Problems, Methods, and Applications; SIAM: Philadelphia, PA, USA, 2014.

8. Walker, R.A.; Chaudhuri, S. Introduction to the scheduling problem. IEEE Des. Test Comput. 1995, 12, 60-69. [CrossRef]

9. Zhao, Z.; Zhou, M,; Liu, S. Iterated greedy algorithms for flow-shop scheduling problems: A tutorial. IEEE Trans. Autom. Sci.
Eng. 2021, 19, 1941-1959. [CrossRef]

10. Durasevi¢, M.; Jakobovi¢, D. Heuristic and metaheuristic methods for the parallel unrelated machines scheduling problem: A
survey. Artif. Intell. Rev. 2023, 56, 3181-3289. [CrossRef]

11. Can Atasagun, G.; Karaoglan, I. Integrated production and outbound distribution scheduling problem with multiple facili-
ties/vehicles and perishable items. Appl. Soft Comput. 2024, 166, 112144. [CrossRef]

12.  Davatgari, A.; Cokyasar, T.; Verbas, O.; Mohammadian, A K. Heuristic solutions to the single depot electric vehicle scheduling

problem with next day operability constraints. Transp. Res. Part C Emerg. Technol. 2024, 163, 104656. [CrossRef]


http://doi.org/10.47672/ajce.1487
http://dx.doi.org/10.3390/a15100377
http://dx.doi.org/10.1007/s10845-021-01847-3
http://dx.doi.org/10.1007/s10479-021-04488-0
http://dx.doi.org/10.1109/54.386007
http://dx.doi.org/10.1109/TASE.2021.3062994
http://dx.doi.org/10.1007/s10462-022-10247-9
http://dx.doi.org/10.1016/j.asoc.2024.112144
http://dx.doi.org/10.1016/j.trc.2024.104656

Mathematics 2025, 13, 3547 31 of 31

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

Lv, L.; Deng, Z.; Shao, C.; Shen, W. A variable neighborhood search algorithm for airport ferry vehicle scheduling problem.
Transp. Res. Part C Emerg. Technol. 2023, 154, 104262. [CrossRef]

Khanna, A.; Liu, F; Gupta, S.; Pavia, S.; Mukhopadhyay, A.; Dubey, A. PDPTW-DB: MILP-Based Offline Route Planning for
PDPTW with Driver Breaks. In Proceedings of the 26th International Conference on Distributed Computing and Networking,
Hyderabad, India, 4-7 January 2025; pp. 73-83.

Mohabbati-Kalejahi, N.; Alavi, S.; Toragay, O. A Mixed-Integer Programming Framework for Drone Routing and Scheduling
with Flexible Multiple Visits in Highway Traffic Monitoring. Mathematics 2025, 13, 2427. [CrossRef]

Mariescu-Istodor, R.; Cristian, A.; Negrea, M.; Cao, P. VRPDiv: A divide and conquer framework for large vehicle routing
problems. ACM Trans. Spat. Algorithms Syst. (TSAS) 2021, 7, 23. [CrossRef]

Xie, K.; Tao, H.; Wang, X.; Xie, G.; Wen, J.; Cao, J.; Qin, Z. Divide and conquer for fast SRLG disjoint routing. In Proceedings of
the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Luxembourg, 25-28
June 2018; pp. 622-633.

Zhang, R.; Wu, C. A divide-and-conquer strategy with particle swarm optimization for the job shop scheduling problem. Eng.
Optim. 2010, 42, 641-670. [CrossRef]

Khojasteh Toussi, G.; Naghibzadeh, M. A divide and conquer approach to deadline constrained cost-optimization workflow
scheduling for the cloud. Clust. Comput. 2021, 24, 1711-1733. [CrossRef]

Nesterov, Y. Lectures on Convex Optimization; Springer: Berlin/Heidelberg, Germany, 2018; Volume 137.

Michalewicz, Z. How to Solve It: Modern Heuristics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.
Hexaly Inc. HxOperator—Hexaly 13.0 Documentation. 2024. Available online: https:/ /www.hexaly.com/docs/last/changelog/
hexaly130.html (accessed on 10 December 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/j.trc.2023.104262
http://dx.doi.org/10.3390/math13152427
http://dx.doi.org/10.1145/3474832
http://dx.doi.org/10.1080/03052150903369845
http://dx.doi.org/10.1007/s10586-020-03223-x
https://www.hexaly.com/docs/last/changelog/hexaly130.html
https://www.hexaly.com/docs/last/changelog/hexaly130.html

	Introduction
	Problem Description
	Proposed Approaches
	Holistic Algorithm
	Divide-and-Conquer Algorithm
	Greedy Heuristic
	Optimized Selection via Binary Linear Programming
	Incremental D&C Strategy


	Computational Results 
	Description of the Instances
	Parameter Selection and Tuning
	Comparison Among Scenarios
	Case Study

	Conclusions and Future Research
	Scenario 1: Detailed Results by Vehicle
	Scenario 2: Detailed Results by Vehicle
	Scenario 3: Detailed Results by Vehicle
	Scenario 4: Detailed Results by Vehicle
	References

