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Abstract

Traffic crashes and congestion generate high social and economic costs, yet traditional traffic
monitoring methods, such as police patrols, fixed cameras, and helicopters, are costly, labor-
intensive, and limited in spatial coverage. This paper presents a novel Drone Routing and
Scheduling with Flexible Multiple Visits (DRSFMV) framework, an optimization model
for planning drone-based highway monitoring under realistic operational constraints,
including battery limits, variable monitoring durations, recharging at a depot, and target-
specific inter-visit time limits. A mixed-integer nonlinear programming (MINLP) model
and a linearized version (MILP) are presented to solve the problem. Due to the NP-hard
nature of the underlying problem structure, a heuristic solver, Hexaly, is also used. A
case study using real traffic census data from three Southern California counties tests
the models across various network sizes and configurations. The MILP solves small and
medium instances efficiently, and Hexaly produces high-quality solutions for large-scale
networks. Results show clear trade-offs between drone availability and time-slot flexibility,
and demonstrate that stricter revisit constraints raise operational cost.

Keywords: drone routing and scheduling; Unmanned Aerial Vehicles (UAVs); traffic
monitoring; mixed-integer nonlinear programming (MINLP)

MSC: 90B06

1. Introduction

Traffic accidents and emergencies pose significant challenges for public safety officials
and transportation authorities. According to the National Highway Traffic Safety Adminis-
tration [1], an estimated 5.9 million police-reported motor vehicle traffic crashes occurred in
2022, resulting in approximately 2.38 million injuries and 43,000 fatalities in the U.S. Despite
improvements in road infrastructure and vehicle safety technology, accidents continue
to occur with alarming frequency, causing injury, loss of life, and significant disruptions
to traffic flow [2]. Traditional methods of traffic monitoring and management, such as
manual observation by police patrols or helicopters or using traffic cameras, are costly and
limited in their coverage. For instance, the Los Angeles Police Department’s Air Support
Division allocates $46.6 million annually to its operations, amounting to approximately
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$127,805 per day or $2916 per flight hour to maintain its helicopters operational nearly
non-stop, even for events considered non-high-priority [3]. California cities spent more
than $15.1 billion on policing in the 202223 fiscal year, while counties spent $7.8 billion
and the state spent $3 billion on the California Highway Patrol (CHP) [4]. Moreover, the
increasing demand for police services, particularly in urban areas, further increases the
challenge. Law enforcement agencies face limited resources, including funding, personnel,
and equipment, making it difficult to allocate sufficient resources to traffic monitoring
and enforcement. According to the Public Policy Institute of California [4], the number
of patrol officers per 100,000 in the state is near its lowest point since 1991. Police depart-
ments are often stretched thin, struggling to assign enough officers to traffic duties. Traffic
monitoring and enforcement are time-consuming and labor-intensive, requiring officers to
spend long hours on the road. Furthermore, it is reported that the daily proactive efforts of
police patrols on highways do not necessarily impact the frequency of traffic accidents in
pre-identified incident hotspots [5]. Consequently, when crime rates are high or there are
specific threats to public safety, police departments may prioritize these issues over traffic
monitoring, further reducing the resources available for traffic management.

Logistical challenges pose significant obstacles to effective traffic monitoring and
emergency response. Coordinating patrols across multiple jurisdictions and responding
to emergencies or accidents in a timely manner are complex tasks, further complicated
by factors such as traffic congestion, road construction, and inclement weather. The
U.S. Department of Transportation Federal Highway Administration [6] emphasizes that
ineffective access to accident scenes can substantially delay critical response times. The
continuous monitoring of incident locations is essential for sharing real-time data with
responders and law enforcement. Moreover, responders face considerable safety hazards
while attending to road incidents, including working near moving traffic and dealing with
hazardous materials, which can have severe consequences, such as the leakage of poisonous
gases or explosion and fire risks [7]. A swift investigation of the incident locations is crucial
for assessing the state of the road and identifying necessary actions. However, emergency
response teams often struggle to quickly and accurately evaluate accident scenes, leading
to delays in response times and potentially escalating the impact of accidents.

Given these challenges, some law enforcement agencies and transportation authorities
are exploring alternative methods of traffic monitoring and enforcement, such as using
drones, also known as Unmanned Aerial Vehicles (UAVs), to supplement traditional police
patrols and provide additional data for transportation planning and management. Drones
offer several significant advantages for traffic monitoring. They can cover a wider area
than traditional methods [8] and can be easily repositioned to monitor emerging traffic
hotspots [9]. Their deployment reduces the risk of accidents and injuries to human traffic
monitors, and they are capable of providing real-time, high-quality visual data on accident
scenes and traffic flow [10]. In addition to identifying areas of congestion as it develops [11],
drones are also a cost-effective alternative to conventional monitoring systems and are
environmentally friendly due to their lack of harmful emissions [12].

Although drones offer a transformative solution, their effective deployment is far
from straightforward. The routing and scheduling of drones for traffic monitoring is a
highly complex problem, influenced by factors such as limited battery life, traffic condi-
tions, coverage requirements, and other constraints. These challenges necessitate practical
mathematical models and optimization techniques that can handle the spatiotemporal
complexity of the task while delivering actionable, real-time insights to decision-makers.
This paper presents a novel approach to address these challenges by developing a new
mathematical model for the routing and scheduling of drones in traffic monitoring.



Mathematics 2025, 13, 2427

30f29

Substituting drones for ground patrols ensures the timely inspection of high-risk
locations, enables more agile responses to highway incidents, and reduces environmental
impact. This also alleviates police staffing shortages and lowers overall patrol costs for
routine monitoring strategies. Ultimately, the proposed solution demonstrates the critical
role of emerging technologies in shaping the future of mobility and public safety.

The structure of the paper is organized as follows. Section 2 provides a review
of the literature on drone applications in traffic monitoring. Section 3 introduces the
proposed nonlinear mathematical model and its linearized equivalent. Section 4 presents
the computational experiments and results, demonstrating the effectiveness of the proposed
models. Finally, Section 5 summarizes the key findings, draws conclusions, and outlines
directions for future research.

2. Drone-Based Traffic Monitoring: Insights from the Literature

The usage of drones has experienced rapid growth due to several compelling factors.
Their exceptional mobility enables access to hard-to-reach areas and navigation through
diverse terrains, which makes them invaluable across various sectors, including agricul-
ture [13,14], disaster management [15-17], and logistics [18-21]. The remarkable flexibility
of drones in terms of applications is noteworthy; they can be equipped with an array of sen-
sors and cameras, allowing them to perform a wide spectrum of tasks ranging from aerial
photography and videography to scientific research, traffic monitoring, and environmental
assessment. Furthermore, drones offer significant environmental benefits by reducing the
reliance on large, fuel-consuming vehicles and facilitating the more efficient monitoring
and management of natural resources. This combination of mobility, versatility, and envi-
ronmental advantages has driven their widespread adoption across multiple industries.
The unique capabilities of drones position them as transformative technology in fields such
as traffic monitoring and management, where traditional methods face limitations in terms
of cost, coverage, and effectiveness.

The application of drones in traffic monitoring has gained significant attention due
to their ability to address transportation challenges and respond to traffic bottlenecks
in real time, surpassing traditional surveillance methods [22]. The literature on traffic
monitoring and emergency response using drones can be broadly categorized into two
main streams: (1) studies focused on capturing and analyzing data, images, and videos for
decision-making, and (2) research developing mathematical models for routing, scheduling,
and location decisions of drones on road networks.

2.1. Monitoring Applications of Drones in Traffic Systems

In the first category, several studies have explored various aspects of data collection
and analysis. Khan et al. [23] examined hardware and software requirements for safe and
efficient road traffic monitoring using UAVs. Elloumi et al. [24] studied how using multiple
UAUVs for road traffic monitoring improves performance and coverage rates compared
to fixed drone trajectories. Barmpounakis and Geroliminis [25] created a large-scale ur-
ban dataset in Athens and conducted the pPNEUMA experiment, which recorded traffic
streams in a multi-modal congested environment using drones. Outay et al. [26] discussed
advanced computer vision algorithms for extracting features from UAV footage and im-
proving traffic flow analysis. Khan et al. [27] proposed a new model for monitoring speed
limits and traffic violations using UAVs and 5G technology, demonstrating its effectiveness
in reducing accidents by addressing traffic violations. Ahmed et al. [28] developed a
process to overcome the limitations of vision algorithms in traffic monitoring, especially in
areas with a high number of motorcycles and weak lane discipline, proposing a method
to better capture heterogeneous vehicle stream data. Beg et al. [29] proposed a more
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intelligent, autonomous UAV-enabled solution using simulation, considering scenarios
such as traffic light violations, accident detection, mobile speeding traps, automated no-
tifications, congestion detection, traffic rerouting, flagged stolen vehicles, pending arrest
warrants, and vehicle tracking using UAVs and autonomous emergency response handling
systems. Kumar et al. [30] introduced an innovative, lightweight, security-enabled dis-
tributed software-defined drone network (SDDN) for traffic monitoring where the security
of drone/UAV communication and data exchange is ensured through a lightweight key
generation and encryption/decryption algorithm. Kainz et al. [31] studied road traffic
analysis through the detection of vehicles from the user-defined region of interest (ROI), em-
ploying the YOLOv4 model for vehicle detection after motion detection. Butilua et al. [32]
provided a comprehensive review of UAV applications in civil engineering, including
traffic monitoring and vehicle detection. Bisio et al. [33] conducted a systematic review
of drone-based traffic monitoring systems from a deep learning perspective, focusing on
vehicle detection, tracking, and counting.

2.2. Routing and Scheduling Models for Drone-Based Surveillance

The second category of research focuses on developing mathematical models for drone
routing and scheduling. Conventional traffic monitoring methods rely on sensors installed
in the road network, such as video cameras and inductive loop detectors, to monitor traffic
movement. These sensors are typically fixed in specific locations, limiting their ability
to gather comprehensive information about traffic patterns, such as an overall view of
traffic flows, vehicle routes, and road network design [34]. These limitations highlight
the importance of using drones as mobile solutions, which can provide more effective
coverage. Consequently, the routing and scheduling of mobile UAVs to cover various areas
and monitor locations have become key research areas.

Several papers investigate the cooperative use of ground vehicles (GVs) and drones in
traffic monitoring. In these studies, the GV acts as a mobile base for launching, recovering,
and charging the drones, which then inspect sections of the road network. These papers
include developing a real-time data-driven approach through the first deterministic arc-
inventory routing problem and deriving a stochastic dynamic policy for city monitoring
during major events (Chow [35]), proposing a two-echelon cooperative routing problem
for one ground vehicle and one UAV in urban road network monitoring (Luo et al. [36]),
solving a vehicle-assisted multi-drone routing and scheduling problem (Hu et al. [37]),
developing a patrol model where specific points and arcs can be accessed in the urban road
network (Luo et al. [38]), and investigating a GV-drone arc routing problem (GVD-ARP)
which considers a GV and multiple drones (Xu et al. [39]). While the use of ground vehicles
(GVs) as mobile platforms for drone recovery and recharging offers certain advantages,
their effectiveness diminishes in large part due to congested highway traffic networks. GVs
often struggle to navigate swiftly through dense traffic, potentially amplifying congestion
issues. Furthermore, existing studies frequently make simplifying assumptions, such as
negligible recharging and monitoring times, and typically restrict drones to visiting a single
node after each vehicle takeoff.

Researchers have developed various models to enhance the effectiveness of drone
usage in traffic monitoring. Zhang et al. [40] proposed a model for a dynamically config-
ured sensor network that accounts for time-varying traffic flow propagation, expanding
both spatially and temporally. They developed a UAV routing and scheduling model
integrated with existing fixed traffic monitoring sites, aiming to minimize the total cost
in terms of detection delay for spatially and temporally distributed incidents. Ghazzai
et al. [41] developed a generic scheduling framework for UAVs to cover multiple events
with minimal energy consumption. Their approach optimizes the schedule by determining
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which UAVs will sequentially cover each event, the time each UAV spends at an event,
waiting times, battery charging at docking stations, and the start times of their trips. Build-
ing on this, Ghazzai et al. [42] proposed a model to optimize the location of charging
stations, considering the flying time to incident locations and the risk of battery failure
during operations. They also developed a proactive scheduling framework to minimize
total energy consumption while achieving specific coverage efficiency by visiting each
target only once. Christodoulou and Kolios [43] tackled a set covering problem in road
traffic monitoring. Their model does not account for temporal factors, so nodes do not have
specific visit time requirements. The problem focuses solely on determining the minimum
number of tours needed to cover the monitoring locations within a finite tour cost. Kumar
et al. [44] explored collision-free drone movement strategies for road traffic monitoring
using Software-Defined Networking (SDN). The SDN-controlled drone network reduces
overhead and improves drone-device management. Their simulations were conducted
using OpenFlow version 1.3.x and protocol version 0x04. Rigas et al. [45] proposed a
drone scheduling framework for monitoring missions in transportation networks, where
monitoring locations must be visited at specific, predefined time points. Their model repre-
sented the monitored area as a graph with nodes denoting demand or supply locations, and
incorporates energy constraints by requiring battery replacements at designated supply
nodes after limited flight durations. The focus is on maximizing the number of time-specific
monitoring demands satisfied within a centralized, discrete-time scheduling framework.

The problem of locating and routing UAVs at the tactical level was studied by
Yakici et al. [46] to maximize the total score obtained from visited demand points by
flight routes of UAVs. The problem considers assigning UAVs to base stations and finding
optimal routes to serve the demand points. Terzi et al. [47] proposed a framework for
intelligent multi-drone tasking in emergency response missions with the goal of minimizing
the total fly time cost under the limited fly time duration of each agent and the demands
set by the set of tasks. Each drone has to stay over each location for a specific period of time
and should take off and land at the depot. They approach the problem using a variation
of the VRP and consider routes on a graph of nodes and edges; task requirements are
modeled as costs on the edges and as demands on nodes visited. These studies primarily
focus on single visits to locations within the planning horizon, neglecting the crucial aspect
of repeated visits to points of interest, which is a key requirement in effective road traffic
monitoring and emergency situation detection.

In the context of traffic monitoring using drones, some studies focus on route opti-
mization, modeling the problem as an arc routing problem or traveling salesman problem
(Elloumi et al. [24], Oh et al. [48], Campbell et al. [49], Luo et al. [38], Xu et al. [39]). In these
studies, roads requiring traffic monitoring are represented as nodes or arcs in a network.
The objective is for one or more UAVs to traverse these nodes or arcs, aiming to minimize
flight time or battery consumption. To optimize UAV monitoring routes during rush hours,
Wang et al. [50] developed a route planning method that accounts for spatiotemporal
variations in monitoring demand and introduced a team orienteering arc routing problem
with time-varying profits. Li et al. [22] proposed an optimization model for traffic monitor-
ing aimed at minimizing the total expected operational costs. Their approach involves a
capacitated arc routing problem and an inventory routing problem, dynamically assigning
UAVs to monitor uncertain demand arcs across multiple periods. Cheng et al. [51] pre-
sented a task assignment model for road patrols using multiple UAVs with various bases
and rechargeable endurance. This model aims to minimize the time required to complete
all tasks, considering the mission as complete only when every mission point has been
patrolled, and the deadline is defined by the time that it takes for the last drone to return to
its nearest base. Additionally, each drone is restricted from patrolling the same target point
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repeatedly. Huang et al. [52] proposed a decentralized, real-time approach for navigating a
team of UAVs for road traffic monitoring. In their scenario, the UAVs exchange position
and measurement information only with their neighboring UAVs.

Studies on highway patrol using drones are limited. Niu et al. [53] formulated a
multi-objective optimization model for routing multiple UAVs to collect traffic information,
aiming to minimize flight time and uncollected data, but lacked an algorithm for actual
highway instances. Jo et al. [54] designed an efficient drone patrol network system using
the OPNET simulator. Li et al. [55] proposed using UAVs to gather information in blind
areas where smart vehicles cannot derive real-time data, focusing on task assignments
without considering drone routing. Kim et al. [56] presented an integer programming
model to optimize drone schedules for the Gyeongbu Expressway in Korea. Choi et al. [57]
presented two integer programming formulations, basic and path-based, to create an
operational schedule for multiple highway patrol drones to meet varying patrol demands
across different highway sections and times. The objective of their study is to determine
the operation schedule of patrol drones that can meet the patrol demand in sections that
change over time during the planning horizon. These studies lack considerations such as
operational flexibility, recharging, and continuous traffic monitoring.

This study proposes a novel optimization model called Drone Routing and Scheduling
with Flexible Multiple Visits (DRSFMV), which captures the operational complexities of real-
world highway traffic monitoring. The model incorporates location-specific maximum inter-
visit time constraints to support continuous and adaptive monitoring. Unlike prior models
that assume single visits or overlook drone-specific limitations, our formulation integrates
critical operational features such as variable drone speeds based on task type, heterogeneous
monitoring durations, battery constraints with explicit recharging operations, and the
option for drones to remain idle when strategically beneficial. By doing so, the proposed
model reflects practical deployment conditions and offers a flexible scheduling framework
that enhances surveillance reliability.

Table 1 summarizes the reviewed literature and highlights the contributions and
novelty of the proposed problem.

Table 1. Comparison of previous studies with the proposed DRSFMV model.

Study Objective Function R‘;g:?tt:d Rii::ge Intlv::-i)/(isit Hliflf)l;?i%gi'liil(:gus
Time Durations
Fan et al. (2022) [34] Minimize routing cost via DRL X v X X
Chow (2016) [35] Minimize stochastic routing cost X X X X
Luo et al. (2017) [36] Minimize 2-echelon routing cost X v (GV) X X
Hu et al. (2018) [37] Joint routing and scheduling X v X X
Luo et al. (2019) [38] Minimize patrol cost X X X X
Xu et al. (2023) [39] GV-drone arc routing X X X X
Zhang et al. (2015) [40] Minimize detection delay X v X X
Ghazzai et al. (2018) [41] Minimize energy usage X v X X
Ghazzai et al. (2019) [42] Proactive energy scheduling X v X X
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Table 1. Cont.
Study Objective Function R‘;z:;t:d Rii::ge Intlv.:?-i);isit Hlif[f::i%;?iiogus
Time Durations
((;}(;;g)t ([)fgciulou & Kolios Minimize number of tours X X X X
Kumar et al. (2021) [44] Secure communication (SDDN) X X X X
Rigas et al. (2021) [45] Max. time-specific coverage v (fixed) v X X
Yakic1 (2016) [46] Maximize visit score X X X X
Terzi et al. (2019) [47] Minimize total flight time X X X v
Oh et al. (2014) [48] Minimize route cost X X X X
Campbell et al. (2021) [49] Minimize postman cost X X X X
Wang et al. (2022) [50] Maximize time-based coverage X X X X
Cheng et al. (2019) [51] Minimize patrol completion time X v X X
Huang et al. (2021) [52] Decentralized coverage X X X X
Niu et al. (2015) [53] Minimize UAV flight X X X X
Jo (2017) [54] Patrol network simulation X X X X
Li et al. (2020) [55] UAV blind-spot coverage X X X X
Kim et al. (2022) [56] Highway drone scheduling X v X X
Choi et al. (2024) [57] Time-varying patrol coverage ﬂ/ (%(l)t v X X
exible)
This study (DRSEMV) Minimize maximum lateness and v v v v

earliness of visits

3. Problem Formulation and Model Development

The Drone Routing and Scheduling with Flexible Multiple Visits (DRSFMV) proposed
in this paper is designed based on practical requirements that have not been fully addressed
in previous research, such as repeated visits with inter-visit time constraints, battery
limitations, and recharging operations. To facilitate the understanding of the problem, first,
the key features of the problem are presented, followed by the introduction of a novel
mixed-integer nonlinear mathematical model. A linear equivalent formulation is also
proposed to enable the problem to be efficiently solved using commercial solvers.

3.1. Problem Description and Key Assumptions

The proposed model assumes a fleet of M identical drones for traffic monitoring,
tasked with visiting Q targets multiple times over a 24 h period. These targets, representing
arcs on a road network, require repeated visits due to their status as traffic bottlenecks or
areas with high accident probabilities. Visiting requirements are different for each target in
terms of both frequency and specific timing during the day.

To model multiple visits to each location, each visit is considered as a different node
in the network with the exact specifications of that target ¢ € Q. Let F denote the set
of all visits v for each target 4 € Q. The time length of the visit is unique for each target
g € Q and calculated based on the length of the arc in the road network, but identical for
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all visits in Fj. The time required for a drone to fly from target j to target k is represented
by sjx. Note that arcs have visiting directions, so flight times are calculated based on the
distance between the end point of the arc j to the start point of the arc k, which makes
the distance matrix asymmetric. Each drone spends a specific duration monitoring the
visited target, which may involve surveying an arc of the road network. Consequently,
a monitoring time pj,; is considered for each visit of each drone. For the model to be more
realistic, various drone speeds are considered for different tasks. More specifically, it is
assumed that, while monitoring targets to record high-quality videography, the drones fly
at a lower speed than the times that they fly between different targets or fly to/from the
depot. A maximum inter-visit time, I, is introduced for each target g € Q, which shows
the maximum allowable time interval between consecutive visits to target 4, measured
from the completion of one visit to the start of the next visit. This parameter is crucial
to maintain consistent surveillance and ensure the timely monitoring of critical locations
within the network. This differs from the regular time window assumptions in the literature,
where time window constraints specify the start and end times of a visit as an interval.
By incorporating these time-related constraints, our model achieves a balance between
comprehensive coverage and operational efficiency, allowing adaptive scheduling that
responds to the dynamic nature of traffic patterns and potential emergency situations.

An asymmetrical distance matrix is created, where each entry shows the travel dis-
tance from the end point of an origin route to the start point of a destination route. This
reflects the actual flight path that a drone follows after completing one monitoring task
and moving to the next. Additionally, it is assumed that a drone cannot visit the same
location consecutively, as this would mean staying in the same place in a row. To prevent
this, a large penalty (100,000) is set on the main diagonal of the distance matrix. This dis-
courages assigning consecutive visits to the same node by greatly increasing the associated
travel time.

A fixed location is considered as the depot in the model from which drones initiate
their routes and return for recharging as needed. Additionally, a set of dummy nodes
is introduced where drones remain idle. Unlike road segment targets, idle nodes are
conceptual placeholders that do not consume battery charge, can be visited at any point
in the schedule, and are not restricted by a maximum number of visits. Furthermore, the
duration of a drone’s stay at an idle node is considered a continuous decision variable,
gjri (Vj € {idle}). The purpose of defining these nodes is related to the solution decoding
process. A feasible solution to the problem is represented by defining R available slots for
each drone’s visit sequence. The model requires that each slot be assigned to exactly one
visit, while satisfying all operational constraints such as inter-visit time limits and avoiding
consecutive visits to the same target. This approach offers flexibility within a structured
routing framework, ensuring that the model can incorporate all scheduling constraints
while remaining feasible.

Our defined problem has some overlaps with the many-visits multiple traveling
salesman problem, which is a new concept proposed in 2023 in the literature [58]. In
this problem, each city has a fixed number of visits requested, and there are m salesmen
who need to visit different cities multiple times. However, our proposed problem is more
complex in the sense that there is a maximum inter-visit time between multiple visits to
each target. In addition, drones require charging, which significantly changes the dynamics
of the routing problem.

Table 2 shows the sets, parameters, and decision variables used in the proposed
mathematical models.
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Table 2. Notation of the proposed mathematical model.

Sets and Parameters

Set of visits v for each target g

Number of identical drones

Number of targets

Number of visits to all targets =}, Yy F‘;

= |z 0|z |m

Number of defined slots on each drone

~.

Index set of drones, wherei € M = {1,..., M}

Index set of visits, where j,k € N = {1,...,N}

Index set of slots on each drone, wherer € R = {1,...,R}

Travel time between visits k and j

Monitoring time for target j on slot r of drone i; j ¢ idle

The earliest possible start time for visit j

The due date of visit j

Maximum inter-visit time between consequent visits to target q

Total flight time of a fully charged drone

Upper bound for the dummy variables

Lower bound for the dummy variables

Decision Variables

1 if visit j is assigned to the slot 7 on drone i; 0 otherwise

The completion time of monitoring a target on slot r of drone i

The start time of monitoring a target on slot r of drone i

hri

Remaining charge in drone i after completing a visit assigned to slot r

&idle,r,i

Time spent on node idle on slot  of drone i

Lmax

The maximum lateness

Emax

The maximum earliness

Dummy variable to linearize gj,; X xjy;

Dummy variable to linearize (h(,_1); + c(;_1)i) X Xjri

Dummy variable to linearize c,; x xj,; Vj € N — {1,idle}

Dummy variable to linearize x;r; X Xg(,_1);

Dummy variable to linearize s,; x xj,; Vj € {idles}

Dummy variable to linearize s,; X xj,;, Vj € F‘;’

Dummy variable to linearize c,; X xj,;, Vj € F]
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3.2. Mathematical Formulation: Nonlinear Model

The proposed mixed-integer nonlinear model is presented below. Later, the linear
equivalent of the model is presented to compare the run time and convergence of the two
modeling approaches.

min  Lygy + Emax

s.t.

Liax > ¢y — 2<d] X xjri)/ VreR,ieM (1)
jeN

Emax > Z(EJ X x]‘rl') —S4, VreRieM (2)

jEN

Y. ) xpi=1, VjeN-—{l,idle} (3)

reRieM

Y %=1 VieNreR (4)
jEN
cii= Y (hjxxp)+ Y, (pixxm)+ Y, (8ixxu), VieM (5)
jEN jeEN—idle jeidle
Cri = Coonyi T 2 Y (b X Xjri X Xepmnyi) + Y (Pjri X Xjri)
jEN keN jeN—idle
+ Y (gpri X xjpri), VreR—{1l},ieM (6)
jéidle
51, =0, VieM (7)
si=Ci— Y, (P xXn)+ Y, (grixxm), YreR-{1}ie M (8)
jeN—idle jeidle
hyj = fc— Z(tlj X Xj1i) — ). (pjni X xj1i), Vie M )
jen jeN—idle
hyi = (fC X xlri) + (h(r—l)i —Cri + C(r—l)i) X Z Xjri
JEN-TL,idle}
+ (h—1yi = sritCpo1)i) X ), Xjpi, VreR—{1},ie M (10)
je {idle}

Yo Y (X xgipay) — Y Y (e X xj) < Iy, VjEF] (11)

reRieM reRieM
YooY (S X xgjpay) — Y Y (e X xji) >0, Vj€F (12)
reRieM reRieM
Xjri € {011}?071'/ Sris hri/gidle,r,i/ Limax, Emax >0, Vje€N,ie€ M,r € R. (13)

The objective function minimizes the maximum lateness and earliness of drone visits
to all targets, based on pre-defined due dates and earliest possible start times. Constraint (1)
calculates the maximum lateness by comparing each visit’s completion time to its due date,
while Constraint (2) determines the maximum earliness using the earliest possible times
and visit start times. Constraint (3) ensures that each visit occurs only once, with exceptions
for depot visits for charging or idle nodes. Constraint (4) assigns each visit to a single drone
slot, preventing simultaneous multiple visits by a single drone. Constraints (5) and (6)
compute visit completion times, incorporating travel time between targets (or between
a target and the depot) and monitoring duration. Constraints (7) and (8) calculate the
start time of each visit. Constraints (9) and (10) manage drones’ battery levels, triggering
depot returns for recharging when necessary. Constraints (11) and (12) ensure that the
time difference between two consecutive visits to a target does not exceed the allowed
maximum inter-visit time. Constraint (12) also guarantees that a visit to any target should
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start after the previous visit to the same target has been completed. Constraint (13) shows
the defined variables.

3.3. Linearization of the Model

In order to solve the model efficiently using commercial solvers, we attempt to linearize
it. Constraints (5), (6), (8), (10), (11), and (12) are nonlinear. Their linear equivalents, along
with the corresponding linearization process, are presented below.

Constraints (5) and (8) only have one nonlinear term, which is a multiplication of two
nonnegative variables gj,; X x;,;, and, therefore, need linearization. To linearize this term,
a dummy variable u;; = gjr; X Xj; is defined. The following constraints should replace the
current versions of Constraints (5) and (8):

cii= Y (hyxxp)+ ), (puixxp)+ Y, wp, VieM (a)
jEN jEN—idle jeidle
si=cri— ), (Pprixxp)+ ) i, VreR—{1}ie M (8a)
jEN—idle jeidle

The following equations demonstrate the implementation of the dummy variable u
and should be added to the mathematical model:

Wjri > gjri — UB(1— xj,i), Vjeidle,ie M,r € R (14)
Wiri < i + LB(1 — xj;), Vj €idle,i € M,r € R (15)
ujri < UB(xj;), Vj€idlei€ M,r €R (16)
W > LB(xj;), Vj€idle,i € M,r € R (17)

Constraint (6) has two nonlinear terms: gj,; X xj;, which will be replaced by uj;,
and xj; X Xg(,_1);, which will be replaced by a new dummy variable, y ;.

cri = Coonyit Y X (b X Yjei) + Y (Pjri X Xjri) + Y wjri, Vi€ Myre R—{1} (6a)

jeENkeN

jeEN—idle jeidle

The following equations should be added to the model as a way of defining the new
dummy variable y and how it relates to the main decision variable x:

Xjri + Xj—1)i — 1 < Yjiris Vr€RiE€M,j,keN,j#k (18)
1 , , ,
E(x]'ri + xj(r—l)i) > yjkri/ VreR,ic M/]/k € N/] 7é k (19)

Constraint (10) has three nonlinear terms: (a) (h(,_1); + c(,—1)i) X Xjri, (b) ¢ri X Xjri,
and (c) s,; X xj;Vj € {idles}, which are replaced with three dummy variables v,;, w,;, z;,
accordingly. Constraint (10) should be replaced by the following constraint:

hyi = (fc x x15) + 051 —Wri — 2,1, Vr€R—{1},ie M (10a)
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The following constraints should be added to the model for definitions of the new
dummy variables:

0ri < (h—1yi +cpo1)i) + (LB x x154), VreR—{1},ie M (20)
Ori = (h(r_1)i +cpo1)i) — (UB x x1), VreR—{1},ie M (21)
v, SUBx (1—xy,4), VreR—-{1},ie M (22)
v, > LBx (1—xy,), VreR-—{1},iec M (23)
wyi <ci+LBx(1— Y  xjp), VreR—{1},ieM (24)
jeN—{1,idle}
Wy > i — UB % (1 - Z xjri)r VreR-— {1}'i €M (25)
jeN—{1,idle}
w,; < UB X Z Xiris Vr e R — {1},i eM (26)
jeN—{1idle}
wy; > LB x Y., x, VreR—{l},ieM (27)
jeN—{1 idle}
2 < s+ LBx(1— ) xp), VreR—-{1},ieM (28)
jeidle
ZriZS,Z‘—UBX (1— Z X]'n'), VT’ER—{l},iEM (29)
jeidle
z; <UBx Y x4, VreR—{1},ieM (30)
jeidle
2y > LBx Y xj;, VreR—{l},ieM (31)
jeidle

To linearize Constraints (11) and (12), two dummy variables a;,; = s,; X xj;;,Vj €
N — {1,idle} and bj,; = ¢;; X xj;,Vj € N — {1,idle} are defined. Then, they should be
replaced by the following two constraints:

Z Z A1y — Z Z bjri <I, Vje F; (11a)

reRieM reRieM

Y agiyi— ) Y b =0, ViEH (12a)

reRieM reRieM
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To define the dummy variables a;,; and bj;;, the following constraints should be added
to the model:

A > s, —UB X (1—xj;) Vi€ F,i€e M,r€R (32)
ajri < 8y +LBx (1 —xj;) Vj€F,i€e M,reR (33)
aj; <UB X (xp) Vj€F,ie M,reR (34)
aji > LB x (xj;) Vj€F/,ie M,reR (35)
bjri > ¢;i —UBx (1—xj;) VjeF,ie M,reR (36)
bjri < ¢+ LB X (1— xj,i) Vje Fl',ie M,r € R (37)
bii < UB X (xj;) Vj€FlicMreR (38)
by > LB x (xj;) Vj€F/,i€ M,r €R. (39)

The final constraint should be the definition of the new dummy variables:
Yikri € {0, 1} tjri, 0y, Wiy Zpi, Ajri, bjri > 0, Vj,k € N,i € M,r € R. (40)
Therefore, the linear mixed-integer mathematical model is presented below.

min  Lyay + Epax

s.t.
(1),(2),(3), (4), (5a), (6a), (7), (8a), (9), (10a), (11a), (12a), (13), (14) — (40).

4. Computational Experiments and Performance Evaluation

The aim of the experimental study is to evaluate the performance of the proposed
mixed-integer nonlinear programming (MINLP) formulation and its linear equivalent
developed for the Drone Routing and Scheduling with Flexible Multiple Visits (DRSFMV)
problem in the context of traffic monitoring. The experiments are conducted to assess three
primary aspects: (i) the computational tractability of the model when applied to realistic
urban-scale problem instances, (ii) the solution quality in terms of coverage efficiency and
revisit compliance, and (iii) the model’s comparative performance of different formulations
using multiple solvers.

4.1. Case Study and Experimental Setup

The computational experiments are based on a case study of high-traffic routes in the
Southern California region, using publicly available data from the California Government
Traffic Census bottleneck database [59]. The study focuses on three major counties: San
Bernardino (SB), Los Angeles (LA), and Riverside (RS). Specifically, the dataset includes
four critical bottleneck segments in San Bernardino (SB1-SB4), four in Riverside (RS1-RS4),
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and eight in Los Angeles (LA1-LAS8). These road segments serve as the monitoring targets
in the DRSFMV model. For each segment, we summed the vehicle-hours of delay over the
24 h period and allocated the necessary number of drone visits in proportion to the total
delay. Segments with higher delay receive more visits. The dataset does not specify when
each bottleneck occurs during the day. Therefore, we divided the 24-h period into eight
equal 3-h segments and randomly assigned the visits for each target to those segments. The
maximum inter-visit time is calculated by subtracting the end time of the first visit from
the start time of the second visit and then adding a predefined threshold (30 min). This
threshold prevents back-to-back visits to the same target.

Drones are considered to be operating at two distinct speeds, depending on their
activity: 60 km/h when in transit between sites and 30 km/h during monitoring, reflecting
the reduced speed needed for high-resolution visual capture.

A single centralized depot is used as the origin and return point for all drones. For
the main depot, the police station closest to the geometric center of all targets, the Wal-
nut/Diamond Bar Sheriff’s Station was selected. We assumed that drones would launch,
land, and recharge at this location. The geographic center of each county is calculated from
the coordinates of its target group and designated as the idle node, allowing drones to wait
there as long as needed without using battery power until their next assignment. In total,
three idle nodes are considered, one in each county. These nodes, along with the depot and
target locations, are illustrated in Figures 1 and 2, where boxed labels indicate the depot
and idle points.
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The proposed DRSFMV formulation is implemented using the Pyomo optimization
modeling framework [60], which supports the development of both linear and nonlinear
variants of the model. To obtain exact solutions, the Gurobi solver [61] is employed, as it
demonstrates strong performance across mixed-integer linear programming (MILP) and
nonlinear programming (NLP) problems. Gurobi serves as the baseline solver in this study,
offering benchmark solutions that inform the tractability and scalability of the DRSFMV
model under varying configurations.

To extend the solution capability beyond small and moderately sized instances, we
also incorporate the Hexaly optimization solver [62]. Hexaly is a next-generation hybrid
solver designed to efficiently handle large-scale combinatorial optimization problems. It
integrates local search heuristics, constraint programming, and machine learning—proven
strategies to generate high-quality solutions within reasonable computation times [63].

The core scheduling sub-structure of the DRSFMV problem is at least as hard as the
classical parallel machine scheduling problem with the objective of minimizing the maxi-
mum completion time (Py,;||Cmax), which is known to be NP-hard [64]. Furthermore, when
all job due dates are assumed to be at the beginning of the planning horizon, the Py||Lmax
problem reduces to an equivalent formulation of Cpax and thus remains NP-hard [65]. As
a result, the solution time is expected to exhibit non-polynomial growth with respect to
instance size, posing significant computational challenges for exact solution methods.

Given this complexity, traditional solvers such as CPLEX, Gurobi, and SCIP, which
predominantly rely on branch-and-bound or branch-and-cut algorithms within linear pro-
gramming frameworks, face difficulties when applied to highly combinatorial or nonlinear
formulations. These methods are well-suited for structured linear problems but often fail
to scale effectively under the nonlinear and interdependent constraints inherent in the
DRSFMYV problem [66]. To overcome these limitations, we leverage Hexaly’s advanced
hybrid search framework, which is particularly well-suited for non-convex and multi-level
decision problems. By combining adaptive metaheuristics with parallel computation, Hex-
aly explores the solution space more efficiently and is capable of producing near-optimal
or optimal solutions in significantly shorter run-times, even for complex, large-scale in-
stances [67]. A comparative overview of Hexaly and conventional solvers is presented in
Table 3, highlighting differences in algorithmic strategy, modeling flexibility, and empirical
performance.

Table 3. Comparison of Hexaly and traditional solvers.

Feature

Hexaly

Traditional Solvers

Core Methodology

Hybrid local search with constraint
propagation and learning-based heuristics

Branch-and-bound/cut with linear
programming techniques

Problem Suitability

Excels in nonlinear, combinatorial,
and large-scale problems

Best for linear and mixed-integer
programming problems

Computation Speed

Faster for complex problems due to
heuristic-driven exploration

Slower for large-scale, nonlinear problems

Solution Quality Near-optimal or optimal, with trade-offs for ~Optimal but may require significant time
speed

Modeling Complexity Intuitive, high-level language for complex Requires linearization or reformulation for
constraints nonlinear problems

Scalability Highly scalable for millions of Scalability limited by problem size and

variables/constraints

linearity
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All experiments were conducted on a workstation equipped with an Intel(R) Core(TM)
i9-12900K processor running at 3.20 GHz, with 64.0 GB of RAM, and operating on Windows
11 Pro. Python Optimization Modeling Object (Pyomo) version 6.7.0 is used for coding the
mathematical models. Gurobi version 12.0.1 is used to solve MILP and MINLP models. For
experiments using Hexaly, version 13.5 of the solver was executed. All experiments were
run in a multi-threaded mode with 24 threads. No additional solver-specific tuning was
applied unless otherwise noted.

4.2. Results and Comparative Analysis

To test the scalability and computational performance of the proposed model and
solvers (i.e., LP, NLP, HX) under varying levels of complexity, we constructed three distinct
problem sizes. The small-sized instance represents the simplest configuration, the medium-
sized instance introduces moderate complexity, and the large-sized instance reflects the
most comprehensive scenarios. These instances are designed to assess how the model han-
dles increasing numbers of monitoring targets, required visits, and scheduling constraints.
These instances were evaluated under different configurations of parameters, including the
number of drones and slots, across 40 runs for each county and are presented in Tables 4-10.

Figures 3-9 present box plots that visualize the distribution of objective values obtained
under different drone-slot configurations and model/solver types across small-, medium-,
and large-sized problem instances. Each box plot corresponds to a specific configuration
of the number of drones (M) and time slots (R). The central horizontal line within each
box indicates the median objective value, while the lower and upper edges represent the
first and third quartiles, respectively. The whiskers extend to the minimum and maximum
values within 1.5 times the interquartile range, and individual points beyond this range are
shown as outliers. These outliers reflect scheduling configurations where constraints such
as tight inter-visit times or limited drone availability significantly impacted performance.
In the context of the problem, lower objective values indicate a more effective alignment of
drone scheduling with required revisit intervals and monitoring deadlines.

Tables 4 and 5 and Figures 3 and 4 present the results obtained from the small-sized
problem instances in San Bernardino and Riverside.

MILP Distribution MINLP Distribution Hexaly Distribution

IS
S
3

403.75

o

==

o

139.93

=5

o

109.62

216.08

403.75

o

==

o

139.93

=

o

109.62

216.08

403.75

=

o

139.93

=5

o

109.62

240.19

M=2,R=6

M=3,R=5

M=4, R=4

M=5, R=3

M=2, R=6

M=3,R=5

M=4, R=4

M=5,R=3

M=2,R=6

M=3,R=5

M=4,R=4

M=5,R=3

Figure 3. Distribution of objective values across drone-slot configurations (small-sized instances in

San Bernardino).

MILP Distribution

MINLP Distribution

Hexaly Distribution

236.52

o

&

28.76

e
% @

2
o

<

8

94.61

236.52

o

ix

28.76

<
R
% ©
3

o

=

8

94.61

242.46

<

8

94.61

M=2,R=6

M=3,R=5

M=4,R=4

M=5,R=3

M=2, R=6

M=3, R=5

M=4, R=4

M=5, R=3

M=2,R=6

M=3,R=5

M=4, R=4

Ms=5,R=3

Figure 4. Distribution of objective values across drone-slot configurations (small-sized instances

in Riverside).




Mathematics 2025, 13, 2427 17 of 29

Table 4. Performance results for small-sized instances in San Bernardino (time in seconds).

Instance LP NLP HX
County  Iter M R Obj Time Obj Time Obj Time I,

SB 1 2 6 325.91 166 32591 300 32591 300 [30, 570, 30, 570]

SB 2 2 6 292.93 154 292.93 300 292.93 300 [210, 750, 570, 570]
SB 3 2 6 298.20 161 298.20 300 298.20 300 [30, 390, 750, 390]
SB 4 2 6 323.61 300 323.61 300 323.61 300 [30, 390, 390, 30]

SB 5 2 6 453.22 266 453.22 300 453.22 300 [390, 30, 30, 390]

SB 6 2 6 502.27 300 502.27 300 502.27 300 [210, 210, 30, 390]
SB 7 2 6 446.23 300 446.23 300 446.23 300 [30, 210, 210, 570]
SB 8 2 6 631.01 300 631.01 300 631.01 300 [210, 210, 30, 30]

SB 9 2 6 448.45 300 448.45 300 448.45 300 [570, 750, 210, 390]
SB 10 2 6 315.63 199 315.63 300 315.63 300 [390, 930, 210, 750]
SB 1 3 5 121.68 300 121.68 300 121.68 300 [570, 210, 750, 750]
SB 2 3 5 141.25 300 141.25 300 141.25 300 [210, 390, 570, 390]
SB 3 3 5 89.20 175 89.20 300 89.20 300 [30, 570, 750, 390]
SB 4 3 5 136.20 300 136.20 300 136.20 300 [930, 30, 210, 210]
SB 5 3 5 136.42 300 136.42 300 136.42 300 [390, 930, 210, 570]
SB 6 3 5 131.95 262 131.95 300 131.95 300 [30, 210, 210, 390]
SB 7 3 5 123.35 300 123.35 300 123.35 300 [390, 210, 570, 390]
SB 8 3 5 270.54 300 270.54 300 270.54 300 [30, 30, 210, 570]

SB 9 3 5 121.68 300 121.68 300 121.68 300 [750, 570, 210, 390]
SB 10 3 5 127.06 300 127.06 300 127.06 300 [390, 210, 390, 210]
SB 1 4 4 96.80 300 96.80 300 96.80 300 [570, 210, 210, 390]
SB 2 4 4 133.12 300 133.12 300 133.12 300 [30, 390, 210, 30]

SB 3 4 4 123.35 300 123.35 300 123.35 300 [570, 210, 210, 390]
SB 4 4 4 138.58 300 138.58 300 138.58 300 [390, 210, 570, 570]
SB 5 4 4 177.38 300 177.38 300 177.38 300 [210, 390, 210, 390]
SB 6 4 4 127.94 300 127.94 300 127.94 300 [570, 570, 210, 210]
SB 7 4 4 120.54 300 120.54 300 120.54 300 [210, 390, 390, 750]
SB 8 4 4 82.78 100 82.78 300 82.78 300 [30, 570, 210, 570]
SB 9 4 4 0 5 0 11 0 3 [30, 750, 570, 390]
SB 10 4 4 95.76 300 95.76 300 95.76 300 [390, 210, 30, 210]
SB 1 5 3 280.94 300 280.94 300 460.33 300 [210, 930, 30, 30]

SB 2 5 3 0 2 0 4 0 9 [30, 390, 390, 570]
SB 3 5 3 123.35 82 123.35 300 123.35 300 [210, 210, 30, 570]
SB 4 5 3 120.54 25 120.54 151 120.54 300 [30, 570, 1110, 570]
SB 5 5 3 114.03 36 114.03 137 175.72 300 [30, 210, 750, 390]
SB 6 5 3 413.99 208 413.99 300 413.99 300 [30, 210, 210, 30]

SB 7 5 3 280.27 88 280.27 300 280.27 300 [210, 210, 750, 210]
SB 8 5 3 262.78 140 262.78 300 262.78 300 [210, 930, 390, 30]
SB 9 5 3 318.58 38 318.58 300 318.58 300 [210, 210, 390, 210]
SB 10 5 3 246.34 201 246.34 300 246.34 300 [210, 210, 210, 390]

For small-sized instances of the problem, as in Tables 4 and 5, LP and NLP found opti-
mal solutions for all 80 instances. This suggests that, for smaller problem sizes, the problem
structure remains tractable under both linear and nonlinear formulations. In addition, HX
achieved the same objective values in 74 cases. In six instances, HX returns near-optimal
results in the given runtime, possibly due to the increased solution space and the need for
additional parameter tuning.
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Table 5. Performance results for small-sized instances in Riverside (time in seconds).
Instance LP NLP HX
County  Iter M R Obj Time Obj Time Obj Time I,

RS 1 2 6 214.07 60 214.07 300 214.07 300 [570, 390, 570, 570]
RS 2 2 6 185.36 300 185.36 300 185.36 300 [570, 390, 930, 210]
RS 3 2 6 285.04 300 285.04 300 305.98 300 [210, 30, 210, 390]
RS 4 2 6 485.36 300 485.36 300 485.36 300 [210, 210, 210, 30]
RS 5 2 6 189.10 281 189.10 131 189.10 300 [930, 210, 210, 1110]
RS 6 2 6 122.44 195 122.44 46 122.44 300 [210, 930, 570, 390]
RS 7 2 6 112.53 23 112.53 80 112.53 300 [210, 390, 930, 1110]
RS 8 2 6 442 .42 300 442 .42 300 449.24 300 [390, 210, 30, 570]
RS 9 2 6 215.96 300 215.96 300 247.68 300 [390, 30, 390, 750]
RS 10 2 6 112.88 300 112.88 300 112.88 300 [930, 390, 390, 30]
RS 1 3 5 0 2 0 3 0 11 [390, 570, 30, 210]
RS 2 3 5 0 2 0 5 0 5 [570, 210, 570, 570]
RS 3 3 5 7.12 17 7.12 300 7.12 300 [570, 30, 390, 390]
RS 4 3 5 0 2 0 4 0 28 [570, 210, 750, 30]
RS 5 3 5 122.44 300 122.44 300 122.44 300 [570, 390, 30, 30]
RS 6 3 5 58.04 199 58.04 300 58.04 300 [570, 30, 210, 930]
RS 7 3 5 8.12 300 8.12 300 8.12 300 [390, 30, 930, 930]
RS 8 3 5 0 1 0 36 0 69 [210, 30, 210, 930]
RS 9 3 5 91.83 300 91.83 300 91.83 300 [570, 210, 390, 30]
RS 10 3 5 0 0 0 4 0 1 [570, 390, 390, 210]
RS 1 4 4 109.73 300 109.73 300 109.73 300 [210, 30, 570, 210]
RS 2 4 4 0 2 0 2 0 0 [750, 750, 210, 570]
RS 3 4 4 94.24 300 94.24 300 94.24 300 [390, 30, 390, 30]
RS 4 4 4 111.14 300 111.14 300 111.14 300 [390, 750, 210, 210]
RS 5 4 4 115.09 300 115.09 300 115.09 300 [30, 30, 1110, 570]
RS 6 4 4 111.93 300 111.93 300 111.93 300 [570, 750, 210, 750]
RS 7 4 4 115.09 300 115.09 300 115.09 300 [210, 390, 390, 30]
RS 8 4 4 115.09 300 115.09 300 115.09 300 [30, 930, 1110, 30]
RS 9 4 4 115.09 300 115.09 300 115.09 300 [390, 210, 30, 750]
RS 10 4 4 0 1 0 4 0 4 [570, 210, 390, 570]
RS 1 5 3 0 0 0 1 0 4 [570, 210, 1110, 750]
RS 2 5 3 91.83 8 91.83 133 91.83 300 [570, 30, 570, 210]
RS 3 5 3 9.27 2 9.27 286 9.27 300 [570, 210, 570, 210]
RS 4 5 3 90.45 5 90.45 300 90.45 300 [390, 750, 750, 390]
RS 5 5 3 125.36 7 125.36 300 125.36 300 [390, 570, 390, 210]
RS 6 5 3 122.44 37 122.44 300 122.44 300 [390, 390, 1110, 1110]
RS 7 5 3 124.59 7 124.59 300 124.59 300 [210, 30, 390, 930]
RS 8 5 3 122.44 300 122.44 300 122.44 300 [750, 390, 30, 570]
RS 9 5 3 115.09 12 115.09 300 115.09 300 [210, 570, 30, 390]
RS 10 5 3 144.64 8 144.64 300 144.64 300 [210, 390, 570, 30]

Figures 3 and 4 demonstrate that configurations with more balanced resources, specifi-
cally M =4, R =4 in San Bernardino and M = 3, R = 5 in Riverside, yield the lowest median

objective values and the least variability over different models/solvers. In contrast, setups

with either too few drones or limited time-slot flexibility result in higher objective values

and wider spreads, highlighting the problem’s sensitivity to resource allocation.

Tables 6 and 7 present the outcomes of our proposed formulations across medium-

sized instances, covering both the SB_RS and LA test networks. Across all configurations,

LP, NLP, and HX produced the same objective value in 27 instances within the time limit,

indicating that these solutions are likely optimal. Overall, the LP formulation yielded the
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lowest objective values in most cases, a trend that is also reflected in Figures 5 and 6 across
various problem instances. Similarly to before, configurations with balanced drone-slot
pairings, such as M = 5, R = 5 in the San Bernardino and Riverside case, consistently
produce the lowest median objective values and narrower variability.

Table 6. Performance results for medium-sized instances in San Bernardino and Riverside (time
in seconds).

Instance LP NLP HX
County Iter M R Obj Time Obj Time Obj Time I;
SB.RS 1 3 8 140.74 1800 180.00 1800 140.74 1800 [210, 390, 30, 750, 390, 210, 30, 210]
SB_.RS 2 3 8 11444 1800 123.66 1800 10445 1800  [570, 390, 210, 930, 570, 210, 30, 930]
SB_RS 3 3 8 13930 1800 139.30 1800 139.30 1800 [1110, 750, 390, 210, 210, 390, 570, 210]
SB_RS 4 3 8§ 5336 1800 5336 1800 53.36 1800  [30, 390,750, 570, 930, 1110, 570, 390]
SB_.RS 5 3 8 14395 1800 170.89 1800 237.80 1800  [30, 570, 210, 750, 30, 750, 1110, 210]
SB.RS 6 3 8 10694 1800 11341 1800 11341 1800 [210,570, 390, 570, 570, 1110, 30, 210]
SB_.RS 7 3 8 20634 1800 264.09 1800 157.56 1800  [390, 30,930, 570, 210, 750, 210, 210]
SB_RS 8 3 8 12693 1800 12593 1800 129.13 1800 [390, 750, 1110, 570, 390, 570, 930, 210]
SB_RS 9 3 8 13463 1800 152.65 1800 160.87 1800 [30, 570, 390, 390, 30, 30, 390, 390]
SB.RS 10 3 8§ 22390 1800 257.92 1800 316.65 1800 [30, 210, 930, 30, 210, 30, 30, 390]
SB.RS 1 4 6 10245 1800 10245 1800 10245 1800  [390, 930, 390, 930, 570, 30, 210, 210]
SB_.RS 2 4 6 27555 1800 24193 1800 31391 1800 [390, 210, 30, 570, 210, 210, 30, 30]
SB_RS 3 4 6 11932 1800 119.32 1800 119.32 1800 [1110,210, 390, 210, 930, 570, 210, 210]
SB_RS 4 4 6 9294 1800 9294 1800 9294 1800 [30, 570, 210, 390, 570, 930, 30, 750]
SB.RS 5 4 6 13827 1800 13579 1800 13827 1800  [30, 210, 210, 390, 750, 390, 750, 390]
SB.RS 6 4 6 12379 1800 123.79 1800 123.79 1800 [750, 210, 30, 570, 570, 390, 930, 30]
SBRS 7 4 6 12847 1800 128.47 1800 128.47 1800 [30, 210, 930, 390, 570, 570, 390, 30]
SB_RS 8 4 6 13836 1800 138.36 1800 138.36 1800 [390, 390, 30, 390, 210, 390, 30, 390]
SB_RS 9 4 6 27365 1800 273.65 1800 27492 1800 [30, 30, 30, 390, 570, 1110, 390, 210]
SB.RS 10 4 6 29259 1800 29259 1800 29259 1800 [30, 570, 210, 750, 30, 30, 30, 30]
SB.RS 1 5 5 12871 1800 12871 1800 128.71 1800 [30, 30, 210, 210, 390, 930, 750, 210]
SB_RS 2 5 5 109.74 1800 109.74 1800 110.99 1800  [210, 390, 390, 570, 570, 570, 390, 390]
SB_RS 3 5 5 10724 1800 10724 1800 107.24 1800  [30, 750, 390, 390, 930, 570, 750, 750]
SB_RS 4 5 5 12515 1800 125.15 1800 129.85 1800 [30, 390, 210, 390, 570, 30, 570, 210]
SB.RS 5 5 5 11772 1800 117.72 1800 117.72 1800  [390, 570, 390, 390, 570, 750, 750, 210]
SB.RS 6 5 5 116.08 1800 116.08 1800 116.08 1800  [210, 930, 30, 390, 390, 210, 750, 750]
SB_RS 7 5 5 11547 1800 11547 1800 123.54 1800  [930, 390, 570, 390, 750, 570, 30, 210]
SB_RS 8 5 5 11341 1800 11341 1800 11341 1800  [1110, 750, 30, 570, 750, 570, 30, 750]
SB_RS 9 5 5 117.06 1800 117.06 1800 117.06 1800 [30, 570, 30, 570, 210, 30, 390, 30]
SB.RS 10 5 5 13881 1800 138.81 1800 288.79 1800 [210, 390, 30, 30, 390, 210, 30, 210]
SB.RS 1 6 4 14892 1800 14892 1800 14892 1800  [750, 210, 210, 390, 210, 390, 930, 210]
SB_.RS 2 6 4 17658 1800 19022 1800 179.25 1800  [390, 750, 30, 750, 210, 390, 210, 210]
SB_RS 3 6 4 26542 1800 26542 1800 26542 1800  [1110, 210, 570, 390, 570, 30, 390, 210]
SB_.RS 4 6 4 24459 1800 24459 1800 265.12 1800 [30, 210, 30, 570, 30, 30, 390, 930]
SB.RS 5 6 4 239.07 1800 239.07 1800 239.07 1800 [930, 210,210, 570, 390, 930, 750, 210]
SB.RS 6 6 4 14929 1800 149.29 1800 149.29 1800  [210, 390, 750, 390, 390, 390, 390, 30]
SB_RS 7 6 4 29347 1800 29347 1800 29347 1800  [390, 570, 30, 750, 390, 390, 210, 750]
SB_RS 8 6 4 27350 1800 270.78 1800 273.57 1800 [750, 570, 570, 390, 30, 30, 30, 930]
SB_.RS 9 6 4 256.03 1800 256.03 1800 256.03 1800  [930, 390, 570, 210, 570, 570, 30, 570]
SB.RS 10 6 4 38054 1800 380.54 1800 380.54 1800  [30, 210,210, 210, 390, 570, 570, 210]
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Figure 5. Distribution of objective values across drone-slot configurations (medium-sized instances
in San Bernardino and Riverside).

Table 7. Performance results for medium-sized instances in Los Angeles (time in seconds).

Instance LP NLP HX
County  Tter M R Obj  Time Obj Time Obj  Time I;

LA 1 4 8 134.61 3600 12698 3600 119.08 3600 [390, 210, 210, 570, 750, 210, 210, 210]
LA 2 4 8 9848 3600 9848 3600 70.34 3600 [390, 390, 570, 750, 570, 390, 390, 570]
LA 3 4 8 281.37 3600 31391 3600 329.08 3600 [210, 570, 570, 390, 30, 750, 210, 570]
LA 4 4 8 125.00 3600 137.97 3600 13429 3600  [390, 390, 390, 30, 570, 390, 570, 570]
LA 5 4 8 207.73 3600 24622 3600 184.13 3600  [210, 30, 390, 570, 390, 210, 570, 570]
LA 6 4 8 121.32 3600 13441 3600 13441 3600  [210, 570, 390, 390, 210, 30, 210, 210]
LA 7 4 8 22128 3600 171.21 3600 201.80 3600  [390, 750, 390, 570, 210, 390, 390, 30]
LA 8 4 8 37020 3600 500.59 3600 559.18 3600 [30, 30, 30, 210, 390, 30, 390, 390]
LA 9 4 8 106.03 3600 149.57 3600 131.84 3600 [210, 210, 390, 210, 390, 210, 390, 210]
LA 10 4 8 13235 3600  180.00 3600 156.97 3600  [570, 210, 210, 210, 210, 570, 30, 390]
LA 1 5 6 363.92 3600 52294 3600 363.52 3600 [390,570, 210, 750, 210, 570, 210, 570]
LA 2 5 6 549.14 3600 73141 3600 657.66 3600  [210,570, 210, 210, 750, 30, 210, 570]
LA 3 5 6 546.34 3600 548.66 3600 531.71 3600  [390, 390, 210, 390, 570, 390, 30, 570]
LA 4 5 6 51036 3600 609.51 3600 510.16 3600 [210, 390, 210, 750, 570, 210, 210, 570]
LA 5 5 6 64748 3600 647.56 3600 64749 3600 [570, 570, 210, 570, 390, 390, 750, 390]
LA 6 5 6 691.18 3600 3600 666.23 3600 [570, 390, 210, 30, 390, 390, 210, 30]
LA 7 5 6 546.61 3600 109291 3600 546.60 3600 [210, 750, 390, 30, 750, 390, 30, 570]
LA 8 5 6 429.00 3600 640.95 3600 467.56 3600 [570, 570,210, 390, 390, 30, 390, 390]
LA 9 5 6 33892 3600 37492 3600 336.52 3600 [570, 750, 570, 390, 570, 570, 390, 750]
LA 10 5 6 331.13 3600 33218 3600 330.85 3600 [390, 210, 750, 750, 390, 570, 390, 210]
LA 1 5 8 0 775 0 1983 0 335  [210, 210, 390, 390, 390, 750, 390, 390]
LA 2 5 8 25892 3600 25892 3600 25892 3600 [570, 390, 570, 570, 210, 570, 210, 390]
LA 3 5 8 113.80 3600 113.80 3600 113.80 3600 [750, 750, 390, 570, 210, 390, 210, 210]
LA 4 5 8 263.18 3600 263.18 3600 263.18 3600  [30, 390, 210, 390, 390, 210, 570, 210]
LA 5 5 8 116.71 3600 116.71 3600 116.71 3600 [390, 210, 570, 390, 390, 390, 210, 210]
LA 6 5 8 - 3600 - 3600 351.28 3600 [390, 750, 30, 570, 30, 570, 210, 390]
LA 7 5 8 25242 3600 51470 3600 154.41 3600 [210,570, 390, 210, 210, 390, 750, 390]
LA 8 5 8 11576 3600 11576 3600 131.78 3600 [390, 210, 210, 750, 210, 210, 390, 570]
LA 9 5 8 115.76 3600 11576 3600 115.76 3600  [570, 30, 390, 570, 570, 390, 930, 570]
LA 10 5 8 25892 3600 25892 3600 25892 3600  [390, 750,210, 30, 210, 570, 570, 210]
LA 1 6 5 54823 3600 57719 3600 546.68 3600  [390, 390, 390, 30, 390, 750, 390, 390]
LA 2 6 5 51093 3600 549.11 3600 51040 3600 [570,390, 210, 210, 570, 930, 930, 390]
LA 3 6 5 54899 3600 570.06 3600 547.69 3600 [390, 390, 570, 750, 390, 210, 390, 570]
LA 4 6 5 656.87 3600 62947 3600 62947 3600 [210,210, 570, 390, 570, 570, 930, 210]
LA 5 6 5 69140 3600 69597 3600 69245 3600 [210, 570,390, 390, 210, 750, 30, 210]
LA 6 6 5 511.34 3600 663.84 3600 51040 3600 [390, 390, 570, 210, 210, 210, 570, 210]
LA 7 6 5 606.18 3600 690.50 3600 606.16 3600 [570,390, 570, 390, 210, 570, 390, 390]
LA 8 6 5 72354 3600 723.69 3600 72354 3600 [390, 390, 570, 390, 210, 750, 750, 570]
LA 9 6 5 546.60 3600 79439 3600 546.67 3600  [570, 570, 390, 30, 570, 210, 390, 570]
LA 10 6 5 690.08 3600 69096 3600 690.08 3600 [390, 390, 390, 390, 210, 570, 750, 390]

Note: “-” under LP and NLP Obj denotes that the models could not find any solutions within 3600 s.
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Figure 6. Distribution of objective values across drone-slot configurations (medium-sized instances
in Los Angeles).

Table 8. Performance results for large-sized instances in San Bernardino and Los Angeles (time
in seconds).

Instance LP NLP HX
County Iter M R Obj Time Obj Time Obj Time I;
SB_LA 1 7 9 114.03 3600 122.17 3600 114.03 3600 [30, 210, 210, 390, 390, 210, 570, 30, 390, 390, 210, 30]
SB_LA 2 7 9 118.86 3600 118.86 3600 118.86 3600 [30, 210, 210, 30, 750, 210, 390, 570, 210, 570, 750, 570]
SB_LA 3 7 9 118.86 3600 155.41 3600 118.86 3600 [750, 30, 570, 30, 390, 390, 390, 390, 210, 390, 390, 210]
SB_LA 4 7 9 114.03 3600 126.09 3600 114.03 3600 [390, 390, 210, 30, 210, 210, 390, 210, 570, 390, 210, 570]
SB_LA 5 7 9 113.80 3600 124.18 3600 113.80 3600  [750, 390, 390, 210, 570, 210, 390, 210, 390, 750, 390, 210]
SB_LA 6 7 9 263.18 3600 337.75 3600 263.18 3600 [750, 390, 390, 570, 210, 570, 570, 390, 570, 210, 390, 210]
SB_LA 7 7 9 118.86 3600 255.33 3600 118.86 3600 [210, 30, 30, 570, 390, 750, 390, 390, 210, 390, 750, 210]
SB_LA 8 7 9 115.76 3600 115.76 3600 115.76 3600 [750, 570, 210, 570, 210, 30, 390, 390, 210, 570, 210, 210]
SB_LA 9 7 9 116.59 3600 116.59 3600 116.59 3600  [930, 750, 570, 210, 210, 210, 570, 750, 210, 390, 390, 210]
SB_LA 10 7 9 0 2444 27.68 3600 0 1483  [390, 390, 210, 570, 210, 390, 210, 570, 210, 390, 570, 570]
SB_LA 1 8 9 258.92 3600 258.91 3600 258.92 3600 [570, 210, 570, 390, 390, 570, 390, 30, 30, 570, 210, 570]
SB_LA 2 8 9 112.32 3600 114.18 3600 112.33 3600 [210, 390, 210, 750, 390, 570, 390, 390, 210, 570, 930, 30]
SB_LA 3 8 9 112.33 3600 112.33 3600 112.33 3600 [930, 750, 390, 750, 390, 210, 390, 390, 390, 390, 390, 30]
SB_LA 4 8 9 114.03 3600 114.03 3600 114.03 3600 [30, 210, 570, 390, 570, 390, 390, 390, 210, 750, 390, 570]
SB_LA 5 8 9 116.71 3600 209.20 3600 116.71 3600 [30, 390, 30, 210, 210, 570, 210, 390, 570, 30, 30, 930]
SB_LA 6 8 9 118.86 3600 278.29 3600 118.86 3600 [570, 30, 930, 570, 570, 930, 390, 570, 210, 210, 570, 210]
SB_LA 7 8 9 263.18 3600 602.53 3600 263.18 3600 [210, 30, 750, 210, 210, 210, 570, 930, 210, 750, 390, 390]
SB_LA 8 8 9 0 1596 246.41 3600 0 613 [570, 750, 210, 210, 390, 570, 390, 570, 210, 210, 210, 750]
SB_LA 9 8 9 115.76 3600 530.65 3600 115.76 3600 [390, 570, 30, 210, 210, 30, 750, 390, 390, 210, 210, 390]
SB_LA 10 8 9 258.92 3600 570.77 3600 258.92 3600 [30, 750, 30, 210, 390, 750, 390, 390, 30, 210, 390, 210]
SB_LA 1 9 8 118.85 3600 118.86 3600 118.86 3600 [390, 210, 210, 210, 210, 30, 390, 570, 570, 210, 750, 750]
SB_LA 2 9 8 258.92 3600 258.92 3600 258.92 3600 [750, 30, 390, 390, 210, 390, 390, 30, 210, 570, 570, 570]
SB_LA 3 9 8 263.18 3600 300.54 3600 263.18 3600 [570, 390, 390, 390, 30, 210, 210, 210, 30, 930, 390, 570]
SB_LA 4 9 8 116.71 3600 116.71 3600 116.71 3600 [210, 210, 210, 390, 390, 210, 210, 390, 210, 210, 390, 30]
SB_LA 5 9 8 114.03 3600 114.03 3600 114.03 3600 [30, 210, 30, 30, 210, 570, 210, 210, 570, 210, 210, 210]
SB_LA 6 9 8 113.80 3600 136.72 3600 113.80 3600 [210, 390, 570, 210, 750, 750, 210, 390, 210, 390, 30, 210]
SB_LA 7 9 8 118.86 3600 118.86 3600 118.86 3600 [390, 30, 210, 570, 390, 390, 570, 30, 210, 390, 390, 30]
SB_LA 8 9 8 107.48 3600 107.48 3600 10748 3600  [930, 930, 390, 210, 390, 210, 210, 210, 390, 570, 750, 570]
SB_LA 9 9 8 112.33 3600 112.33 3600 112.33 3600 [570, 390, 30, 390, 390, 210, 390, 390, 390, 390, 390, 30]
SB_LA 10 9 8 116.59 3600 116.59 3600 116.59 3600 [750, 750, 930, 570, 390, 930, 210, 390, 390, 210, 570, 390]
SB_LA 1 9 7 116.71 3600 116.71 3600 116.71 3600 [750, 390, 210, 390, 210, 750, 570, 570, 570, 30, 570, 210]
SB_LA 2 9 7 244.96 3600 274.29 3600 24496 3600 [930, 570, 930, 210, 390, 210, 30, 390, 390, 390, 30, 390]
SB_LA 3 9 7 258.92 3600 258.92 3600 258.92 3600 [570, 210, 930, 390, 390, 750, 390, 390, 210, 210, 30, 210]
SB_LA 4 9 7 116.71 3600 160.93 3600 116.71 3600 [570, 210, 390, 390, 390, 390, 570, 210, 210, 30, 210, 570]
SB_LA 5 9 7 116.59 3600 126.29 3600 116.59 3600 [750, 930, 750, 30, 210, 390, 210, 210, 390, 930, 210, 750]
SB_LA 6 9 7 114.03 3600 114.03 3600 114.03 3600 [30, 210, 30, 30, 390, 570, 210, 390, 570, 210, 210, 930]
SB_LA 7 9 7 258.92 3600 258.92 3600 258.92 3600 [390, 210, 390, 210, 390, 390, 390, 570, 210, 210, 210, 30]
SB_LA 8 9 7 115.75 3600 126.39 3600 115.76 3600 [390, 570, 30, 210, 750, 210, 390, 570, 750, 390, 210, 390]
SB_LA 9 9 7 113.80 3600 113.80 3600 113.80 3600 [30, 750, 1110, 570, 210, 390, 390, 210, 570, 210, 30, 570]
SB_LA 10 9 7 118.86 3600 118.86 3600 118.86 3600 [570, 210, 390, 570, 210, 210, 570, 570, 210, 570, 750, 750]

Tables 8-10 present the results for large-sized instances across San Bernardino, River-
side, and Los Angeles counties. In all 80 instances of the SB_LA and RS_LA test sets, LP
and HX produced solutions with identical objective values within the time limit, suggesting
that optimal or near-optimal solutions were identified, even at scale. NLP matched these
results in 43 instances, showing the complexity of nonlinear routing and battery constraints
under tighter visit requirements. Figures 7 and 8 support the findings and indicate that the
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M =9, R = 8 configuration consistently delivers the lowest median objective values and
least variability across all solvers.
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Figure 7. Distribution of objective values across drone-slot configurations (large-sized instances in
San Bernardino and Los Angeles).

Table 9. Performance results for large-sized instances in Riverside and Los Angeles (time in seconds).

Instance LP NLP HX
County Iter M R Obj Time Obj Time Obj Time I
RS_LA 1 7 9 112.33 3600 112.33 3600 112.33 3600 [750, 390, 570, 570, 390, 750, 750, 570, 390, 390, 570, 30]
RS_LA 2 7 9 113.80 3600 - 3600 113.80 3600 [210, 30, 30, 570, 210, 210, 210, 930, 210, 390, 390, 750]
RS_LA 3 7 9 107.48 3600 168.98 3600 107.48 3600 [570, 750, 30, 930, 570, 210, 390, 570, 390, 570, 930, 390]
RS_LA 4 7 9 115.09 3600 115.09 3600 115.09 3600  [210, 390, 210, 390, 570, 390, 570, 210, 390, 390, 210, 750]
RS_LA 5 7 9 11659 3600 189.38 3600 116.59 3600  [390, 570, 210, 390, 210, 750, 390, 570, 210, 390, 570, 750]
RS_LA 6 7 9 0 1455 141.52 3600 0 1321 [390, 30, 30, 390, 390, 210, 210, 750, 570, 210, 570, 570]
RS_LA 7 7 9 0 1678 32519 3600 0 462 [210, 390, 210, 930, 390, 390, 210, 390, 570, 390, 750, 390]
RS_LA 8 7 9 115.09 3600 115.09 3600 115.09 3600 [210, 30, 30, 210, 390, 750, 210, 390, 570, 210, 30, 390]
RS_LA 9 7 9 25892 3600 417.62 3600 25892 3600 [390, 30, 570, 30, 210, 210, 390, 570, 30, 210, 390, 210]
RS_LA 10 7 9 11894 3600  682.06 3600 12532 3600 [30, 930, 750, 210, 210, 390, 210, 30, 210, 750, 210, 750]
RS_LA 1 8 9 116.71 3600 116.71 3600 116.71 3600 [390, 210, 390, 30, 390, 210, 750, 390, 210, 30, 570, 210]
RS_LA 2 8 9 24496 3600 24496 3600 24496 3600 [390, 570, 210, 30, 570, 750, 30, 570, 210, 750, 210, 570]
RS_LA 3 8 9 116.71 3600 116.71 3600 116.71 3600 [30, 750, 210, 1110, 210, 930, 390, 30, 570, 30, 750, 750]
RS_LA 4 8 9 116.71 3600 128.51 3600 116.71 3600 [750, 570, 30, 210, 390, 210, 750, 210, 210, 30, 930, 210]
RS_LA 5 8 9 116.71 3600  314.61 3600 116.71 3600 [570, 390, 930, 210, 210, 390, 390, 390, 210, 210, 30, 390]
RS_LA 6 8 9 263.18 3600 263.18 3600 263.18 3600 [570, 390, 30, 210, 30, 30, 390, 750, 390, 390, 390, 390]
RS_LA 7 8 9 114.46 3600 189.30 3600 11446 3600 [930, 30, 570, 210, 210, 210, 750, 390, 210, 390, 210, 210]
RS_LA 8 8 9 64.96 3600 64.96 3600 6496 3600 [570, 1110, 30, 390, 570, 570, 210, 390, 750, 750, 210, 390]
RS_LA 9 8 9 113.80 3600  620.20 3600 113.80 3600  [750, 1110, 30, 210, 570, 750, 390, 390, 210, 390, 390, 570]
RS_LA 10 8 9 11446 3600 11446 3600 11446 3600 [570, 570, 30, 30, 390, 570, 210, 390, 210, 570, 390, 390]
RS_LA 1 9 8 116.59 3600 116.59 3600 116.59 3600 [390, 30, 390, 750, 210, 210, 750, 210, 390, 390, 210, 210]
RS_LA 2 9 8 115.76 3600 115.76 3600 115.76 3600 [570, 570, 30, 30, 390, 30, 210, 210, 390, 210, 390, 390]
RS_LA 3 9 8 11576 3600 11576 3600 115.76 3600 [570, 30, 930, 390, 390, 390, 210, 30, 390, 390, 570, 390]
RS_LA 4 9 8 113.80 3600  267.39 3600 113.80 3600 [210, 930, 30, 210, 390, 390, 390, 30, 390, 750, 210, 570]
RS_LA 5 9 8 115.08 3600  200.73 3600 115.09 3600  [390, 210, 210, 930, 390, 210, 210, 750, 210, 570, 570, 570]
RS_LA 6 9 8 11233 3600 21559 3600 112.33 3600  [930, 570, 570, 210, 390, 390, 570, 390, 390, 930, 390, 390]
RS_LA 7 9 8 0 744 0 3002 0 653 [390, 30, 210, 570, 390, 210, 570, 210, 390, 750, 930, 210]
RS_LA 8 9 8 116.59 3600 116.59 3600 116.59 3600  [570, 570, 210, 570, 210, 570, 570, 210, 390, 390, 390, 210]
RS_LA 9 9 8 113.43 3600 113.44 3600 113.44 3600 [390, 390, 750, 30, 210, 570, 570, 210, 390, 390, 390, 570]
RS_LA 10 9 8 115.09 3600 115.09 3600 115.09 3600 [30, 390, 390, 390, 390, 750, 210, 570, 390, 750, 570, 210]
RS_LA 1 9 7 112.33 3600 112.33 3600 112.33 3600 [570, 30, 1110, 750, 390, 390, 390, 750, 390, 570, 570, 30]
RS_LA 2 9 7 113.80 3600 118.32 3600 113.80 3600 [390, 210, 30, 570, 210, 390, 390, 210, 390, 750, 30, 930]
RS_LA 3 9 7 24496 3600  323.01 3600 24496 3600 [210, 750, 30, 210, 390, 390, 30, 390, 210, 390, 30, 30]
RS_LA 4 9 7 116.71 3600 116.71 3600 116.71 3600 [570, 30, 30, 930, 210, 570, 390, 570, 570, 30, 750, 390]
RS_LA 5 9 7 263.18 3600 263.18 3600 263.18 3600 [390, 210, 30, 570, 30, 210, 390, 570, 210, 210, 210, 30]
RS_LA 6 9 7 115.76 3600 115.76 3600 115.76 3600 [210, 30, 930, 210, 390, 30, 570, 390, 210, 570, 30, 570]
RS_LA 7 9 7 115.76 3600 115.76 3600 115.76 3600 [390, 750, 390, 750, 570, 30, 390, 210, 390, 930, 570, 390]
RS_LA 8 9 7 11344 3600 113.44 3600 113.44 3600  [750, 210, 390, 570, 390, 210, 390, 210, 390, 390, 210, 930]
RS_LA 9 9 7 115.76 3600 115.76 3600 115.76 3600  [210, 390, 570, 210, 210, 210, 390, 210, 390, 390, 210, 570]
RS_LA 10 9 7 113.44 3600 113.44 3600 113.44 3600  [210, 210, 210, 750, 390, 210, 390, 210, 210, 390, 570, 750]

Note: “-” under NLP Obj denotes that NLP could not find any solutions within 3600 s.
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Riverside and Los Angeles).

Table 10. Performance results for large-sized instances in San Bernardino, Riverside, and Los Angeles
(time in seconds).

Instance Lr NLP HX
County Iter M R Obj Time Obj Time Obj Time 1,

SB_RS_LA 1 8 7 27718 3600 - 3600 24496 3600 [390, 30, 30, 210, 570, 750, 570, 390, 390, 570, 30, 210, 390, 750, 570, 390]
SB_RS_LA 2 8 7 266.69 3600 - 3600 12129 3600 [390, 390, 30, 570, 210, 390, 570, 750, 210, 570, 210, 210, 570, 570, 390, 570]
SB_RS_LA 3 8 7 439.27 3600 - 3600 189.54 3600 [30, 210, 30, 570, 30, 30, 570, 210, 210, 930, 390, 210, 390, 570, 210, 30]
SB_RS_LA 4 8 7 313.14 3600 1008.33 3600 258.92 3600 [570, 30, 930, 390, 750, 930, 210, 570, 390, 390, 570, 30, 210, 750, 570, 390]
SB_RS_LA 5 8 7 441.69 3600 - 3600 120.09 3600 [210, 30, 390, 930, 390, 210, 30, 930, 210, 30, 390, 750, 210, 930, 750, 210]
SB_RS_LA 6 8 7  353.18 3600 - 3600 120.63 3600 [930, 750, 30, 390, 570, 750, 30, 210, 210, 30, 210, 750, 570, 390, 390, 570]
SB_RS_LA 7 8 7 41774 3600 - 3600 126.80 3600 [210, 750, 570, 30, 390, 930, 570, 390, 210, 570, 210, 210, 570, 210, 390, 570]
SB_RS_LA 8 8 7 653.29 3600 927.47 3600 285.95 3600 [30, 30, 750, 390, 750, 210, 570, 30, 30, 210, 30, 390, 390, 210, 210, 210]
SB_RS_LA 9 8 7 398.61 3600 - 3600 258.92 3600 [390, 570, 1110, 570, 570, 30, 30, 390, 390, 570, 390, 210, 30, 210, 570, 390]
SB_RS_LA 10 8 7 356.08 3600 1058.75 3600 117.37 3600 [210, 570, 30, 30, 390, 750, 30, 750, 210, 570, 570, 390, 390, 210, 210, 390]
SB_RS_LA 1 8 9 33837 3600 - 3600 263.18 3600 [570, 210, 390, 210, 30, 930, 390, 930, 210, 210, 210, 390, 570, 390, 390, 210]
SB_RS_LA 2 8 9 27837 3600 708.87 3600 25892 3600 [390, 210, 390, 390, 210, 210, 210, 570, 210, 750, 210, 570, 30, 750, 750, 390]
SB_RS_LA 3 8 9 11671 3600 415.16 3600 116.71 3600 [210, 570, 570, 570, 390, 570, 570, 570, 210, 210, 390, 210, 390, 30, 570, 750]
SB_RS_LA 4 8 9 114.03 3600 - 3600 114.03 3600 [30, 210, 210, 30, 570, 30, 210, 390, 210, 750, 390, 570, 390, 750, 750, 390]
SB_RS_LA 5 8 9 172.39 3600 - 3600 115.09 3600 [390, 210, 390, 210, 210, 390, 30, 210, 390, 390, 210, 390, 570, 750, 210, 570]
SB_RS_LA 6 8 9 31095 3600 1106.08 3600 124.75 3600 [30, 390, 30, 210, 390, 570, 210, 210, 210, 30, 750, 210, 570, 210, 210, 570]
SB_RS_LA 7 8 9  254.08 3600 - 3600 118.86 3600 [30, 390, 210, 390, 390, 570, 570, 750, 210, 570, 750, 30, 570, 390, 210, 210]
SB_RS_LA 8 8 9 252.48 3600 - 3600 118.86 3600 [210, 30, 390, 570, 390, 30, 30, 30, 210, 210, 210, 390, 750, 210, 390, 390]
SB_RS_LA 9 8 9 331.03 3600 - 3600 115.76 3600 [390, 390, 30, 570, 390, 30, 930, 390, 570, 30, 390, 570, 210, 930, 390, 210]
SB_RS_LA 10 8 9  263.18 3600 - 3600 263.18 3600 [570, 570, 390, 390, 570, 390, 210, 930, 30, 570, 390, 210, 210, 390, 210, 930]
SB_RS_LA 1 9 7 103.54 3600 596.03 3600 102.70 3600 [30, 750, 30, 390, 390, 570, 390, 750, 390, 210, 390, 390, 210, 750, 570, 750]
SB_RS_LA 2 9 7 268.83 3600 - 3600 263.18 3600 [930, 750, 390, 390, 210, 570, 390, 30, 210, 390, 210, 210, 390, 390, 30, 210]
SB_RS_LA 3 9 7 135.02 3600 - 3600 11233 3600 [1110, 210, 750, 750, 210, 210, 930, 30, 570, 390, 390, 570, 210, 570, 390, 30]
SB_RS_LA 4 9 7 263.18 3600 - 3600 263.18 3600 [30, 570, 750, 570, 390, 30, 210, 210, 30, 390, 390, 210, 390, 390, 390, 570]
SB_RS_LA 5 9 7 231.01 3600 825.48 3600 124.00 3600 [1110, 210, 750, 390, 30, 570, 930, 390, 390, 30, 570, 210, 390, 570, 570, 30]
SB_RS_LA 6 9 7 11886 3600 352.47 3600 11886 3600  [570,210, 390, 390, 570, 210, 390, 570, 390, 930, 390, 390, 390, 570, 390, 570]
SB_RS_LA 7 9 7 24496 3600 - 3600 24496 3600 [210, 570, 390, 750, 210, 210, 570, 570, 210, 750, 30, 390, 390, 570, 570, 390]
SB_RS_LA 8 9 7 85.12 3600 811.11 3600 28.38 3600 [210, 390, 570, 570, 210, 210, 390, 30, 570, 390, 390, 390, 570, 570, 210, 570]
SB_RS_LA 9 9 7 219.11 3600 766.65 3600 116.59 3600 [750, 570, 570, 570, 390, 1110, 30, 570, 210, 570, 210, 570, 390, 570, 210, 570]
SB_RS_LA 10 9 7 221.60 3600 - 3600 116.59 3600 [30, 390, 570, 210, 390, 210, 930, 390, 210, 390, 390, 570, 390, 570, 30, 390]
SB_RS_LA 1 9 8  388.62 3600 - 3600 122.45 3600 [30, 570, 210, 210, 30, 30, 390, 390, 210, 210, 210, 30, 210, 210, 750, 210]
SB_RS_LA 2 9 8 23878 3600 - 3600 119.74 3600 [210, 210, 30, 570, 210, 570, 30, 30, 390, 750, 210, 30, 570, 210, 390, 30]
SB_RS_LA 3 9 8 11344 3600 272.46 3600 11344 3600 [210, 570, 30, 570, 570, 390, 30, 930, 390, 570, 570, 30, 390, 750, 210, 750]
SB_RS_LA 4 9 8 317.44 3600 - 3600 131.50 3600 [210, 930, 570, 30, 210, 30, 390, 930, 210, 750, 570, 30, 390, 30, 390, 210]
SB_RS_LA 5 9 8 200.97 3600 - 3600 113.44 3600 [30, 210, 390, 570, 570, 30, 210, 210, 570, 570, 210, 210, 390, 210, 210, 570]
SB_RS_LA 6 9 8  159.84 3600 1101.55 3600 116.71 3600 [390, 390, 30, 390, 30, 750, 390, 1110, 570, 30, 210, 750, 570, 30, 390, 210]
SB_RS_LA 7 9 8 17431 3600 507.07 3600 113.80 3600 [750, 210, 390, 570, 570, 210, 30, 750, 390, 390, 750, 390, 210, 210, 210, 570]
SB_RS_LA 8 9 8  184.13 3600 765.34 3600 115.76 3600 [750, 750, 210, 210, 210, 210, 930, 390, 390, 30, 390, 30, 390, 210, 390, 570]
SB_RS_LA 9 9 8 112.33 3600 335.99 3600 112.33 3600 [390, 390, 210, 570, 390, 750, 30, 210, 210, 750, 210, 570, 570, 390, 570, 30]
SB_RS_LA 10 9 8 116.71 3600 - 3600 116.71 3600 [390, 750, 1110, 930, 750, 210, 30, 210, 570, 750, 210, 570, 390, 210, 570, 570]

Note: “-” under NLP Obj denotes that NLP could not find any solutions within 3600 s.

Table 10 shows that both LP and NLP were unable to guarantee optimal solutions
for the largest problem instances within the time limit. This outcome is expected, given
the NP-hard nature of the problem and the rapid growth in complexity as the number of
targets, drones, and time slots increases. The NLP formulation produced feasible solutions
for only 16 out of the 40 largest instances, with noticeably higher objective values than those
obtained by HX. In contrast, the LP model returned feasible solutions for all 40 instances,
and, in 9 of them, its objective value exactly matched the best HX solution.

One of the key factors influencing solver behavior is the inter-visit time parame-
ter I;. The results over all cases show that configurations with heterogeneous or tightly
bound I, values lead to higher objective values and increased computational effort, par-
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ticularly for NLP and HX. This reinforces the role of I; as a core design lever in drone
scheduling systems.

Figure 9 shows that, for all models/solvers, the M =9, R = 8 configuration produces
the lowest median objective values with the least variability. HX outperforms both LP and
NLP in terms of median objective value and stability, which indicates its effectiveness for
complex large-scale scenarios.
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Figure 9. Distribution of objective values across drone-slot configurations (large-sized instances in
San Bernardino, Riverside, and Los Angeles).

Figures 10 and 11 show the convergence profiles of the LP, NLP, and HX, especially
for the large-sized instances.

Solution Progress Over Time

—8— HXL
LP
2500 4 —4&— NLP
2000 4
[}
2
£ 1500
[}
2
=]
¥
[}
<
o
1000 -
500 +
0 °
T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Time (sec)

Figure 10. Comparing the convergence profile of LP, NLP, and HX for SB_RS_LA iteration 1 instance
with 9 drones and 7 slots.

Figures 10 and 11 reveal both the speed with which the models/solvers locate a first
feasible solution and the quality of the improvements that they can secure before the time
limit. HX reaches a feasible solution almost immediately and converges efficiently, which
shows the typical speed advantage of a heuristic. LP improves steadily, but much more
slowly, while NLP struggles to escape suboptimal regions and has modest progress. This
is due to the fragmented solution space of the DRSFMV problem, caused by tight inter-
visit constraints, battery limits, and slot-based scheduling, which leads to a non-convex
and discontinuous feasible region. Small changes in decision variables can easily break
feasibility, making the problem especially hard for exact methods. HX, by contrast, is better
equipped to explore disconnected regions to deliver high-quality results under complex,
large-scale scenarios.
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Figure 11. Comparing the convergence profile of LP, NLP, and HX for SB_RS_LA iteration 3 instance
with 9 drones and 8 slots.

5. Conclusions

Compared to traditional traffic monitoring methods such as police patrols, fixed
cameras, or helicopters, which are often costly, labor-intensive, and limited in coverage,
drones offer a more flexible, cost-effective, and environmentally friendly alternative. They
enable the dynamic coverage of high-risk areas, reduce response time to incidents, and can
be deployed even in resource-constrained environments. This paper introduced the Drone
Routing and Scheduling with Flexible Multiple Visits (DRSFMV) problem for highway
traffic monitoring. A mixed-integer nonlinear programming (MINLP) model and its
linearized version (MILP) are developed to schedule drones that repeatedly monitor critical
road segments under constraints such as battery limits, variable monitoring durations,
recharging needs, and inter-visit time limits. The model aims to minimize the maximum
lateness and earliness of visits while ensuring continuous and efficient coverage. The
problem was also implemented using Hexaly (HX), a heuristic-based solver, to address the
increasing complexity as the problem size grows. Using real traffic data from highways in
San Bernardino, Riverside, and Los Angeles counties in Southern California, the models
and solvers were tested on small, medium, and large instances. Across 120 total instances
of varying size and complexity, the LP solver returned optimal or feasible solutions in
119 cases, while NLP succeeded in only 93 instances. HX achieved 100% feasibility and
matched or improved upon LP solutions in most instances, especially for large-scale cases.
The sensitivity analysis highlights important trade-offs between the number of drones and
slot flexibility, indicating that balanced resource pairs minimize objective function value
and variability.

A limitation of this study includes the use of identical drones, one depot, and deter-
ministic travel times. Future studies could explore more realistic settings with multiple
depots, different drone types, and uncertain traffic conditions. Another limitation is the
absence of real-world implementation data to validate the proposed drone routing and
scheduling model. Although the experiments are based on real traffic census data and
reflect practical operational constraints, there are currently no publicly available datasets
that capture detailed drone routing and scheduling behavior in traffic monitoring appli-
cations. Existing datasets mainly provide vehicle trajectory data recorded by drones, but
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do not include information on the drones” own operations, such as flight paths, battery
usage, or scheduling decisions. As a future direction, conducting a real-world case study in
collaboration with transportation or public safety agencies would be highly valuable. This
would help benchmark the model under practical conditions and offer valuable feedback
for refining the framework to support real-world applications.
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