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This study addresses the rural postman problem with load-dependent costs, a variant of the arc routing
problem where the traversal cost of an edge depends on its length and the vehicle’s load. The objective is
to find a minimum-cost tour that services all required edges, a problem of particular importance when the
demand weight is significant compared to the vehicle’s curb weight. We present an integer linear programming
model for the problem and propose a heuristic algorithm based on bio-inspired methodologies to efficiently

obtain near-optimal solutions within short computing times. The effectiveness of the approach is demonstrated
through computational experiments on benchmark instances, and the results highlight the practicality of the

proposed methods.

1. Introduction

Arc routing problems (ARPs) nowadays constitute a well-established
field of hard-to-solve combinatorial optimization problems with many
applications. In these problems, a service is demanded on the arcs and
edges of a given network. Usually, the objective is to find a route along
the arcs and edges that meets a series of constraints, among which is
that the total cost of traversing them is minimal.

This family of problems has been extensively studied over the
last sixty years due to their real-life applications and the technical
challenges they entail. Examples where specific segments of a street
network require service include street cleaning, snow plowing, salt
spreading, road marking, as well as mapping and path inspection.
Other applications arising in cutting machines, plotters and printers
are also naturally formulated as arc routing problems. In other types
of delivery or pickup applications, such as postal service, newspaper
delivery, garbage collection and meter reading, although the demand
is located at points, appropriate models can also be developed as arc
routing problems.

The study of ARPs can be traced back to the 18th century, when Eu-
ler [1] solved the well-known Koénigsberg bridge problem. This problem
concerned finding a closed walk that traversed each of the seven
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bridges of the city of Konigsberg without crossing any bridge more than
once. Although the case studied by Euler was not an optimization prob-
lem, since the distance traveled in the closed walk was not considered,
his work laid the foundation for later advancements. Much later, the
Chinese mathematician Mei-Ko [2] presented what is now known as
the Chinese postman problem (CPP), which aims at finding the shortest
closed walk (tour) for a mailman, starting and ending at a post office,
by traversing each street segment of a network. Nowadays, the CPP is
defined as the problem of finding a minimum cost tour that traverses
all the edges of a given undirected graph with a known cost associated
with the traversal of each edge of the graph.

A first way to generalize the CPP relates to the type of connections
between the vertices in the underlying graph in which the problem is
defined: edges, arcs, or a mix of both. An edge is a link that can be
traversed in both directions with the same cost. An arc represents a link
that, with an associated cost, can only be traversed in one direction. A
graph in which all the links are arcs is called directed, and the CPP
defined on it is called a directed CPP, whereas if the CPP is defined
on an undirected graph it is called an undirected CPP. Edmonds and
Johnson [3] proved that both the undirected and the directed versions
of the CPP can be solved in polynomial time. The mixed CPP, defined
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on a mixed graph that contains both edges and arcs, is N'P-hard, as
shown in Papadimitriou [4]. A windy graph is an undirected graph with
two traversal costs associated with each edge, one in each direction of
travel. The CPP on a windy graph, proposed by Minieka [5] and named
the windy postman problem (WPP), is also N P-hard. Note that if the
two costs of an edge are equal in a windy graph, it can be considered an
undirected edge, while if one of its costs is infinite, it can be considered
an arc. Therefore, windy graphs generalize undirected, directed and
mixed graphs.

A second natural generalization of the CPP is the rural postman
problem (RPP) introduced by Orloff [6]. Here, only a subset of links,
called the set of required links, need to be serviced (traversed), while the
remaining links (called unrequired) do not, though they are available for
deadheading in order to obtain a feasible tour. Thus, the (undirected)
RPP is defined as the problem of finding a minimum cost tour that
traverses a given subset of the edges of an undirected graph with a cost
associated with the traversal of each edge. Lenstra and Rinnooy Kan [7]
showed that the RPP is N P-hard. In fact, all its versions, the directed,
undirected, mixed, and windy RPPs, are known to be N P-hard. Since
then, a large number of generalizations of the RPP (and, therefore, of
the CPP) have been proposed and defined to model real-life applications
more precisely and to express different objectives. Summaries of the
current state of knowledge can be found in Corberdn and Laporte [8],
Corberéan et al. [9], and Mourao and Pinto [10]. Some examples of these
generalizations are:

» The addition of time windows for the completion of services, an
objective related to profit or benefit maximization (see Malan-
draki and Daskin [11]).

The association of a demand with each required edge while
declaring a maximum capacity for the vehicle to satisfy demands,
resulting in the capacitated version of the arc routing problem,
which is a multi-vehicle ARP introduced by Golden and Wong
[12].

The repetition of a service in some periods of time (e.g., days)
on a time horizon (e.g., weeks or months), which is called the
periodic RPP (see Benavent et al. [13]).

The assumption that the vehicle is not required to reach the exact
point where the customer is located but only needs to pass close
enough to that point (see Reula and Marti [14]).

In recent years, new generalizations of the CPP have emerged in
response to environmental concerns, particularly the need to account
for CO, emissions in routing problems. Unlike traditional formulations,
these models incorporate variable costs that depend on both the edge
length and the vehicle’s load. Vehicle fuel consumption, a key fac-
tor in emissions, is influenced by three primary variables: distance
traveled, vehicle weight (including load), and speed. By addressing
these variables, load-dependent costs offer a practical approximation
of real-world transportation challenges.

These factors were first considered by Zachariadis et al. [15] for
the load-dependent vehicle routing problem (LDVRP), in which the
objective function is determined as the product of the distance traveled
and the gross weight that is transported over this distance, and in Cor-
beran et al. [16] for the CPP with load-dependent costs (CPP-LC), in
which the cost of traversing an edge is a variable determined as the
length of the edge multiplied by the total weight of the vehicle at the
moment it is traversed. As Corberan et al. [16] say, that cost is a good
approximation of the amount of pollution emitted by a vehicle traveling
at constant speed. In that study, the authors proposed two formulations:
one based on arcs, which is seen as the natural representation of the
problem, and another based on nodes, where the arcs are separated by
adding additional end nodes. They also proposed various metaheuristic
approaches and revealed the extraordinary difficulty of solving the
CPP-LC.

Our contribution

In this study, we generalize the above-mentioned CPP-LC model
with the rural postman problem with load-dependent costs (RPP-LC).
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As in the CPP-LC, the cost of traversing an edge will be defined as the
length of the edge multiplied by the load carried by the vehicle at the
time it traverses the edge, although not all edges will be required to be
traversed, since only a subset of required edges will contain those with
a positive demand. The vehicle will leave the depot with a load equal
to the sum of all demands. Along the tour, when a required edge is
serviced, the vehicle load will decrease by an amount equal to the edge
demand. The goal will be to find a tour that services all the required
edges with a minimum total cost.

To the best of our knowledge, this is the first model and solution
method proposed for the RPP-LC. We model the problem using an
integer linear formulation and tackle it by means of a metaheuristic
algorithm, following the philosophy of bio-inspired methodologies to
obtain near-optimal feasible solutions in short computing times. We test
the applicability of the formulation and the quality of the algorithmic
proposal using a set of well-known benchmark instances for related
problems by running several computational experiments, whose results
we also discuss. We finish the paper with some conclusions.

2. Problem statement and mathematical model formulation

Let G = (V,E) be a connected graph with a set of nodes V =
{1,2,...,n} and a set of edges E defined by m pairs of nodes {i, j}, with
i,j €V,i+# j.Anedgee = {i,j} represents a link between nodes i and j,
can be traveled in both directions, and has a length d, > 0. Let E, C E
be a subset of edges, known as the set of required edges, which must
be traversed for service that involves a significant change in weight in
the vehicle (e.g., spreading salt on roads...). For each e € E, let w, > 0
denote its demand, that is, the units of commodity (e.g., kilograms of
salt, liters of water) to be provided on edge e. We call Q the sum of the
demands of edges in E, i.e, Q= ,.p W,.

A vehicle with curb weight W (i.é., its weight when unloaded),
departs from a designated depot carrying an initial load equal to the
total demand Q. The vehicle travels along the edges of the graph to
deliver the demands for service on the required edges. It may also need
to traverse some non-required edges to define a tour that ends at the
depot. The first time a required edge is traversed, we will consider
it serviced, that is, w, units of commodity have been unloaded from
the vehicle. Both the required edges after being serviced and the non-
required edges can be traversed in deadheading mode (no commodity
is unloaded) any number of times.

The cost of traversing an edge e € E is the result of multiplying
d, by the weight of the vehicle while traversing e. The objective of the
RPP-LC is to find a minimum-cost tour that starts and ends at the depot
and traverses and services all the required edges (an RPP-LC tour).

Since the weight of the vehicle varies while the vehicle performs
a given RPP-LC tour, the cost of traversing an edge is also variable.
For each edge e € E, let g, denote the load in the vehicle at the
moment of traversing e in a given RPP-LC tour. If e is traversed in
deadheading mode, g, can be computed as the sum of the demand of
all edges that have not yet been visited, including the current edge e,
which we denote by E \E,, where E, is the set of edges visited before
e, i€, g = Yyep g, W, If edge e = {i,j} € E, is traversed while
serving it, the load at node i is ¥,cp \, w, and the load at node j is
YueE\E, Wy — W,. If we assume that the unloading is regular along the
edge, the average load of the vehicle at the moment of servicing e is
de = Yuer\E, Wu — % The cost of traversing an edge e is computed
as d,(W + gq,). Accordingly, the total cost of a given RPP-LC tour is
computed as Y. d, (W +g,).

2.1. Illustrative example

Consider the RPP-LC instance depicted in Fig. 1, with seven nodes
and 11 edges of equal length d, = 1. There are three required edges,
{2,4}, {3,6}, and {5,7}, drawn in bold with their corresponding de-
mand w,.
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Fig. 1. An example of a graph with seven nodes.

A feasible RPP-LC tour for this instanceis 1 -2 -4 -5 > 7 >
6 — 3 — 1: it begins and ends at the depot, is connected, and traverses
the three required edges. This tour, with length 7, would be an optimal
tour of the pure RPP, that is, without considering the weight and load
of the vehicle.

In order to calculate the real RPP-LC cost of this tour, let us assume,
for example, that W = 0, and compute g, and the cost d,(W +g4,) for
each edge traversed. We obtain a total cost of ), d (W +q,) = 420,
according to the following table:

Traversed edge e Load g, Cost = d, (W +q,)
{1,2} 120 1(0 + 120) = 120
{2,4} 120—?:115 10+ 115) =115
{4,5} 110 1(0+110) =110
(5,7} 110 - 22 = 60 10 + 60) = 60
{7,6} 10 1(0+10) =10
(6,3} 10—%:5 10+5)=5
{3,1} 0 104+0)=0
Total cost of the tour 420

This tour is not optimal for the RPP-LC in this instance, since the large
demand of the edge {5,7}, w57, = 100, makes it desirable to service
that edge as soon as possible. A second tour, 1 -2 > 5 -7 > 5 >
2—-4-6-3-1, hasacostof },.pd,(W +g,) =380, according to:

Traversed edge e Load ¢, Cost = d (W +q,)
{1,2} 120 1(0 + 120) = 120
(2,5} 120 1(0 4+ 120) = 120
(5,7} 120- 22 =70 1(0 + 70) = 70
(7,5} 20 1(0 +20) = 20
{5,2} 20 1(0+20) =20
(2,4} 20— % =15 10+15) =15
{4,6} 10 1(0+10) =10
(6,3} 10—%:5 10+5) =5
(3,1} 0 104+0)=0
Total cost of the tour 380

This tour, despite being longer than the previous one (it has length
9 instead of 7), has a lower RPP-LC cost (380 instead of 420). This
example encourages us to formulate and look for solution techniques
to specifically target the RPP-LC.

If we now assume that W > 0, the RPP-LC tour cost increases by

W times the total distance traveled. Thus, the cost of the first tour
increases to 420 + 7W while the cost of the second tour increases to
380 + 9W'. If, for example, we fix W = 10, the cost of the first tour
becomes 490 and that of the second is 470. So, when W becomes large
enough (W > 20 in our illustrative example), the first tour comes to be
better than the second. In general, RPP-LC instances with large values
for the curb weight compared with the demand values have the same
optimal tour as the pure RPP. Hence, the study we carry out next makes
sense for applications in which the demand weight is relatively large
compared to the curb weight.
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2.2. A formulation

To formulate the RPP-LC, we consider the arc routing formulation
of Corberan et al. [16] as a basis for our modeling framework. This se-
lection enables us to state our problem in a very natural way compared
to their node routing formulation, which needs some additional (non-
natural) mathematical artifacts based on transformations of graphs and
replications of nodes.

We start by noting that, given that the cost of traversing an edge will
depend on the load carried in the vehicle when the edge is traversed,
and that this load will change depending on when a required edge is
serviced, |E,| + 1 periods will be considered. We will denote them by
the index k € {0,1,2,...,K}, with K = |E|. Period k = 0, starting at
the depot, consists of all deadheadings (if any) needed to reach the first
edge serviced. Each of the next periods k = 1, ..., K consists of an edge
that is serviced at the beginning of the period and all deadheadings (if
any) needed to reach the edge serviced at the beginning of the next
period (or the depot, in period K). For example, in the illustrative
instance shown in Fig. 1 with the feasible tour 1 - 2 - 5 - 7 —
5-2->4-6-3-1,wehave K = |E;| = 3, and the edges of the
corresponding four periods are:

» Period 0: 1 - 2 — 5.
e Period1: 5-7—-5-2.
* Period 2: 2 > 4 — 6.
» Period 3: 6 > 3 — 1.

We now define the following sets of decision variables:

« For the service of each required edge {i,j} € E, and each period
k € {1,...,K}, we use a binary variable yf.‘j with the following
meaning:

1, if edge {i,j} € E, is serviced from i to j in
yfj e period k,
0, otherwise

Note that in period k = 0 no edge is served, so y?j = 0 for every
edge {i,j} € E; is not needed.
* For the deadheading of each edge {i,j} € E and each period
k€ {0,1,...,K}, we use a binary variable xffj where
« _ J 1, ifedge {i,j} € E is deadheaded from i to j in period k,
Y= 0, otherwise.
» For the load in the vehicle at the beginning of period k €
{1,...,K}, we use a continuous variable f, > 0. Note that /, = QO
and that we can assume fg,; = 0.

The objective function of the problem aims at minimizing the total
cost of an RPP-LC tour, which can be decomposed into the service
cost in periods k = 1,...,K, and the deadheading cost in periods
k=0,1,...,K as

K K

Y A W= SO+ Y Y (W S (x+xh).
k=1 e=(i.))EE, k=0 e=(i,j)€E
This objective function is not linear due to £, (vj; + y5) and fi, (x}; +
xjfi), which are products of variables. It can be converted to a linear
one by means of the classical linearization of the product of a binary
variable multiplied by a bounded variable. To do so, suppose we know
some bounds on the f, such that L, < f, < U, forall k = 1,...,K.
Obviously, L = 0 and U = Q are bounds for each f,, but tighter ones
can be calculated if desired (see Corberan et al. [16]).

By defining the following sets of auxiliary variables r* and z* as

.1k =fk(yffj +y;.‘i), Ve = (i,j) € E;,Yk =1,..., K, and
.z =fk+1(x{f/.+x§i), VYe=(i,j)€ E,Vk=0,1,..., K,
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and by adding constraints

tgsfk+Lk(yf;.+yji—1), Ve=(i,j)€ E.Vk=1,...,K, o))
“2 o+ U (V404 -1). Ye=Gi) € EVE=1,... K, @
d<U (M +0h), Ye=G)EEVE=1,. K, 3
t’;sz(y,’.;ﬂj;.), Ve=(i,j)€ E.Vk=1,...,K, @

2 < frptLin (x{fj+xj;.-1), Ve=(i.j)€ Ek=0,1,....K—1, (5)
2> frn+Un (x{.‘j+xjf,.—1), Ve=(i,j)€ E,Yk=0,1,...,K—1, (6)
U (¥ +5), Ye=G)€EVE=01... . K-1, @)

k
Ze

\'%

Lis (xf.‘j+x;f[), Ve=(i.j)€ E.Vk=0,1,....K — 1, ®)

to the formulation of the problem, the non-linear objective function can
be linearized as

K
We (ko ok k
(de(w = S0 0 +9%) + etk
k=1 e=(i.j)EE,
K
£ D (dewil +xb) +dzh). ©)
k=0 e=(i,j)€E

Moreover, in the formulation of the problem we will use additional
notation:

* YT = Ye E, y{fj and, similarly, y*(6=()) = ¥, yjf,.. Note that
some of these sets could be empty if node i is not incident with
required edges.

« XK@ = Y ek xl’.‘j and, similarly, x¥(67())) = ¥, xjfi.

Then, the RPP-LC can be formulated with the following integer
linear programming problem:
Min (9)
s.t.:
Constraints (1)-(8), and

K
DOL+¥)=1, VeeE, (10)
k=1

Z G +Y) =1 Vk=1,.. K, @an
(i.j)EES
fenn = fi= X w O+ Y. Vk=1.. K, 12

e=(i,j)€E,

=0, fgku =0, 13)

Y™ ) + X567 () = YT G) + x5 (6T (), VieV,Vk=1,...,K-1,

a4

XX @) =yt + X066, Yiev\ {1}, @as)

Y@ @) +xX @60 = x5 @6ta), viev\({1}, (16)

LEt) + ¥ ) =y E )+ K@) =1, a7
k—1

xf, 5;(y§+y;)+y§i, V(i,j) € E,Vk=1,...,K, (18)
=1

xj<j+x§ig1, v, j) € E.Nk=0,...,K, (19)
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XX V¥ € 40,1}, VG.)) € EVk =2, K, (20)

Ly <f, <U,. Vk=2,..,K. (21)

In this model, constraints (10) and (11), respectively, guarantee
that each required edge is serviced in one period, and that only one
required edge is serviced at each period. Constraints (12) assure that
when a required edge e € E; is serviced, the vehicle load is decreased
by w, units. Symmetry conditions on the vertices are implied by
constraints (14)-(17). We do so by imposing in (14) that every time
the tour enters a node i, it has to leave it, for all the periods except the
first and last; (15) and (16) are the corresponding equations for periods
0 and K in nodes other than the depot, and (17) are for periods 0 and
K at the depot. Variables x and y are related through constraints (18),
which state that a required edge can be deadheaded only if serviced in
a previous period or in the same period but traversed in the opposite
direction. Constraints (19) allow a non-required edge to be deadheaded
only once in a given period.

We note that constraints (18) and (19) are not needed to find the
optimal CPP-LC tour. Their removal would allow feasible solutions in
which some edges could be deadheaded before being served, although,
as has been said, these solutions would never be optimal. Nevertheless,
these constraints have proved to be useful from a computational point
of view and so we include them. We also note that this formulation
extends and generalizes the arc routing formulation of Corberan et al.
[16] for the CPP to the case of the RPP.

This formulation can be provided to an integer linear program
solver for a specific instance in order to obtain optimal solutions.

3. A genetic algorithm

Metaheuristic algorithms (see, e.g., Gendreau and Potvin [17] and
Marti et al. [18], as well as the references therein) have become a
very popular family of solution methods for hard optimization prob-
lems because, very frequently, they are capable of finding high-quality
solutions in short computing times. Thus, they can be employed as an
alternative approach to find close-to-optimal solutions for the RPP-LC
when exact methods, based on searching the solution space described
by formulations, turn out to be impractical.

In this section, we present an adaptation of the classical metaheuris-
tic methodology known as Genetic Search. Genetic algorithms (GAs)
were first proposed by Holland [19] as population-based searching
frameworks to find optimal solutions for mathematical problems by
simulating the natural evolution process, inspired by biological organ-
isms. Nowadays, they constitute a well-established search framework
that can be applied to deal with a wide range of problems in statistics,
machine learning [20], combinatorial optimization and other domains.

Various types of genetic algorithms can be found in the literature,
classified by various factors:

+ Concerning the type of information used to encode solution char-
acteristics, we find binary-coded GAs, in which characteristics are
coded in binary strings comprising boolean variables, permutation-
coded GAs, in which a string of natural numbers represents a
useful sequence (permutation), and real-coded GAs, where real
numbers associated with problems are used to store information.
Regarding the number of objectives that need to be optimized,
we can find single- and multi-objective GAs. In the former, we wish
to find the best solution for a unique specific objective. In the
latter, we face problems with several objectives and we do not
necessarily have an optimal solution that optimizes all the objec-
tive functions simultaneously. Often, objectives conflict with each
other, and the optimal solutions of some objectives usually con-
flict with the optimality of other objectives. Therefore, we have to
choose some trade-off or achieve a certain balance of objectives.
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We refer the reader to Deb et al. [21] for specific implementation
details of a well established and powerful methodology, known
as NGSA-II, to solve multi-objective optimization problems with
GAs.

Regarding the simultaneity of searches that the algorithm carries
out in a run, we find serial (also known as sequential) and parallel
GAs. Parallel algorithms are parallel implementations of GAs.
For instance, when creating a population of solutions, a GA can
instruct multiple processors to create their own populations and
merge them later in a common space. Such parallelism may bring
advantages, e.g., parallel searches with information exchange be-
tween multiple searches are often better than serial computation.
We refer the reader to Rivera [22] and Konfrst [23] for more
detailed information on parallel GAs, and to Akopov et al. [24]
and Zhong et al. [25] for insights of advanced implementations
on their multiagent versions.

We note that the above-mentioned types of GAs can also have subtypes,
for example those that use different selection and mutation operators
as genetic operators. In addition, the flexibility of GAs allows us to
hybridize some of their elements and produce hybrid genetic algorithms
(see, e.g., [26] for details on experiences with hybridization).

Next, we explain how we represent a feasible solution of the prob-
lem. Then, we explain the main structure of the heuristic algorithm,
and finally, we provide details of each of its ingredients used in this
solving technique.

3.1. Solution representation

Let us recall that a feasible solution of the RPP-LC is a tour that
begins and ends at the depot and traverses, among others, all the
required edges. If we assign a unique identifier, for example the natural
numbers from 1 to |E,|, to each required edge in such a way that
each identifier represents a unique edge of E,, any permutation X of
{1,...,|E |}, which can be stored using an array of integers, provides
an ordered sequence of required edges that a vehicle can visit, in that
order, in a feasible tour for the RPP-LC.

Once we obtain a particular x, to define the direction in which any
edge {i,j} € E, for i < j, will be traversed, we can use two identifiers:
a 1 if we traverse it from i to j, and a O otherwise. This information
can be saved in a vector of directions, say d, of size | E,|, which can be
efficiently stored in a boolean array.

The remaining information that completes a solution is the sequence
of non-required edges to be traversed along the tour. Although, once we
know x and d, we can always compute — inline — the shortest path
between any pair of required edges to obtain the shortest sequence of
non-required edges, for our genetic algorithm proposal it will be helpful
to pre-compute some information:

* A matrix, say Dy, with the shortest distance between each pair
of nodes in N, where N is the set with all nodes that are incident
with the edges in E plus the depot (if it is not already included
in N).

* A list S}, of the shortest path between each pair of nodes in N.
This information will speed up the construction of the complete
tour, given x and d.

Dy, and S, will be used, as proposed by Corberén et al. [16], in a
dynamic programming method that guarantees an optimal sequence of
d from a given x. Hence, for us, a feasible solution s of an instance
of the RPP-LC can be represented by s = (x,d) and completed with the
information pre-computed and saved in Dy, and Sj,.

We will see later that this representation is very useful for the
application of the heuristic methodology chosen.

3.2. Adaptation of the genetic algorithm framework

In essence, a GA consists of methods to generate, maintain, and
transform a set of solutions (called chromosomes), which change (evolve)
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over successive iterations (generations) using three operators: selection,
crossover, and mutation. The initial step of the GA consists of obtaining
an initial set (a population) of solutions. Each solution in this population
is evaluated, based on certain criteria, and accordingly a fitness value
is assigned to it. Then, a selection mechanism is invoked to choose
relatively good (fit) solutions to be part of a special subset (generation)
in which the crossover (reproduction) process will be applied. That
process creates new solutions — a new population — by recombining
characteristics of existing solutions, through a crossover from the cur-
rent generation. Mimicking nature and its processes, random changes
(mutations) may occur at any point in some solutions, as a measure
to prevent premature convergence of the method. From the resulting
population, one can re-apply the process to successfully generate a
new generation and continue with the search process. This search stops
when a stopping criterion is met, which is usually related to the time
spent in the entire process, a maximum number of generations, or a
convergence criterion.

Standard and advanced GA implementations have been developed
for a wide variety of hard-to-solve combinatorial optimization prob-
lems. See, among others, some successful applications on related prob-
lems in the works by Dominguez-Casasola et al. [27], Felipe et al. [28],
Liu and Zeng [29], and Romanuke [30] for solving the TSP, and also
in the works by Felipe et al. [31], Sgarro and Grilli [32], Shen et al.
[33], and Wang et al. [34] for solving the VRP.

For the RPP-LC, we next describe a detailed adaptation of the
methodology, whose general structure is depicted in Algorithm 1.
This procedure receives some user-defined parameters as input: the
size of each population, N, the percentage of the population that
will be selected for crossover, p,, the probability of mutation for a
given solution, p,, and the maximum computing time allowed for
the entire procedure to be performed, maxTime. As the methodology
suggests, the framework starts by obtaining a population of solutions
from scratch as a first step. We do so, in line 2 of Algorithm 1, by
invoking the InitialPopulation method. Then, in a while loop,
in which the process will be kept until a maximum computing time
is reached, a block of sub-processes for evaluating solutions, selecting
parents, crossover, improvement and mutation is performed to generate
new offspring for a new population, which will replace the current
population. Once the stopping criterion has been met, the procedure
returns the best solution found during the whole process. Each of these
sub-processes will be explained in detail below.

3.2.1. Obtaining Pop , the initial population of solutions

The underlying idea of this sub-process, whose structure is depicted
in Algorithm 2, is to construct N solutions from scratch. As we men-
tioned before, a solution s can be represented by (x,d). Hence, the
procedure we have designed returns a duple of this kind.

In GAs, Pop is frequently generated by purely random methods.
Such randomization has advantages, such as having a diverse initial
population that prevents premature convergence. Accordingly, our pro-
cedure generates several x vectors by invoking, each time, a standard
shuffle function that returns a random permutation of the required
edges numbered from 1 to |E|. Note that this may render x vectors
that were generated before. We can avoid such occurrences by checking
the previous outcomes every time a new vector X is generated, at
the expense of extra computing time. Since we wish to obtain a first
set of solutions quickly, we decided not to impose any guaranteeing
mechanism to check for previous occurrences.

Later, to obtain d for each x, we apply the dynamic programming
algorithm by Corberdn et al. [16], which is able, on receiving x as
input, to obtain the shortest paths between any pair of required edges
and, hence, the best directions in which to traverse the required edges.
During this shortest path calculation, the objective function cost is
calculated using Y, d (W + g,), and therefore it is not necessary to
do this computation in a separate step.

At the end of each global iteration, x, d and cost are placed, in
rows, in an array of each corresponding type, say X, D and F. The output
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Algorithm 1: GA proposal for the RPP-LC
Input: N, p., p,,, maxTime.
1 Initiate a global variable elapsedTime « 0.
2 Obtain Pop, a set of feasible solutions that constitute a
population, by invoking the InitialPopulation function.

3 while elapsedTime < maxTime do

4 Evaluate the fitness of each individual in Pop using the
Fitness function.

5 Select a percentage p, of the population in Pop, using the
roulette wheel function, and place them in a new set
called Selected.

6 Activate an new empty set, NextPop, in which to store the
individuals of the next population.

7 while [NextPop| < N do

8 Select parentl and parent2 from Selected using
the roulette wheel function.

9 Perform the order crossover operator between
parentl and parent?2 to create offspring child.

10 Apply the improvement method 1localSearch to
child.

11 Generate rand « random number in the interval (0, 1).

12 if rand < p,, then

13 Perform a mutation on child using the relocation

operator.
14 Add child to NextPop.

15 Add the best individual from Pop to NextPop.
16 Replace Pop by NextPop.
17 | Update elapsedTime.

Output: The best individual from Pop.

Algorithm 2: TnitialPopulation function

Input: N.
1 fori=1to N do
2 Generate x < shuffle(l,...,|E,]).
3 Apply dynamic programming to obtain d and cost.
4 Store x, d and cost in row i of X, D and F, respectively.

Output: (X,D,F)

of the procedure is the triplet (X, D, F), which constitutes the initial Pop.

3.2.2. Evaluating the fitness of an individual

We calculate the fitness of an individual (x,d) as the cost of its ob-
jective function. However, we note that this measure could be adapted,
if desired, to consider another characteristic of the problem.

3.2.3. Selection of individuals

Once we have obtained Pop, a percentage p. of its solutions will be
selected and placed in a special subset called Selected. The underly-
ing idea of this sub-routine is that the most promising solutions (with
relatively good fitness) are kept in it to be used later for generating new
solutions with better fitness.

We make this selection random using an empirical distribution
function that considers the fitness of each individual. This well-known
mechanism, known as roulette wheel (see Hancock [35]), guarantees
that individuals with good fitness are more likely to be chosen. Addi-
tionally, the best individual of Pop according to the fitness function, if
not previously selected by roulette wheel, is also placed in Selected
due to elitism criteria. The purpose of such criteria is to maintain the
quality of the solutions generation after generation (see, e.g., Ahn and
Ramakrishna [36]).
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3.2.4. Crossover of solutions

The idea of the crossover process is that two individuals, parent1
and parent2, from Selected are randomly paired using the roulette
wheel function to obtain a new individual that we call child.

We carry out the crossover function using the 2 cut-off technique
by combining the x vectors from parentl and parent2 to obtain
a new X for child. The specific details of the implementation of this
operator can be found in Algorithm 3. For brevity, we will refer to the
corresponding x vectors in such solutions as parent1, parent2 and
child.

Algorithm 3: Order crossover operator

Input: parentl, parent2.
1 Activate child as a new empty individual.
2 Randomly generate two integer numbers g;,g, € {1,..., |E|}
such that g; < g,.
3 forint i=g toi=g, do
4 | child[i] « parent1[il. //Copy parentl’s attribute.

5 Declare an integer variable attributesTransferred and
store in attributesTransferred « g, + 1.

if attributesTransferred > |E,| then
L attributesTransferred « 1.

N o

8 Declare two integer variables, posParent2 and posChild,
and store in posParent2 < attributesTransferred
and posChild « attributesTransferred.

while posParent?2 # g, do

10 while parent2[posParent2] € child do

-

11 posParent2 + +.
12 if posParent?2 > |E,| then
13 | posParent2 « 1.

14 child[posChild] « parent2[posParent2]. //Copy
parent2’s attribute.

15 posParent2 + +.

16 posChild + +.

17 if posChild > |E,| then

18 | posChild « I.

Output: child.

The idea of this operator is not only to copy the ordered sequence of
a subset of required edges from parent1 directly to child, but to do
so in exactly the same position where parent1 had them (lines 3 to 6
of the pseudo-code). The partial solution child is then completed by
copying parentZ2’s information in the remaining positions in a similar
way, while also maintaining the same order as in parent2 (lines 11 to
20 in the pseudo-code). Once a child is obtained from the crossover,
we apply the DP algorithm to obtain d and cost.

3.2.5. Improvement phase via local search

Any solution previously obtained by our methods can be used as the
starting point of a procedure that aims at finding a local optimum with
respect to some neighborhood structure. In the design of this improve-
ment phase (see the details of the specific application in Algorithm 4),
we have considered three well-known local improvement algorithms
based on simple tour modifications:

+ 2-Exchange: We select two different edges in the tour and
exchange (swap) their positions.

» 1-0PT: We select one edge in the tour and place it in a different
position in the tour by moving the other edges to the left and right
of these new places.

+ 2-0PT: We select two edges in the tour and place them in
different positions in the tour, again by moving the other edges
to the left and right of this new place.

An example of the application of these movements is provided in
Fig. 2.
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1 6 3 4 5 2 7

(a) 2-Exchange (b) 1-0pt
i J
1 2 3 4 5 6 7
\ 4
1 6 5 4 3 2 7
(c) 2-0Opt

Fig. 2. Examples of the different applications of local search procedures.

For each s that is used as a starting point, we explore each of
these three neighborhoods, and the next solution sy, is the one that
maximizes the improvement in terms of objective function among those
three. In our design, the algorithm repeatedly performs operations for
as long as it reduces the cost of the solution, until no operation yields
any further improvement, returning the best solution found so far as
the output of the procedure.

3.2.6. Mutation procedure

A set of feasible solutions, e.g. Pop, may eventually contain many
solutions with very similar attributes. This drastically reduces the pos-
sibilities of creating new better solutions — through combination and
selection — after several iterations. The purpose of a mutation pro-
cedure is to prevent such premature convergence. Typically, this is
performed by applying small but random changes in some part of the
solution at any stage of the solution process. This allows solutions to
acquire different attributes that will be used in the following iterations.

We propose applying a random change subjected to a mutation
process with probability 0 < p,, < 1 for any child created after the
improvement method via local search. If the event occurs, an edge is
randomly selected in the x vector of child and placed in another
position, the latter also being randomly selected.

4. Computational experiments

This section is devoted to reporting some computational experi-
ments performed to complement the previous sections.

We start by providing details of the experimental setting. Then,
we present the results of a comprehensive numerical study, performed
using a set of instances, to investigate the computational efficacy of
the formulation as well as its potential application to solve the RPP-
CL. Following this, we present the results of several computational
experiments that were conducted to assess the performance of the
genetic algorithm, and we show the advantages of using the procedures
proposed. The detailed information about these results is provided in
several tables in Appendix.

Algorithm 4: localSearch procedure

1
2
3
4
5

© ® N o

10
11
12

13
14

15
16
17

18
19

20
21
22
23
24
25

26

Input: x, d, cost.
Let S, be the solution associated to the input (x,d, cost).
Activate a new empty solution Sy with cost +co.
Declare a boolean flag variable STOP « FALSE.
while STOP == FALSE do
Change flag STOP « TRUE.
forint i=1to i< |E,| do
forint j=i+1to j=|E| do
// Explore the 1-0PT neighborhood:
Activate a temporary solution s4_gpr and copy in it
all the attributes of Sq.
Apply 1-0PT(, j) to s1_gpr-
if Cost of s1_gpr < Cost of sy, then
L Spest <~ S1-0PT:
// Explore the 2-0PT neighborhood:
Activate a temporary solution s,_gpr and copy in it
all the attributes of 8.
Apply 2-0PT(, j) to so_gpt-
if Cost of so_gpr < Cost of sy, then
L Spest <~ S2-0PT-
// Explore the 2-EXCH neighborhood:
Activate a temporary solution So_gxcy and copy in
it all the attributes of Sg.
Apply 2‘EXCH(1,]) to So_EXCH-
if Cost of s5_gxcy < Cost of Sy then
L Spest <~ S2-EXCH-
// Store the best solution found so far:
if Cost of Speq < Cost of Sy then
L Sorig < Sbest-
Change flag STOP < FALSE.

Output: Sy




D. De Santis et al.
4.1. Experimental design: technology employed and test instances

All the experiments we will report were performed on an AMD
Ryzen 7-5700U processor with 1.8 GHz and 16 GB of RAM, running
on the Windows 11 64-bit operating system. On the one hand, the
mathematical formulation presented in Section 2.2 was implemented
in Python 3 and solved with IBM ILOG CPLEX solver version 22.1
for integer programming models, with a time limit of 3600 s and the
exploitation of multi-threading capabilities, that is, all cores (eight in
our case) were available for use. Other than this, its default parameters
are assumed unless otherwise stated. On the other hand, the GA was
implemented in the Matlab programming language version R2016b,
and it was run with the following parameters: N = 20, p. = 0.7,
P = 0.1, and maxTime = 300. Some of the chosen parameter values were
selected based on some preliminary experimentation and observation.
In particular, N was selected to allow the genetic algorithm to perform a
small quantity of individuals in each global iteration in order to obtain
more generations during the running time. However, p. was selected
according to related literature, and maxTime was selected considering
we wanted to compete against the formulation in very short computing
times.

Regarding the instances used in the experiments, Corberén et al. [9]
generated three sets for the CPP-LC:

» Set E: 18 instances obtained from Eulerian graphs, with |V| =
7,10 and 20, as well as |E| = 12,18 and 32. For each graph, three
different values of W were considered: 0,% and 50, with Q =
> eck W, For each of these nine combinations, they generated two
instances, one with w, = d, and another with randomly generated
demands w,.

Set P: 18 instances derived from three RPP instances proposed
by Christofides et al. [37], namely P1, P2 and P4, with |V| =
11,14 and 17, as well as |E| = 13,32 and 35. For each graph, they
generated six instances, proceeding as before.

Set H: 24 instances obtained from 12 RPP instances proposed
by Hertz et al. [38], namely rl to r8 (with |V| € [6,14] and
|E| € [11,48]), as well as d10, d11, g10 and gl1 (with |V| €
[18,27] and | E| € [22,33]). For each graph, a proportional and a
réon-proportional instance was generated, all of them with W =

=.
We have made use of these instances as a basis for the generation of
RPP-LC instances. To adapt them, only some of their edges need to be
required. To do so, for each type of instance described above, we made
a random selection of 25%, 50% and 75% of the edges to be required. In
total, we obtained 180 instances, which have been placed in a Dropbox
repository to be available for public access' and reproducibility.

4.2. Usability of the formulation

The first experiments we carried out aimed to explore whether the
set of instances is solvable by using CPLEX when the formulation is
provided with a time limit of 3600 s. Two main factors could affect the
solvability of an instance, namely the density of required edges and the
type of instance. Regarding the former, in Table 1 we summarize, for
the three levels of density tested (25%, 50% and 75%), the number
of instances that the formulation solved to optimality out of a total of
180. From this table, we can clearly see that the formulation could solve
all instances tested with 25% density. We can also see that the higher
the density values, the more difficult it is to optimally solve instances
using the formulation. Using the results in Table 1, we performed a 2
statistical test to verify whether the difficulty of solving the instances

1 https://www.dropbox.com/scl/fo/puel8avllpziOhmhnf28k/
AISr3UC1hhrC7sZG_8hJn3U?rlkey=vbkl9ixs3cy762e8g1m7xqpkq&st=
8u7yal9b&dl=0.
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Table 1
Number of instances solved to optimality for groups of different density.
Density Solved Not solved
25% 60 0
50% 48 12
75% 33 27
Table 2
Number of instances solved to optimality for different types of data.
Set Solved Not solved
E 51 3
P 38 16
H 52 20

is related to the different densities of the three groups tested. The
resulting p-value of 0.002658 indicates, in our opinion, that such a
statistical relationship exists.

Regarding the type of instances solved, we summarize in Table 2, for
the three types of instances tested (namely, sets E, P and H), the number
of instances that the formulation solved to optimality out of 180. From
this table, we can see that 94.4% (51 out of 54) of the instances in set
E were solved to optimality. That percentage diminishes to 70.3% and
72.2%, respectively, for sets P and H. Using the results in the table,
we also performed a y? statistical test to verify whether the difficulty
of solving the instances is related to the type of instances tested. The
resulting p-value of 0.00000001569 also indicates, in our opinion, that
there is such a statistical relationship.

We are now interested in studying the CPU time needed to solve the
instances that we were able to solve to optimality as well as the bounds
obtained for those instances that were not. In Table 3 we show, for
each instance and density tested, the CPU time, in seconds, needed to
solve it. For the cases in which the solver could not solve an instance to
optimality due to the limitation in computing time, the table reports a
“t.I”,, indicating that a time limit was reached. From this table, several
interesting insights arise:

» Most instances with 25% density (first column) need less than a
second to be solved. Only those in subset Hd need more CPU time.

» From the previous experiments, we already noticed that the
higher the density, the more time the solver needed to guarantee
optimality. When we look at the results of the instances with
50% density, we appreciate a change in the magnitude of CPU
time needed in many subsets. See, for example, the results for
subsets E20, Hg and P04: despite the fact that the solver could
solve almost all instances in these subsets to optimality, the effort
needed now is one or two orders of magnitude higher. In other
subsets such as Hd, the change in density directly results in the
impossibility of solving all their instances to optimality.

In Table 4 we report, only for the unsolved instances, the linear
relaxation value and the best feasible solution value (labeled as LB and
UB, respectively) that the solver had obtained on reaching the time
limit. In this table, it is interesting to note that the differences when
LB and UB are compared after an hour of computation are large for
most instances, which means that these instances would have required
a large additional amount of computing time to be solved to optimality.

In summary, Tables 3 and 4 indicate that for medium and high
density instances it may be reasonable to resort to ad-hoc metaheuristic
methods if we need high-quality feasible solutions in short computing
times for the RPP-LC.

4.3. Solving the problem with the GA

In this section, we test the ability of our GA method to obtain
high-quality solutions in short computing times.


https://www.dropbox.com/scl/fo/pue18avllpzi0hmhnf28k/AISr3UC1hhrC7sZG_8hJn3U?rlkey=vbkl9ixs3cy762e8g1m7xqpkq&st=8u7ya19b&dl=0
https://www.dropbox.com/scl/fo/pue18avllpzi0hmhnf28k/AISr3UC1hhrC7sZG_8hJn3U?rlkey=vbkl9ixs3cy762e8g1m7xqpkq&st=8u7ya19b&dl=0
https://www.dropbox.com/scl/fo/pue18avllpzi0hmhnf28k/AISr3UC1hhrC7sZG_8hJn3U?rlkey=vbkl9ixs3cy762e8g1m7xqpkq&st=8u7ya19b&dl=0
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Table 3 Table 4
CPU time (sec.) required to solve each instance. Best bounds for each instance on reaching the time limit.
Instance information Density Instance information Density
Set Subset Name 25% 50% 75% Set Subset Name 50% 75%
EO7WONP 0.52 0.48 0.93 LB UB LB UB
EO7WOP 0.11 0.32 1.39 E20WOP 208237 238647
E07 E07W1000NP 0.41 0.31 L.57 E  E20 E20W2000P 1668044 1906916
EO7W100NP 0.54 0.67 0.97 E20W400P 523025 577061
E07W200P 0.21 0.66 2.2
EO7W20P 0.13 0.47 117 hertzd10_np 141771 153391 181597 232784
Hd hertzd10_p 109056 130926 175565 222270
E10WONP 077 1.83 3,0 hertzd11_np 84999 93779 133550 159974
E E10WOP 075 1.23 20.73 hertzd11_p 69654 83318 89120 130507
10 E10W1000NP 0.57 0.83 2.61
E10W1000P 0.63 1.05 135.56 Hg hertzgl1 np 2793 3191
E10W200NP 0.73 1.43 3.89 H hertzr4_np 1665032 1839675 2785578 3196238
E10W200P 0.55 1.86 6.45 hertzr4_p 1640723 1808576 3400065 3976624
E20WONP 1.05 36.19 514,52 hertzr5 p 302663 317609
E20WOP 2.03 104.73 tl Hr hertzr6_p 314891 333375
E20W10000NP 1.51 4.94 1292.24 hertzr7_np 1282996 1492385 2121829 2356577
E20 E20W2000NP 0.89 20.79 703,0 hertzr7_p 728382 785191 1147418 1323872
E20W2000P 0.69 21.46 tl hertzr8 p 669534 744845
E20W400P 0.92 130.38 t.L PO2WONP 33458 40192
hertzd10_np 153.33 L L PO2WOP 30218 34087 50361 70933
hertzd10_p 3048.07 tlL tL P02 PO2W2000NP 746 983 819375
Hd hertzd11_np 118.92 el tl PO2W2000P 759816 768073 882226 945387
hertzd11_p 28.26 tl tl PO2W250NP 137491 148675
P0O2W250P 88511 90788 137051 153925
hertzg10_np 0.79 10.28 99.98 P
hertzg10_p 0.58 5.88 327.72 PO4WONP 7643 8608
Hg hertzg11np 1.31 795.77 L. PO4WOP 2107 2492 5012 7005
hertzg11_p 2.3 45.75 3541.55 P04 PO4W1000NP 110944 120885
PO4W1000P 110283 116538
:e”"l—“l’ 01 0.16 0.89 PO4W130NP 19370 21064
ertzrl p 0.07 0.24 2.37 PO4W70P 13059 14807
hertzr2 np 0.1 0.29 2.13
H hertzr2_p 0.14 0.29 4.58
hertzr3_np 0.13 0.27 1.76 optimal value obtained with CPLEX; the second provides the GAP value
hertzr3 p 0.13 0.27 36,0 measured as 100 x 2Z6A—UBCPLEX . anq the third provides the CPU time
hertzr4_np 1.42 tl tl UBcprEx
Hr hertzr4_p 4.88 tl tl. of the GA in seconds. These last columns showing the CPU time can
hertzr5_np 0.54 7.06 187.72 be directly compared with the values of the CPU time needed by the
hertzr5_p 0.46 22.38 tl f lation that llected in Table 3. S b t ise f
hertzr6.np 0.28 6.06 123 ormulation that are collected in Table 3. Some observations arise from
hertzr6_p 0.47 22.11 tl this table:
hertzr7_np 9.33 tl tl X
hertzr7 p 13.71 L tl » From the set of columns for 25% density, we can see that the GA
hertzr8_np 0.5 3.56 3107.43 was able to match the optimal value of all the instances tested (all
hertzr8_p 0.47 13.56 tl with 0.0% of GAP). When looking at the CPU times, we can see
PO1WONP 0.21 0.29 0.72 that, in general, the GA method finishes in very short computing
POIWOP 0.16 0.36 2.58 times. Hd was the only subset of instances that required more
PO1 POIW300NP 0.09 0.31 0.8 computing effort, but even for that set, the resulting CPU times
POIW300P 0.12 0.27 0.53 puting ’ ' > tng
POTW35P 0.11 0.41 0.62 compare favorably to the CPU times with CPLEX in Table 3.
PO1W65NP 0.11 0.31 0.66 » When looking at the results in the columns for 50% density, we
PO2WONP 1.67 3425.58 L first notice that the GA method matched all the optimal values
PO2WOP 1.56 tl. tl. (again, 0% GAP), and that it clearly outperforms CPLEX in terms
p P02 PO2W2000NP 1.79 2%9.69 t.}. of computing times.
PO2W2000P 1.99 tl. tl . . . .
. 0,
PO2W250NP 175 832,01 ol Regarding the results of the instances }mth 75% density, we see
PO2W250P 1.3 L tl that the GA method matches all the optimal values except for four
POAWONP 122 24176 L instances .(thos.e boldfaced in the tal?le). For these f01.1r 1nstanc?s,
PO4WOP 37.54 1 1 the GAP is quite small. When looking at the CPU times, again,
P04 PO4W1000NP 1.06 909.93 tl they compare favorably to the CPU time with CPLEX in Table 3.
PO4W1000P 1.32 194.87 tl ) ) ) )
PO4W130NP 0.79 797.47 tL Given that most of the instances for which we know the optimal value
PO4W70P 3.31 1368.18 tl were solved by the GA in very low CPU times, we can say that the

For this purpose, we first perform an experiment to see whether
the GA is a good method to match the optimal solutions for the
instances in the test-bed for which we know the optimal value. This
information is collected in Table 5, in which we present the results
for the objective value and CPU time in those instances for which we
obtained the optimal value using the formulation. In this table, the first
three columns contain the instance information. They are followed by
three sets of columns, one for each density value (25%, 50% and 75%).
For each density, the table includes three columns: the first provides the

GA is able to obtain high-quality solutions in short computing times,
and can be recommended as a very good alternative to the formulation
deployed in CPLEX if one needs a reliable and fast solving method.
To supplement the information above on the robustness of the GA,
we performed an experiment to compare the values of the best feasible
solutions obtained by the GA and CPLEX when the latter could not solve
the instance to optimality in the time limit provided. In Table 6 we
report the results of that experiment. Concerning this comparison, we
can see that the GA clearly outperforms CPLEX in terms of the values
of the best solutions provided in very short computing times, since it
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Table 5
Comparison of GA and CPLEX in optimally solved instances.
Instance information Density
Set Subset Name 25% 50% 75%
UB Cplex Gap GA CPU GA UB Cplex Gap GA CPU GA UB Cplex Gap GA CPU GA
E07WONP 391 0% 0.0 992.5 0% 0.03 1967.5 0% 0.09
EO7WOP 49.5 0% 0.0 176 0% 0.03 302 0% 0.08
EO7 E07W1000NP 16222 0% 0.0 21775.5 0% 0.05 33698.5 0% 0.06
E07W100NP 1882 0% 0.0 2561 0% 0.03 4195.5 0% 0.07
E07W200P 3276 0% 0.0 5202.5 0% 0.02 7616 0% 0.06
E07W20P 469.5 0% 0.0 758.5 0% 0.03 1192 0% 0.08
E10WONP 7542 0% 0.06 20223.5 0% 0.72 38212.5 0% 1.28
E10WOP 12255.5 0% 0.05 22366 0% 0.07 52045.5 0% 0.44
E E10 E10W1000NP 195921 0% 0.01 257328 0% 0.06 400 306 0% 0.47
E10W1000P 200663 0% 0.01 299568 0% 0.07 434771.5 0% 0.54
E10W200NP 46 662.5 0% 0.04 77 038.5 0% 0.08 122444.5 0% 0.7
E10W200P 45088.5 0% 0.03 78039 0% 0.08 113452 0% 0.29
E20WONP 185987.5 0% 0.05 637128 0% 5.53 1225498 0.44% 207.1
E20WOP 42582 0% 0.05 93732.5 0% 0.35
E20 E20W10000NP 4717132 0% 0.04 5927 434.5 0% 0.69 8529676 0.13% 13.98
E20W2000NP 1188121 0% 0.05 1963934 0% 1.45 2766971.5 0% 9.7
E20W2000P 704 420.5 0% 0.05 1280905 0% 5.84
E20W400P 195831 0% 0.08 395670 0% 6.62
hertzd10_np 68847 0% 2.87
Hd hertzd10_p 66702.5 0% 23.16
hertzd11_np 51172.5 0% 0.28
hertzd11_p 38750 0% 1.51
hertzg10_np 964.5 0% 0.03 1402.5 0% 0.68 1789 0% 24.58
Hg hertzg10_p 560.5 0% 0.04 795 0% 0.74 1291 0% 9.43
hertzgll_np 1147 0% 0.06 2219 0% 18.6
hertzgll_p 601.5 0% 0.08 937 0% 2.08 1403 0.78% 125.17
hertzrl_np 89436.5 0% 0.0 176 403.5 0% 0.03 280360.5 0% 0.12
hertzrl p 165216.5 0% 0.0 243444 0% 0.02 335500.5 0% 0.06
hertzr2_np 118772.5 0% 0.0 216 845 0% 0.03 295413.5 0% 0.24
H hertzr2_p 112946.5 0% 0.0 125868 0% 0.04 234076.5 0% 1.01
hertzr3_np 79245.5 0% 0.0 118480 0% 0.03 209564 0% 0.36
hertzr3_p 84804.5 0% 0.0 197 336 0% 0.03 319300.5 0% 0.15
hertzr4_np 902738 0% 0.19
Hr hertzr4 p 682282 0% 0.1
hertzr5_np 103262.5 0% 0.04 177 665 0% 0.37 296 577 0% 19.35
hertzr5_p 99600.5 0% 0.05 195347.5 0% 0.59
hertzr6_np 139532.5 0% 0.03 231063.5 0% 0.11 307 200 0% 3.12
hertzr6_p 128476 0% 0.02 212934.5 0% 0.6
hertzr7_np 601730 0% 0.27
hertzr7_p 391570 0% 3.12
hertzr8_np 194362 0% 0.03 378357.5 0% 1.68 623000.5 0.01% 7.42
hertzr8_p 222149.5 0% 0.03 452583.5 0% 0.49
PO1WONP 1067.5 0% 0.0 1850.5 0% 0.2 3982.5 0% 0.09
PO1WOP 855 0% 0.0 1567.5 0% 0.08 2108 0% 0.24
POl PO1W300NP 18809 0% 0.0 20492.5 0% 0.03 27150.5 0% 0.16
PO1W300P 15355.5 0% 0.01 22623.5 0% 0.02 25429.5 0% 0.09
PO1W35P 2180.5 0% 0.0 3420.5 0% 0.04 4913 0% 0.88
PO1IW65NP 5566.5 0% 0.0 7046.5 0% 0.05 9062 0% 0.18
PO2WONP 6695 0% 0.06 22759 0% 38.76
PO2WOP 14460 0% 0.08
P P02 PO2W2000NP 288112.5 0% 0.06 481 899.5 0% 3.28
PO2W2000P 425078 0% 0.06
PO2W250NP 52048.5 0% 0.06 90402 0% 15.43
PO2W250P 57104.5 0% 0.17
PO4WONP 1419 0% 0.06 3811 0% 78.01
P04WOP 1313.5 0% 0.09
PO4 P04W1000NP 45333 0% 0.07 84370 0% 16.18
P04W1000P 58627.5 0% 0.13 83371.5 0% 8.49
P04W130NP 6490.5 0% 0.06 14779.5 0% 2.46
P04W70P 4202.5 0% 0.08 9061.5 0% 9.95

is able to systematically improve on the bounds, in almost all cases,
compared to the CPLEX results. In our opinion, this confirms the fact
that the GA we designed is an attractive alternative solving method for
the RPP-LC.

A comment on the stability of the obtained solutions
When comparing the best GA solutions with other algorithms, it
is essential to demonstrate the stability of the solutions obtained with

respect to the randomness applied in some parts of the algorithm. This
is especially important when randomness plays an important role, as is
the case for our proposed GA, to check whether the resulting solution
outputs differ from each other.

Such stability can be analyzed by repeatedly running the GA with
different random seeds. In particular, we performed an experiment in
which each of the 180 instances was solved five times by our GA, using

10
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Table 6
Comparison of best-known solution values with GA and CPLEX.
Instance information Density
Set Subset Name 50% 75%
UB Cplex UB GA Gap GA CPU GA UB Cplex UB GA Gap GA CPU GA
E20WOP 238647 229378 —3.88% 151.12
E E20 E20W2000P 1906915.5 1890231.5 —-0.87% 137.49
E20W400P 577 061 562138 -2.59% 225.03
hertzd10_np 153390.5 150122.5 —-2.13% 194.59 232783.5 207 615.5 -10.81% 222.28
Hd hertzd10_p 130926 128293 -2.01% 31.71 222270 212145 —4.56% 177.91
hertzd11_np 93778.5 92028.5 -1.87% 129.6 159974 149599 —6.49% 301.03
hertzd11 p 83317.5 80822.5 —2.99% 8.28 130507 111977 -14.20% 39.49
Hg hertzgl1 _np 3191 3040 -4.73% 45.5
H hertzr4_np 1839674.5 1839217.5 —0.02% 69.28 3196238 3098112 -3.07% 123.97
hertzr4_p 1808576 1808576 0.00% 7.51 3976623.5 3962092.5 —-0.37% 46.9
hertzr5_p 317609 317420 —-0.06% 92.27
Hr hertzr6_p 333375 333375 0.00% 0.74
hertzr7_np 1492384.5 1454855.5 -2.51% 143.7 2356577 2343967 —-0.54% 224.62
hertzr7_p 785191 784432 —-0.10% 8.38 1323871.5 1303384.5 -1.55% 301.36
hertzr8_p 744844.5 744 325.5 -0.07% 48.15
PO2WONP 40192 38576 —4.02% 203.65
PO2WOP 34087 34087 0.00% 9.56 70933 65114 —-8.20% 37.6
P02 PO2W2000NP 819375 811188 —-1.00% 184.05
P0O2W2000P 768073 768061 0.00% 53.35 945 387 941813 —-0.38% 52.78
PO2W250NP 148675 147343 —-0.90% 209.53
P PO2W250P 90787.5 90787.5 0.00% 1.23 153924.5 153844.5 —0.05% 13.52
PO4WONP 8607.5 8611.5 0.05% 216.8
PO4WOP 2492 2492 0.00% 178.9 7004.5 6746.5 —3.68% 274.18
P04 PO4W1000NP 120884.5 119843.5 —-0.86% 225.75
P04W1000P 116538 116517 —-0.02% 98.86
PO4W130NP 21063.5 20769.5 -1.40% 30.96
P04W70P 14807 14517 -1.96% 126.75

a different random seed generator each time in our GA code—in our
case, setting the Matlab’s rng (i) function with i € {1,...,5} at the
beginning of the code.

In 161 of the 180 instances, the GA produced completely stable
optimal solutions, that is, it did not show any differences among the
five solutions obtained. This indicates that in the set of instances that
we are dealing with, in almost 90% of the cases the GA produced
stable results. For the remaining 19 instances, the GA showed different
optimal values in their repeated executions. In Table 7, we report
some statistical summaries of the results obtained in these 19 instances.
Specifically, we calculated the sample mean (column denoted by x), the
standard deviation (s), the minimum and maximum observation values
(min and mazx, respectively) and the coefficient of variation (cv = %)
for the five runs of each instance. We use the coefficient of variation
as a scale-free metric that provides a standardized way to compare
variability between data sets in which the scales differ greatly among
instances. A high cv value indicates a greater dispersion of data points
around the mean, suggesting higher relative variability. Conversely, a
low cv implies lower relative variability. In domains where accuracy is
paramount, a cv < 0.1 may be considered acceptable. From Table 7, we
can see that the cv values are very small in all of the instances reported,
indicating that our GA is very stable and robust.

Comparison with Hexaly

The last point we wish to address concerns the justification of a
specialized GA proposal to solve the RPP-LC rather than a straight-
forward application of a mathematical formulation to an off-the-shelf
solver based on (meta) heuristic rules. This analysis would provide a
more comprehensive assessment of the performance of the GA in the
context of the task it is intended to accomplish: to obtain high-quality
solutions in short computing times.

To perform such an analysis, we carried out an experiment that con-
sisted of providing our formulation from Section 2.2 to the commercial
solver Hexaly.> Hexaly is a well-known solver, previously marketed as

2 https://www.hexaly.com.
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LocalSolver, mainly based on heuristic and meta-heuristic searching
strategies. Similarly to our GA method, Hexaly can be used as an
alternative solving method for a given problem formulation and input
data for which we do not require a guarantee of optimality. In our
experiment, for each of the 180 instances, we let Hexaly use all cores
of our CPU and set the time limit to 300 s.

In Table 8, we report a summary of the comparison of the results
obtained by Hexaly and our GA, for which we also set the time limit to
300 s. In particular, for each of the two methods, we report the relative
deviation of the best solution value obtained (UB) with respect to the
best known bound (UB*), computed as 100 x UBJBL,{B), only for those
instances with relative deviation greater than 0. The last row of the
table reports the average relative deviation for both methods in each
set of instances reported. From this table, several interesting findings
arise:

» On the one hand, we can see that our GA method performs very
well, since almost all relative deviations are 0%.

On the other hand, we can see that Hexaly performs quite well
when solving instances with 25% of density. However, for the
instances with density 50% and 75%, the relative deviation dra-
matically increases, hence it underperforms compared to our GA
proposal. Notice that, for some instances, Hexaly cannot obtain
a feasible solution after the time limit provided, indicated with
“t.I”. in the table.

Therefore, these results provide convincing evidence of the superior
performance of our proposed modified genetic single-objective algo-
rithm, especially when compared to other off-the-shelf alternatives
based on heuristic and metaheuristic strategies.

5. Conclusions
In this paper, we have introduced a variant of the Chinese postman

problem that takes account of load-dependent cost, considering only
a subset of the edges in the graph as required edges. A mathematical
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Table 7
Statistical summary of the 19 instances with variability among five repeated runs.
Instance information Density
Set Subset Name 50% 75%
X s min max cv X s min max cv
E E20 E20W2000NP 2770802 8565 2766972 2786125 0.0031
hertzd10_np 202520 1021 201084 203891 0.0050
Hd hertzd10_p 128067 97 128005 128233 0.0008 210791 122 210663 210930 0.0006
hertzd11_np 146 474 761 145213 147147 0.0052
hertzd11_p 111878 115 111720 112030 0.0010
H - hertzgl1 np 3013 15 3001 3040 0.0051
§ hertzgll p 1406 6 1403 1417 0.0045
hertzr4_np 1838745 1056 1836857 1839218 0.0006
Hr hertzr7_np 1456509 3697 1454856 1463122 0.0025 2319845 3704 2317310 2325477 0.0016
hertzr7_p 1303444 172 1303295 1303678 0.0001
PO2WONP 38768 430 38576 39538 0.0111
PO2 PO2WOP 65116 4 65114 65122 0.0001
PO2W250NP 147019 74 146943 147132 0.0005
P02W250P 132442 6 132436 132447 0.0001
P PO4WONP 8550 74 8471 8617 0.0087
P04WOP 2493 3 2492 2498 0.0011 6720 7 6714 6731 0.0011
P04 P04W1000P 116515 1 116514 116517 0.0001
P04W130NP 20675 28 20663 20726 0.0014
P04W70P 14523 8 14517 14531 0.0005
Table 8
Comparison of relative deviation values of GA and Hexaly.
Instance information Density
Set Subset Name 25% 50% 75%
GA Hexaly GA Hexaly GA Hexaly
E20WONP 0.45% 0.00%
E20WOP 0% 4.10% 0% 17.55%
E E20 E20W10000NP 0% 11.95%
E20W2000NP 0% 16.40%
E20W2000P 0% 5.51% 0% 11.78%
E20W400P 0% 3.07% 0% 29.01%
hertzd10_np 0% 2.22% 0% 42.82% 0% tl
Hd hertzd10_p 0% 7.52% 0% tl 0% tl
hertzd11_np 0% 1.69% 0% 10.91% 0% tl
hertzd11 p 0% 27.95% 0% tl
hertzg10_np 0% 7.83%
- hertzgl0_p 0% 4.49%
s hertzgl1 _np 0% 2.21% 0% 5.62%
H hertzgll p 0% 20.65%
hertzr4_np 0% 11.86% 0% 50.13%
hertzr4_p 0% 47.16% 0% 20.21%
hertzr5_np 0% 1.56%
Hr hertzr5_p 0% 0.24%
hertzr7_np 0% 30.75% 0% tl
hertzr7_p 0% 4.38% 0% tl.
hertzr8_np 0% 2.30%
hertzr8_p 0% 7.64%
PO2WONP 0% 6.27% 0% 1.41%
PO2WOP 0% 0.34% 0% 3.41%
PO2 PO2W2000NP 0.01% 0.00% 0% 8.18%
P02W2000P 0% 0.07% 0% 2.65%
PO2W250NP 0% 2.88% 0% 7.56%
P P0O2W250P 0% 0.01% 0% 0.99% 0% 29.86%
PO4WONP 0% 4.38% 0.19% 0.00%
P04WOP 0% 1.44% 0% 1.93%
PO4 P0O4W1000NP 0% 6.13% 0% 21.53%
P04W1000P 0% 2.70% 0% 95.62%
P04W130NP 0% 8.65% 0% 67.24%
P04W70P 0% 5.69% 0% 29.99%
Average 0.00% 2.86% 0.00% 10.01% 0.02% 17.03%
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model for the new variant has been formulated, adapting the case in
which the edges are not connected with the depot directly. We have
proposed a genetic algorithm to solve it, using a 2-cut points technique
for crossover, a relocation method for mutation, elitist criteria, and
three local search methods.

To test the formulation proposed and the genetic algorithm, a set of
instances derived from well-known related problems has been created,
considering densities of 25%, 50%, and 75% or the original graphs. The
performance of the GA has been satisfactory, outperforming in terms of
computing time almost all the results obtained by exact and heuristic
methods based on the formulation, thus confirming that the GA we
have designed is an attractive solving method.
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Appendix

See Tables 9-11

Table 9
25% density.

Instance Exact method GA Exact method vs GA

UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP
PO1WONP 1067.50 1067.50 0.00 optimal 0.21 1067.50 0.00 0.00 0.20
PO1WOP 855.00 855.00 0.00 optimal 0.16 855.00 0.00 0.00 0.16
PO1W65NP 5566.50 5566.50 0.00 optimal 0.11 5566.50 0.00 0.00 0.11
PO1W35P 2180.50 2180.50 0.00 optimal 0.11 2180.50 0.00 0.00 0.11
PO1W300NP 18 809.00 18 809.00 0.00 optimal 0.09 18 809.00 0.00 0.00 0.09
PO1W300P 15355.50 15355.50 0.00 optimal 0.12 15355.50 0.01 0.00 0.10
PO2WONP 6695.00 6695.00 0.00 optimal 1.67 6695.00 0.06 0.00 1.61
PO2WOP 14460.00 14.460.00 0.00 optimal 1.56 14 460.00 0.08 0.00 1.48
PO2W250NP 52048.50 52048.50 0.00 optimal 1.75 52048.50 0.06 0.00 1.69
PO2W250P 57104.50 57104.50 0.00 optimal 1.30 57104.50 0.17 0.00 1.13
PO2W2000NP 288112.50 288112.50 0.00 optimal 1.79 288112.50 0.06 0.00 1.73
PO2W2000P 425078.00 425078.00 0.00 optimal 1.99 425078.00 0.06 0.00 1.93
PO4WONP 1419.00 1419.00 0.00 optimal 1.22 1419.00 0.06 0.00 1.16
PO4WOP 1313.50 1313.50 0.00 optimal 37.54 1313.50 0.09 0.00 37.45
PO4W70P 4202.50 4202.50 0.00 optimal 3.31 4202.50 0.08 0.00 3.24
P04W130NP 6490.50 6490.50 0.00 optimal 0.79 6490.50 0.06 0.00 0.73
PO4W1000NP 45333.00 45333.00 0.00 optimal 1.06 45333.00 0.07 0.00 0.99
P04W1000P 58627.50 58627.50 0.00 optimal 1.32 58627.50 0.13 0.00 1.19
EO7WONP 391.00 391.00 0.00 optimal 0.52 391.00 0.00 0.00 0.52
EO7WOP 49.50 49.50 0.00 optimal 0.11 49.50 0.00 0.00 0.11
EO7W100NP 1882.00 1882.00 0.00 optimal 0.54 1882.00 0.00 0.00 0.54
EO7W20P 469.50 469.50 0.00 optimal 0.13 469.50 0.00 0.00 0.13
EO7W1000NP 16222.00 16222.00 0.00 optimal 0.41 16222.00 0.00 0.00 0.41
EO7W200P 3276.00 3276.00 0.00 optimal 0.21 3276.00 0.00 0.00 0.21
E10WONP 7542.00 7542.00 0.00 optimal 0.77 7542.00 0.06 0.00 0.71
E10WOP 12255.50 12255.50 0.00 optimal 0.75 12255.50 0.05 0.00 0.70
E10W200NP 46 662.50 46 662.50 0.00 optimal 0.73 46 662.50 0.04 0.00 0.70
E10W200P 45088.50 45087.50 1.00 optimal 0.55 45088.50 0.03 0.00 0.52
E10W1000NP 195921.00 195921.00 0.00 optimal 0.57 195921.00 0.01 0.00 0.56
E10W1000P 200 663.00 200 663.00 0.00 optimal 0.63 200 663.00 0.01 0.00 0.62
E20WONP 185987.50 185987.50 0.00 optimal 1.05 185987.50 0.05 0.00 1.00
E20WOP 42582.00 42582.00 0.00 optimal 2.03 42582.00 0.05 0.00 1.98
E20W2000NP 1188121.00 1188121.00 0.00 optimal 0.89 1188121.00 0.05 0.00 0.84
E20W400P 195831.00 195831.00 0.00 optimal 0.92 195 831.00 0.08 0.00 0.84
E20W10000NP 4717132.00 4717132.00 0.00 optimal 1.51 4717132.00 0.04 0.00 1.47
E20W2000P 704 420.50 704 420.50 0.00 optimal 0.69 704 420.50 0.05 0.00 0.65
hertzrl_np 89436.50 89436.50 0.00 optimal 0.10 89436.50 0.00 0.00 0.10
hertzrl_p 165216.50 165216.50 0.00 optimal 0.07 165216.50 0.00 0.00 0.07
hertzr2_np 118772.50 118772.50 0.00 optimal 0.10 118772.50 0.00 0.00 0.10
hertzr2_p 112946.50 112946.50 0.00 optimal 0.14 112946.50 0.00 0.00 0.14
hertzr3_np 79245.50 79245.50 0.00 optimal 0.13 79245.50 0.00 0.00 0.13
hertzr3_p 84 804.50 84 804.50 0.00 optimal 0.13 84 804.50 0.00 0.00 0.13
hertzr4_np 902 738.00 902 738.00 0.00 optimal 1.42 902 738.00 0.19 0.00 1.23
hertzr4_p 682282.00 682282.00 0.00 optimal 4.88 682282.00 0.10 0.00 4.77
hertzrb_np 103262.50 103262.50 0.00 optimal 0.54 103262.50 0.04 0.00 0.50
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Table 9 (continued).

Instance Exact method GA Exact method vs GA
UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP
hertzrb_p 99 600.50 99 600.50 0.00 optimal 0.46 99 600.50 0.05 0.00 0.42
hertzr6_np 139532.50 139532.50 0.00 optimal 0.28 139532.50 0.03 0.00 0.25
hertzr6_p 128476.00 128476.00 0.00 optimal 0.47 128476.00 0.02 0.00 0.45
hertzr7_np 601 730.00 601 730.00 0.00 optimal 9.33 601 730.00 0.27 0.00 9.06
hertzr7_p 391570.00 391570.00 0.00 optimal 13.71 391570.00 3.12 0.00 10.60
hertzr8_np 194 362.00 194362.00 0.00 optimal 0.50 194362.00 0.03 0.00 0.48
hertzr8_p 222149.50 222149.50 0.00 optimal 0.47 222149.50 0.03 0.00 0.43
hertzd10_np 68 847.00 68 847.00 0.00 optimal 153.33 68 847.00 2.87 0.00 150.46
hertzd10_p 66702.50 66702.50 0.00 optimal 3048.07 66702.50 23.16 0.00 3024.91
hertzdili_np 51172.50 51172.50 0.00 optimal 118.92 51172.50 0.28 0.00 118.64
hertzdill_p 38750.00 38750.00 0.00 optimal 28.26 38750.00 1.51 0.00 26.75
hertzglO_np 964.50 964.50 0.00 optimal 0.79 964.50 0.03 0.00 0.76
hertzglO_p 560.50 560.50 0.00 optimal 0.58 560.50 0.04 0.00 0.54
hertzgll_np 1147.00 1147.00 0.00 optimal 1.31 1147.00 0.06 0.00 1.25
hertzgll_p 601.50 601.50 0.00 optimal 2.30 601.50 0.08 0.00 222
Table 10
50% density.
Instance Exact method GA Exact method vs GA
UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP
PO1WONP 1850.50 1850.50 0.00 optimal 0.29 1850.50 0.20 0.00 0.09
PO1WOP 1567.50 1567.50 0.00 optimal 0.36 1567.50 0.08 0.00 0.28
PO1W6E5NP 7046.50 7046.50 0.00 optimal 0.31 7046.50 0.05 0.00 0.27
PO1W35P 3420.50 3420.50 0.00 optimal 0.41 3420.50 0.04 0.00 0.37
PO1W300NP 20492.50 20492.50 0.00 optimal 0.31 20492.50 0.03 0.00 0.27
PO1W300P 22623.50 22623.50 0.00 optimal 0.27 22623.50 0.02 0.00 0.25
PO2WONP 22759.00 22759.00 0.00 optimal 3425.58 22759.00 38.76 0.00 3386.81
PO2WOP 34087.00 30218.11 3868.89 time_limit 3600.00 34087.00 9.56 0.00 3590.44
PO2W250NP 90402.00 90393.37 0.00 optimal 832.01 90402.00 15.43 0.00 816.59
PO2W250P 90787.50 88511.16 2276.34 time_limit 3601.80 90787.50 1.23 0.00 3600.57
PO2W2000NP 481899.50 481 899.50 0.00 optimal 219.69 481 899.50 3.28 0.00 216.41
PO2W2000P 768073.00 759815.92 8257.08 time_limit 3600.00 768 061.00 53.35 12.00 3546.65
PO4WONP 3811.00 3811.00 0.00 optimal 441.76 3811.00 78.01 0.00 363.76
PO4WOoP 2492.00 2106.67 385.33 time_limit 3600.75 2492.00 178.90 0.00 3421.85
P04W70P 9061.50 9061.50 0.00 optimal 1368.18 9061.50 9.95 0.00 1358.23
P0O4W130NP 14779.50 14779.50 0.00 optimal 797.47 14779.50 2.46 0.00 795.01
P04W1000NP 84370.00 84370.00 0.00 optimal 909.93 84370.00 16.18 0.00 893.75
P04W1000P 83371.50 83371.50 0.00 optimal 194.87 83371.50 8.49 0.00 186.38
EO7WONP 992.50 992.50 0.00 optimal 0.48 992.50 0.03 0.00 0.45
EO7WOP 176.00 176.00 0.00 optimal 0.32 176.00 0.03 0.00 0.29
EO7W100NP 2561.00 2561.00 0.00 optimal 0.67 2561.00 0.03 0.00 0.65
EO7W20P 758.50 758.50 0.00 optimal 0.47 758.50 0.03 0.00 0.44
EO7W1000NP 21775.50 21775.50 0.00 optimal 0.31 21775.50 0.05 0.00 0.26
EO07W200P 5202.50 5202.50 0.00 optimal 0.66 5202.50 0.02 0.00 0.64
E10WONP 20223.50 20223.50 0.00 optimal 1.83 20223.50 0.72 0.00 1.11
E10WOP 22366.00 22366.00 0.00 optimal 1.23 22366.00 0.07 0.00 1.16
E10W200NP 77038.50 77038.50 0.00 optimal 1.43 77038.50 0.08 0.00 1.35
E10W200P 78039.00 78 039.00 0.00 optimal 1.86 78039.00 0.08 0.00 1.78
E10W1000NP 257328.00 257328.00 0.00 optimal 0.83 257328.00 0.06 0.00 0.77
E10W1000P 299568.00 299 568.00 0.00 optimal 1.05 299 568.00 0.07 0.00 0.97
E20WONP 637128.00 637 128.00 0.00 optimal 36.19 637128.00 5.53 0.00 30.66
E20WOP 93732.50 93732.50 0.00 optimal 104.73 93732.50 0.35 0.00 104.39
E20W2000NP 1963934.00 1963 934.00 0.00 optimal 20.79 1963 934.00 1.45 0.00 19.34
E20W400P 395 670.00 395 670.00 0.00 optimal 130.38 395670.00 6.62 0.00 123.77
E20W10000NP 5927434.50 5927434.50 0.00 optimal 4.94 5927434.50 0.69 0.00 4.25
E20W2000P 1280905.00 1280905.00 0.00 optimal 21.46 1280905.00 5.84 0.00 15.62
hertzrl_np 176 403.50 176 403.50 0.00 optimal 0.16 176 403.50 0.03 0.00 0.13
hertzrl_p 243444.00 243 444.00 0.00 optimal 0.24 243444.00 0.02 0.00 0.21
hertzr2_np 216 845.00 216 845.00 0.00 optimal 0.29 216 845.00 0.03 0.00 0.26
hertzr2_p 125 868.00 125 868.00 0.00 optimal 0.29 125 868.00 0.04 0.00 0.25
hertzr3_np 118 480.00 118480.00 0.00 optimal 0.27 118480.00 0.03 0.00 0.24
hertzr3_p 197 336.00 197 336.00 0.00 optimal 0.27 197 336.00 0.03 0.00 0.24
hertzr4_np 1839674.50 1665032.18 174 642.32 time_limit 3600.00 1839217.50 69.28 457.00 3530.72

(continued on next page)
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Table 10 (continued).

Instance Exact method GA Exact method vs GA
UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP
hertzrd_p 1808 576.00 1640722.89 167853.11 time_limit 3600.00 1808 576.00 7.51 0.00 3592.49
hertzrb_np 177 665.00 177 665.00 0.00 optimal 7.06 177 665.00 0.37 0.00 6.69
hertzrb_p 195347.50 195 347.50 0.00 optimal 22.38 195 347.50 0.59 0.00 21.79
hertzr6_np 231063.50 231063.50 0.00 optimal 6.06 231063.50 0.11 0.00 5.95
hertzr6_p 212934.50 212934.50 0.00 optimal 22.11 212934.50 0.60 0.00 21.51
hertzr7_np 1492384.50 1282995.93 209 388.57 time_limit 3600.00 1454 855.50 143.70 37529.00 3456.30
hertzr7_p 785191.00 728382.31 56 808.69 time_limit 3600.00 784 432.00 8.38 759.00 3591.62
hertzr8_np 378357.50 378357.50 0.00 optimal 3.56 378357.50 1.68 0.00 1.88
hertzr8_p 452583.50 452559.70 23.80 optimal 13.56 452583.50 0.49 0.00 13.07
hertzd10_np 153390.50 141771.01 11619.49 time_limit 3600.00 150 122.50 194.59 3268.00 3405.41
hertzd10_p 130926.00 109 056.40 21869.60 time_limit 3600.00 128293.00 31.71 2633.00 3568.29
hertzdill_np 93778.50 84999.01 8779.49 time_limit 3600.00 92028.50 129.60 1750.00 3470.40
hertzdill_p 83317.50 69 654.01 13663.49 time_limit 3600.00 80822.50 8.28 2495.00 3591.72
hertzglO_np 1402.50 1402.41 0.09 optimal 10.28 1402.50 0.68 0.00 9.60
hertzglO_p 795.00 795.00 0.00 optimal 5.88 795.00 0.74 0.00 5.14
hertzgll_np 2219.00 2219.00 0.00 optimal 795.77 2219.00 18.60 0.00 777.17
hertzgll_p 937.00 937.00 0.00 optimal 45.75 937.00 2.08 0.00 43.67
Table 11
75% density.
Instance Exact method GA Exact method vs GA
UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP
PO1WONP 3982.50 3982.50 0.00 optimal 0.72 3982.50 0.09 0.00 0.63
PO1WOP 2108.00 2108.00 0.00 optimal 2.58 2108.00 0.24 0.00 2.34
PO1W65NP 9062.00 9062.00 0.00 optimal 0.66 9062.00 0.18 0.00 0.48
PO1W35P 4913.00 4913.00 0.00 optimal 0.62 4913.00 0.88 0.00 —0.26
PO1W300NP 27150.50 27150.50 0.00 optimal 0.38 27150.50 0.16 0.00 0.22
PO1W300P 25429.50 25429.50 0.00 optimal 0.53 25429.50 0.09 0.00 0.45
PO2WONP 40192.00 33457.65 6734.35 time_limit 3600.00 38576.00 203.65 1616.00 3396.35
PO2WOP 70933.00 50360.53 20572.47 time_limit 3600.00 65 114.00 37.60 5819.00 3562.40
PO2W250NP 148 675.00 137491.16 11183.84 time_limit 3600.00 147343.00 209.53 1332.00 3390.47
PO2W250P 153924.50 137050.85 16 873.65 time_limit 3613.38 153 844.50 13.52 80.00 3599.85
P0O2W2000NP 819375.00 746 983.37 72391.63 time_limit 3600.00 811188.00 184.05 8187.00 3415.95
PO2W2000P 945 387.00 882226.07 63160.93 time_limit 3600.00 941813.00 52.78 3574.00 3547.22
PO4WONP 8607.50 7642.75 964.75 time_limit 3600.00 8611.50 216.80 —4.00 3383.20
P0O4WOP 7004.50 5012.23 1992.27 time_limit 3600.00 6746.50 274.18 258.00 3325.82
PO4W70P 14 807.00 13058.98 1748.02 time_limit 3600.00 14517.00 126.75 290.00 3473.25
P04W130NP 21063.50 19370.13 1693.37 time_limit 3600.00 20769.50 30.96 294.00 3569.04
P04W1000NP 120884.50 110944.43 9940.07 time_limit 3600.00 119843.50 225.75 1041.00 3374.25
P04W1000P 116538.00 110282.61 6255.39 time_limit 3600.00 116517.00 98.86 21.00 3501.14
EO7WONP 1967.50 1967.50 0.00 optimal 0.93 1967.50 0.09 0.00 0.84
EO7WOP 302.00 302.00 0.00 optimal 1.39 302.00 0.08 0.00 1.30
EO7W100NP 4195.50 4195.50 0.00 optimal 0.97 4195.50 0.07 0.00 0.90
EQ7W20P 1192.00 1192.00 0.00 optimal 1.17 1192.00 0.08 0.00 1.09
EO7W1000NP 33698.50 33698.50 0.00 optimal 1.57 33698.50 0.06 0.00 1.51
EO7W200P 7616.00 7616.00 0.00 optimal 2.20 7616.00 0.06 0.00 2.14
E10WONP 38212.50 38212.50 0.00 optimal 3.00 38212.50 1.28 0.00 1.72
E10WOP 52045.50 52045.50 0.00 optimal 20.73 52045.50 0.44 0.00 20.29
E10W200NP 122444.50 122444.50 0.00 optimal 3.89 122 444.50 0.70 0.00 3.19
E10W200P 113 452.00 113452.00 0.00 optimal 6.45 113452.00 0.29 0.00 6.17
E10W1000NP 400306.00 400306.00 0.00 optimal 2.61 400306.00 0.47 0.00 2.14
E10W1000P 434771.50 434771.50 0.00 optimal 135.56 434771.50 0.54 0.00 135.01
E20WONP 1225498.00 1225498.00 0.00 optimal 514.52 1230961.00 207.10 —5463.00 307.42
E20WOP 238647.00 208236.84 30410.16 time_limit 3600.00 229378.00 151.12 9269.00 3448.88
E20W2000NP 2766971.50 2766971.50 0.00 optimal 703.00 2766971.50 9.70 0.00 693.30
E20W400P 577061.00 523024.97 54036.03 time_limit 3600.00 562 138.00 225.03 14923.00 3374.97
E20W10000NP 8529 676.00 8529676.00 0.00 optimal 1292.24 8541314.00 13.98 —11638.00 1278.26
E20W2000P 1906915.50 1668 043.76 238871.74 time_limit 3600.00 1890231.50 137.49 16 684.00 3462.51
hertzrl_np 280360.50 280360.50 0.00 optimal 0.89 280360.50 0.12 0.00 0.77
hertzrl_p 335500.50 335500.50 0.00 optimal 2.37 335500.50 0.06 0.00 2.31
hertzr2_np 295413.50 295413.50 0.00 optimal 2.13 295413.50 0.24 0.00 1.89
hertzr2_p 234076.50 234076.50 0.00 optimal 4.58 234076.50 1.01 0.00 3.57
hertzr3_np 209 564.00 209 564.00 0.00 optimal 1.76 209 564.00 0.36 0.00 1.40
hertzr3_p 319300.50 319300.50 0.00 optimal 36.00 319300.50 0.15 0.00 35.85
hertzr4_np 3196238.00 2785577.91 410 660.09 time_limit 3600.00 3098 112.00 123.97 98 126.00 3476.03
hertzr4_p 3976 623.50 3400065.37 576558.13 time_limit 3600.00 3962092.50 46.90 14531.00 3553.10
hertzr5_np 296 577.00 296 577.00 0.00 optimal 187.72 296 577.00 19.35 0.00 168.37
hertzrb_p 317 609.00 302663.09 14945.91 time_limit 3600.00 317420.00 92.27 189.00 3507.73
hertzr6_np 307200.00 307200.00 0.00 optimal 12.30 307200.00 3.12 0.00 9.19
hertzr6_p 333375.00 314 891.06 18483.94 time_limit 3600.00 333375.00 0.74 0.00 3599.26

(continued on next page)

15



D. De Santis et al.

Table 11 (continued).

Knowledge-Based Systems 312 (2025) 113146

Instance Exact method GA Exact method vs GA

UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP
hertzr7_np 2356577.00 2121828.85 234748.15 time_limit 3600.00 2343967.00 224.62 12610.00 3375.38
hertzr7_p 1323871.50 1147417.66 176453.84 time_limit 3600.00 1303 384.50 301.36 20487.00 3298.64
hertzr8_np 623 000.50 623 000.50 0.00 optimal 3107.43 623052.50 7.42 —52.00 3100.01
hertzr8_p 744 844.50 669 533.81 75310.69 time_limit 3600.00 744 325.50 48.15 519.00 3551.85
hertzd10_np 232783.50 181596.55 51186.95 time_limit 3600.00 207 615.50 222.28 25168.00 3377.72
hertzd10_p 222270.00 175564.91 46705.09 time_limit 3600.00 212 145.00 177.91 10 125.00 3422.09
hertzdll_np 159974.00 133549.96 26424.04 time_limit 3600.00 149599.00 301.03 10375.00 3298.97
hertzdll_p 130507.00 89120.31 41386.69 time_limit 3600.00 111977.00 39.49 18530.00 3560.51
hertzglO_np 1789.00 1789.00 0.00 optimal 99.98 1789.00 24.58 0.00 75.40
hertzglO_p 1291.00 1291.00 0.00 optimal 327.72 1291.00 9.43 0.00 318.29
hertzgll_np 3191.00 2793.06 397.94 time_limit 3600.00 3040.00 45.50 151.00 3554.50
hertzgll_p 1403.00 1403.00 0.00 optimal 3541.55 1414.00 125.17 —11.00 3416.38

Data availability

Data will be made available on request.

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. Euler, Solutio problematis ad geometriam situs pertinentis, Comment. Acad.
Sci. Imp. Petropolitanae 8 (1736) 128-140.

K. Mei-Ko, Graphic programming using odd or even points, Chin. Math. 1 (1962)
273-277.

J. Edmonds, E. Johnson, Matching, Euler tours and the Chinese postman problem,
Math. Program. 5 (1973) 88-124.

C. Papadimitriou, On the complexity of edge traversing, J. ACM 23 (3) (1976)
544-554.

E. Minieka, The Chinese postman problem for mixed networks, Manag. Sci. 25
(7) (1979) 643-648.

C. Orloff, A fundamental problem in vehicle routing, Netw. 4 (1974) 35-64.
J.K. Lenstra, A.H.G. Rinnooy Kan, Complexity of vehicle routing and scheduling
problems, Netw. 11 (1981) 221-227.

A. Corberan, G. Laporte, in: A. Corberan, G. Laporte (Eds.), Arc Routing, SIAM
- Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015.

A. Corberan, R. Eglese, G. Hasle, 1. Plana, J.M. Sanchis, Arc routing problems:
A review of the past, present, and future, Netw. 77 (1) (2020) 88-115.

M.C. Mourdo, L.S. Pinto, An updated annotated bibliography on arc routing
problems, Netw. 70 (2017) 144-194.

C. Malandraki, M. Daskin, The maximum benefit Chinese postman problem and
the maximum benefit traveling salesman problem, European J. Oper. Res. 65 (7)
(1993) 218-234.

B. Golden, R. Wong, Capacitated arc routing problems, Netw. 11 (1981) 305-315.
E. Benavent, A. Corberan, D. Lagana, F. Vocaturro, The periodic rural postman
problem with irregular services on mixed graphs, European J. Oper. Res. 276
(2019) 826-839.

M. Reula, R. Marti, Heuristics for the profitable close-enough arc routing
problem, Expert Syst. Appl. 230 (2023) 120513.

E.E. Zachariadis, C.D. Tarantilis, C.T. Kiranoudis, The load-dependent vehicle
routing problem and its pick-up and delivery extension, Transp. Res. B: Methodol.
71 (2015) 158-181.

A. Corberan, G. Erdogan, G. Laporte, I. Plana, J.M. Sanchis, The Chinese postman
problem with load-dependent costs, Transp. Sci. 52 (2) (2018) 370-385.

M. Gendreau, J.-Y. Potvin (Eds.), Handbook of Metaheuristics, Springer, Cham,
Switzerland, 2019.

R. Marti, M. Sevaux, K. Sorensen, 50 years of metaheuristics, To Appear. Eur. J.
Oper. Res. (2024).

J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.

16

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning, Mach.
Learn. 3 (2) (1988) 195-199.

K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182-197.
W. Rivera, Scalable parallel genetic algorithms, Artif. Intell. Rev. 16 (2001)
153-168.

Z. Konfrst, Parallel genetic algorithms: Advances, computing trends, applica-
tions and perspectives, in: International Parallel and Distributed Processing
Symposium, Vol. 18, 2004, p. 162.

A.S. Akopov, L.A. Beklaryan, M. Thakur, B.D. Verma, Parallel multi-agent real-
coded genetic algorithm for large-scale black-box single-objective optimisation,
Knowl.-Based Syst. 174 (2019) 103-122.

W. Zhong, J. Liu, M. Xue, L. Jiao, A multiagent genetic algorithm for global
numerical optimization, IEEE Trans. Syst. Man Cybern. B 34 (2) (2004)
1128-1141.

C. Grosan, A. Abraham, Hybrid evolutionary algorithms: Methodologies, archi-
tectures, and reviews, in: A. Abraham, C. Grosan, H. Ishibuchi (Eds.), Hybrid
Evolutionary Algorithms, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007,
pp. 1-17.

S. Dominguez-Casasola, J.L. Gonzélez-Velarde, Y.A. Rios-Solis, K.A. Reyes-Vega,
The capacitated family traveling salesperson problem, Int. Trans. Oper. Res. 31
(2024) 2123-2153.

A. Felipe, M.T. Ortufo, G. Tirado, New neighborhood structures for the double
traveling salesman problem with multiple stacks, Top 17 (2009) 190-213.

F. Liu, G. Zeng, Study of genetic algorithm with reinforcement learning to solve
the TSP, Expert Syst. Appl. 36 (2009) 6995-7001.

V. Romanuke, Deep clustering of the traveling salesman problem to parallelize
its solution, Comput. Oper. Res. 165 (2024) 106548.

A. Felipe, M.T. Ortufio, G. Righini, G. Tirado, A heuristic approach for the green
vehicle routing problem with multiple technologies and partial recharges, Transp.
Res. E: Logist. Transp. Rev. 71 (2014) 111-128.

G.A. Sgarro, L. Grilli, Ant colony optimization for Chinese postman problem,
Neural Comput. Appl. 36 (2024) 2901-2920.

L. Shen, X. Xu, F. Shao, H. Shao, Y. Ge, A multi-objective optimization model
for medical waste recycling network design under uncertainties, Transp. Res. E:
Logist. Transp. Rev. 184 (2024) 103492.

Y. Wang, S. Luo, J. Fan, L. Zhen, The multidepot vehicle routing problem with
intelligent recycling prices and transportation resource sharing, Transp. Res. E:
Logist. Transp. Rev. 185 (2024) 103503.

P.J.B. Hancock, An empirical comparison of selection methods in evolutionary
algorithms, Lecture Notes in Comput. Sci. 865 (1994) 80-94.

C.W. Ahn, R.S. Ramakrishna, Elitism-based compact genetic algorithms, IEEE
Trans. Evol. Comput. 7 (4) (2003) 367-385.

N. Christofides, V. Campos, A. Corberéan, E. Mota, An Algorithm for the Rural
Postman Problem, Technical Report, Imperial College London ICOR 81.5, 1981.
A. Hertz, G. Laporte, P. Nanchen-Hugo, Improvement procedures for the
undirected rural postman problem, INFORMS J. Comput. 11 (1999) 53-62.


http://refhub.elsevier.com/S0950-7051(25)00193-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb38

	A modified single-objective genetic algorithm for solving the rural postman problem with load-dependent costs
	Introduction
	Our contribution

	Problem statement and mathematical model formulation
	Illustrative example
	A formulation

	A genetic algorithm
	Solution representation
	Adaptation of the genetic algorithm framework
	Obtaining Pop , the initial population of solutions
	Evaluating the fitness of an individual
	Selection of individuals
	Crossover of solutions
	Improvement phase via local search
	Mutation procedure


	Computational experiments
	Experimental design: technology employed and test instances
	Usability of the formulation
	Solving the problem with the GA
	A comment on the stability of the obtained solutions
	Comparison with Hexaly


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Appendix . Data availability
	References


