
Knowledge-Based Systems 312 (2025) 113146

A
0
n

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A modified single-objective genetic algorithm for solving the rural postman
problem with load-dependent costs
David De Santis a,b , Mercedes Landete b , Xavier Cabezas a,c , José María Sanchis d ,
Juanjo Peiró e ,∗

a Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
b Centro de Investigación Operativa, Universidad Miguel Hernández, Elche, Spain
c Centro de Estudios e Investigaciones Estadísticas, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
d Departamento de Matemática Aplicada, Universitat Politècnica de València, Spain
e Departament d’Estadística i Investigació Operativa. Facultat de Ciències Matemàtiques, Universitat de València, Spain

A R T I C L E I N F O

Keywords:
CPP-LC
Genetic algorithm
Rural postman problem
Transportation
Logistics

A B S T R A C T

This study addresses the rural postman problem with load-dependent costs, a variant of the arc routing
problem where the traversal cost of an edge depends on its length and the vehicle’s load. The objective is
to find a minimum-cost tour that services all required edges, a problem of particular importance when the
demand weight is significant compared to the vehicle’s curb weight. We present an integer linear programming
model for the problem and propose a heuristic algorithm based on bio-inspired methodologies to efficiently
obtain near-optimal solutions within short computing times. The effectiveness of the approach is demonstrated
through computational experiments on benchmark instances, and the results highlight the practicality of the
proposed methods.
1. Introduction

Arc routing problems (ARPs) nowadays constitute a well-established
field of hard-to-solve combinatorial optimization problems with many
applications. In these problems, a service is demanded on the arcs and
edges of a given network. Usually, the objective is to find a route along
the arcs and edges that meets a series of constraints, among which is
that the total cost of traversing them is minimal.

This family of problems has been extensively studied over the
last sixty years due to their real-life applications and the technical
challenges they entail. Examples where specific segments of a street
network require service include street cleaning, snow plowing, salt
spreading, road marking, as well as mapping and path inspection.
Other applications arising in cutting machines, plotters and printers
are also naturally formulated as arc routing problems. In other types
of delivery or pickup applications, such as postal service, newspaper
delivery, garbage collection and meter reading, although the demand
is located at points, appropriate models can also be developed as arc
routing problems.

The study of ARPs can be traced back to the 18th century, when Eu-
ler [1] solved the well-known Königsberg bridge problem. This problem
concerned finding a closed walk that traversed each of the seven

∗ Corresponding author.
E-mail addresses: dade@espol.edu.ec (D. De Santis), landete@umh.es (M. Landete), joxacabe@espol.edu.ec (X. Cabezas), jmsanchis@mat.upv.es

(J.M. Sanchis), juanjo.peiro@uv.es (J. Peiró).

bridges of the city of Königsberg without crossing any bridge more than
once. Although the case studied by Euler was not an optimization prob-
lem, since the distance traveled in the closed walk was not considered,
his work laid the foundation for later advancements. Much later, the
Chinese mathematician Mei-Ko [2] presented what is now known as
the Chinese postman problem (CPP), which aims at finding the shortest
closed walk (tour) for a mailman, starting and ending at a post office,
by traversing each street segment of a network. Nowadays, the CPP is
defined as the problem of finding a minimum cost tour that traverses
all the edges of a given undirected graph with a known cost associated
with the traversal of each edge of the graph.

A first way to generalize the CPP relates to the type of connections
between the vertices in the underlying graph in which the problem is
defined: edges, arcs, or a mix of both. An edge is a link that can be
traversed in both directions with the same cost. An arc represents a link
that, with an associated cost, can only be traversed in one direction. A
graph in which all the links are arcs is called directed, and the CPP
defined on it is called a directed CPP, whereas if the CPP is defined
on an undirected graph it is called an undirected CPP. Edmonds and
Johnson [3] proved that both the undirected and the directed versions
of the CPP can be solved in polynomial time. The mixed CPP, defined
https://doi.org/10.1016/j.knosys.2025.113146
Received 25 September 2024; Received in revised form 15 January 2025; Accepted
vailable online 14 February 2025
950-7051/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
 5 February 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/knosys
https://www.elsevier.com/locate/knosys
https://orcid.org/0000-0003-4448-9031
https://orcid.org/0000-0002-5201-0476
https://orcid.org/0000-0003-3128-001X
https://orcid.org/0000-0002-0039-8122
https://orcid.org/0000-0002-2944-599X
mailto:dade@espol.edu.ec
mailto:landete@umh.es
mailto:joxacabe@espol.edu.ec
mailto:jmsanchis@mat.upv.es
mailto:juanjo.peiro@uv.es
https://doi.org/10.1016/j.knosys.2025.113146
https://doi.org/10.1016/j.knosys.2025.113146
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2025.113146&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. De Santis et al.

t
t
t
t
u
a
m

s

g

t
l

w
l

a

m

b
b
t
d
s
d

t

d
i
t
r

a
c

{

Knowledge-Based Systems 312 (2025) 113146
on a mixed graph that contains both edges and arcs, is  -hard, as
shown in Papadimitriou [4]. A windy graph is an undirected graph with
wo traversal costs associated with each edge, one in each direction of
ravel. The CPP on a windy graph, proposed by Minieka [5] and named
he windy postman problem (WPP), is also  -hard. Note that if the
wo costs of an edge are equal in a windy graph, it can be considered an
ndirected edge, while if one of its costs is infinite, it can be considered
n arc. Therefore, windy graphs generalize undirected, directed and
ixed graphs.

A second natural generalization of the CPP is the rural postman
problem (RPP) introduced by Orloff [6]. Here, only a subset of links,
called the set of required links, need to be serviced (traversed), while the
remaining links (called unrequired) do not, though they are available for
deadheading in order to obtain a feasible tour. Thus, the (undirected)
RPP is defined as the problem of finding a minimum cost tour that
traverses a given subset of the edges of an undirected graph with a cost
associated with the traversal of each edge. Lenstra and Rinnooy Kan [7]
howed that the RPP is  -hard. In fact, all its versions, the directed,

undirected, mixed, and windy RPPs, are known to be  -hard. Since
then, a large number of generalizations of the RPP (and, therefore, of
the CPP) have been proposed and defined to model real-life applications
more precisely and to express different objectives. Summaries of the
current state of knowledge can be found in Corberán and Laporte [8],
Corberán et al. [9], and Mourão and Pinto [10]. Some examples of these
eneralizations are:

• The addition of time windows for the completion of services, an
objective related to profit or benefit maximization (see Malan-
draki and Daskin [11]).

• The association of a demand with each required edge while
declaring a maximum capacity for the vehicle to satisfy demands,
resulting in the capacitated version of the arc routing problem,
which is a multi-vehicle ARP introduced by Golden and Wong
[12].

• The repetition of a service in some periods of time (e.g., days)
on a time horizon (e.g., weeks or months), which is called the
periodic RPP (see Benavent et al. [13]).

• The assumption that the vehicle is not required to reach the exact
point where the customer is located but only needs to pass close
enough to that point (see Reula and Martí [14]).

In recent years, new generalizations of the CPP have emerged in
response to environmental concerns, particularly the need to account
for CO2 emissions in routing problems. Unlike traditional formulations,
hese models incorporate variable costs that depend on both the edge
ength and the vehicle’s load. Vehicle fuel consumption, a key fac-

tor in emissions, is influenced by three primary variables: distance
traveled, vehicle weight (including load), and speed. By addressing
these variables, load-dependent costs offer a practical approximation
of real-world transportation challenges.

These factors were first considered by Zachariadis et al. [15] for
the load-dependent vehicle routing problem (LDVRP), in which the
objective function is determined as the product of the distance traveled
and the gross weight that is transported over this distance, and in Cor-
berán et al. [16] for the CPP with load-dependent costs (CPP-LC), in

hich the cost of traversing an edge is a variable determined as the
ength of the edge multiplied by the total weight of the vehicle at the

moment it is traversed. As Corberán et al. [16] say, that cost is a good
approximation of the amount of pollution emitted by a vehicle traveling
at constant speed. In that study, the authors proposed two formulations:
one based on arcs, which is seen as the natural representation of the
problem, and another based on nodes, where the arcs are separated by
dding additional end nodes. They also proposed various metaheuristic

approaches and revealed the extraordinary difficulty of solving the
CPP-LC.

Our contribution

In this study, we generalize the above-mentioned CPP-LC model
with the rural postman problem with load-dependent costs (RPP-LC).
 m

2
As in the CPP-LC, the cost of traversing an edge will be defined as the
length of the edge multiplied by the load carried by the vehicle at the
time it traverses the edge, although not all edges will be required to be
traversed, since only a subset of required edges will contain those with
a positive demand. The vehicle will leave the depot with a load equal
to the sum of all demands. Along the tour, when a required edge is
serviced, the vehicle load will decrease by an amount equal to the edge
demand. The goal will be to find a tour that services all the required
edges with a minimum total cost.

To the best of our knowledge, this is the first model and solution
ethod proposed for the RPP-LC. We model the problem using an

integer linear formulation and tackle it by means of a metaheuristic
algorithm, following the philosophy of bio-inspired methodologies to
obtain near-optimal feasible solutions in short computing times. We test
the applicability of the formulation and the quality of the algorithmic
proposal using a set of well-known benchmark instances for related
problems by running several computational experiments, whose results
we also discuss. We finish the paper with some conclusions.

2. Problem statement and mathematical model formulation

Let 𝐺 = (𝑉 , 𝐸) be a connected graph with a set of nodes 𝑉 =
{1, 2,… , 𝑛} and a set of edges 𝐸 defined by 𝑚 pairs of nodes {𝑖, 𝑗}, with
𝑖, 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗. An edge 𝑒 = {𝑖, 𝑗} represents a link between nodes 𝑖 and 𝑗,
can be traveled in both directions, and has a length 𝑑𝑒 ≥ 0. Let 𝐸𝑠 ⊆ 𝐸
e a subset of edges, known as the set of required edges, which must
e traversed for service that involves a significant change in weight in
he vehicle (e.g., spreading salt on roads...). For each 𝑒 ∈ 𝐸𝑠, let 𝑤𝑒 ≥ 0
enote its demand, that is, the units of commodity (e.g., kilograms of
alt, liters of water) to be provided on edge 𝑒. We call 𝑄 the sum of the
emands of edges in 𝐸𝑠, i.e., 𝑄 =

∑

𝑒∈𝐸𝑠
𝑤𝑒.

A vehicle with curb weight 𝑊 (i.e., its weight when unloaded),
departs from a designated depot carrying an initial load equal to the
otal demand Q. The vehicle travels along the edges of the graph to

deliver the demands for service on the required edges. It may also need
to traverse some non-required edges to define a tour that ends at the
epot. The first time a required edge is traversed, we will consider
t serviced, that is, 𝑤𝑒 units of commodity have been unloaded from
he vehicle. Both the required edges after being serviced and the non-
equired edges can be traversed in deadheading mode (no commodity

is unloaded) any number of times.
The cost of traversing an edge 𝑒 ∈ 𝐸 is the result of multiplying

𝑑𝑒 by the weight of the vehicle while traversing 𝑒. The objective of the
RPP-LC is to find a minimum-cost tour that starts and ends at the depot
and traverses and services all the required edges (an RPP-LC tour).

Since the weight of the vehicle varies while the vehicle performs
a given RPP-LC tour, the cost of traversing an edge is also variable.
For each edge 𝑒 ∈ 𝐸, let 𝑞𝑒 denote the load in the vehicle at the
moment of traversing 𝑒 in a given RPP-LC tour. If 𝑒 is traversed in
deadheading mode, 𝑞𝑒 can be computed as the sum of the demand of
all edges that have not yet been visited, including the current edge 𝑒,
which we denote by 𝐸𝑠∖𝐸𝑒, where 𝐸𝑒 is the set of edges visited before
𝑒, i.e., 𝑞𝑒 =

∑

𝑢∈𝐸𝑠∖𝐸𝑒
𝑤𝑢. If edge 𝑒 = {𝑖, 𝑗} ∈ 𝐸𝑠 is traversed while

serving it, the load at node 𝑖 is ∑

𝑢∈𝐸𝑠∖𝐸𝑒
𝑤𝑢 and the load at node 𝑗 is

∑

𝑢∈𝐸𝑠∖𝐸𝑒
𝑤𝑢 −𝑤𝑒. If we assume that the unloading is regular along the

edge, the average load of the vehicle at the moment of servicing 𝑒 is
𝑞𝑒 =

∑

𝑢∈𝐸𝑠∖𝐸𝑒
𝑤𝑢 −

𝑤𝑒
2 . The cost of traversing an edge 𝑒 is computed

s 𝑑𝑒(𝑊 + 𝑞𝑒). Accordingly, the total cost of a given RPP-LC tour is
omputed as ∑

𝑒∈𝐸 𝑑𝑒(𝑊 + 𝑞𝑒).

2.1. Illustrative example

Consider the RPP-LC instance depicted in Fig. 1, with seven nodes
and 11 edges of equal length 𝑑𝑒 = 1. There are three required edges,
2, 4}, {3, 6}, and {5, 7}, drawn in bold with their corresponding de-
and 𝑤 .
𝑒

D. De Santis et al. Knowledge-Based Systems 312 (2025) 113146
Fig. 1. An example of a graph with seven nodes.

A feasible RPP-LC tour for this instance is 1 → 2 → 4 → 5 → 7 →
6 → 3 → 1: it begins and ends at the depot, is connected, and traverses
the three required edges. This tour, with length 7, would be an optimal
tour of the pure RPP, that is, without considering the weight and load
of the vehicle.

In order to calculate the real RPP-LC cost of this tour, let us assume,
for example, that 𝑊 = 0, and compute 𝑞𝑒 and the cost 𝑑𝑒(𝑊 +𝑞𝑒) for
each edge traversed. We obtain a total cost of ∑𝑒∈𝐸 𝑑𝑒(𝑊 + 𝑞𝑒) = 420,
according to the following table:

Traversed edge 𝑒 Load 𝑞𝑒 Cost = 𝑑𝑒(𝑊 +𝑞𝑒)
{1, 2} 120 1(0 + 120) = 120
{2, 4} 120 − 10

2 = 115 1(0 + 115) = 115
{4, 5} 110 1(0 + 110) = 110
{5, 7} 110 − 100

2 = 60 1(0 + 60) = 60
{7, 6} 10 1(0 + 10) = 10
{6, 3} 10 − 10

2 = 5 1(0 + 5) = 5
{3, 1} 0 1(0 + 0) = 0
Total cost of the tour 420

This tour is not optimal for the RPP-LC in this instance, since the large
demand of the edge {5, 7}, 𝑤{5,7} = 100, makes it desirable to service
that edge as soon as possible. A second tour, 1 → 2 → 5 → 7 → 5 →
2 → 4 → 6 → 3 → 1, has a cost of ∑𝑒∈𝐸 𝑑𝑒(𝑊 + 𝑞𝑒) = 380, according to:

Traversed edge 𝑒 Load 𝑞𝑒 Cost = 𝑑𝑒(𝑊 +𝑞𝑒)
{1, 2} 120 1(0 + 120) = 120
{2, 5} 120 1(0 + 120) = 120
{5, 7} 120 − 100

2 = 70 1(0 + 70) = 70
{7, 5} 20 1(0 + 20) = 20
{5, 2} 20 1(0 + 20) = 20
{2, 4} 20 − 10

2 = 15 1(0 + 15) = 15
{4, 6} 10 1(0 + 10) = 10
{6, 3} 10 − 10

2 = 5 1(0 + 5) = 5
{3, 1} 0 1(0 + 0) = 0
Total cost of the tour 380

This tour, despite being longer than the previous one (it has length
9 instead of 7), has a lower RPP-LC cost (380 instead of 420). This
example encourages us to formulate and look for solution techniques
to specifically target the RPP-LC.

If we now assume that 𝑊 > 0, the RPP-LC tour cost increases by
𝑊 times the total distance traveled. Thus, the cost of the first tour
increases to 420 + 7𝑊 while the cost of the second tour increases to
380 + 9𝑊 . If, for example, we fix 𝑊 = 10, the cost of the first tour
becomes 490 and that of the second is 470. So, when 𝑊 becomes large
enough (𝑊 > 20 in our illustrative example), the first tour comes to be
better than the second. In general, RPP-LC instances with large values
for the curb weight compared with the demand values have the same
optimal tour as the pure RPP. Hence, the study we carry out next makes
sense for applications in which the demand weight is relatively large
compared to the curb weight.
3
2.2. A formulation

To formulate the RPP-LC, we consider the arc routing formulation
of Corberán et al. [16] as a basis for our modeling framework. This se-
lection enables us to state our problem in a very natural way compared
to their node routing formulation, which needs some additional (non-
natural) mathematical artifacts based on transformations of graphs and
replications of nodes.

We start by noting that, given that the cost of traversing an edge will
depend on the load carried in the vehicle when the edge is traversed,
and that this load will change depending on when a required edge is
serviced, |𝐸𝑠| + 1 periods will be considered. We will denote them by
the index 𝑘 ∈ {0, 1, 2,… , 𝐾}, with 𝐾 = |𝐸𝑠|. Period 𝑘 = 0, starting at
the depot, consists of all deadheadings (if any) needed to reach the first
edge serviced. Each of the next periods 𝑘 = 1,… , 𝐾 consists of an edge
that is serviced at the beginning of the period and all deadheadings (if
any) needed to reach the edge serviced at the beginning of the next
period (or the depot, in period 𝐾). For example, in the illustrative
instance shown in Fig. 1 with the feasible tour 1 → 2 → 5 → 7 →

5 → 2 → 4 → 6 → 3 → 1, we have 𝐾 = |𝐸𝑠| = 3, and the edges of the
corresponding four periods are:

• Period 0: 1 → 2 → 5.
• Period 1: 5 → 7 → 5 → 2.
• Period 2: 2 → 4 → 6.
• Period 3: 6 → 3 → 1.

We now define the following sets of decision variables:

• For the service of each required edge {𝑖, 𝑗} ∈ 𝐸𝑠 and each period
𝑘 ∈ {1,… , 𝐾}, we use a binary variable 𝑦𝑘𝑖𝑗 with the following
meaning:

𝑦𝑘𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1, if edge {𝑖, 𝑗} ∈ 𝐸𝑠 is serviced from 𝑖 to 𝑗 in
period 𝑘,

0, otherwise

Note that in period 𝑘 = 0 no edge is served, so 𝑦0𝑖𝑗 = 0 for every
edge {𝑖, 𝑗} ∈ 𝐸𝑠 is not needed.

• For the deadheading of each edge {𝑖, 𝑗} ∈ 𝐸 and each period
𝑘 ∈ {0, 1,… , 𝐾}, we use a binary variable 𝑥𝑘𝑖𝑗 where

𝑥𝑘𝑖𝑗 =

{

1, if edge {𝑖, 𝑗} ∈ 𝐸 is deadheaded from 𝑖 to 𝑗 in period 𝑘,
0, otherwise.

• For the load in the vehicle at the beginning of period 𝑘 ∈
{1,… , 𝐾}, we use a continuous variable 𝑓𝑘 > 0. Note that 𝑓1 = 𝑄
and that we can assume 𝑓𝐾+1 = 0.

The objective function of the problem aims at minimizing the total
cost of an RPP-LC tour, which can be decomposed into the service
cost in periods 𝑘 = 1,… , 𝐾, and the deadheading cost in periods
𝑘 = 0, 1,… , 𝐾 as
𝐾
∑

𝑘=1

∑

𝑒=(𝑖,𝑗)∈𝐸𝑠

𝑑𝑒
(

𝑊 +𝑓𝑘−
𝑤𝑒
2
)(

𝑦𝑘𝑖𝑗 +𝑦𝑘𝑗 𝑖
)

+
𝐾
∑

𝑘=0

∑

𝑒=(𝑖,𝑗)∈𝐸

(

𝑊 +𝑓𝑘+1
)(

𝑥𝑘𝑖𝑗 +𝑥𝑘𝑗 𝑖
)

.

This objective function is not linear due to 𝑓𝑘 (𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖) and 𝑓𝑘+1 (𝑥𝑘𝑖𝑗 +
𝑥𝑘𝑗 𝑖), which are products of variables. It can be converted to a linear
one by means of the classical linearization of the product of a binary
variable multiplied by a bounded variable. To do so, suppose we know
some bounds on the 𝑓𝑘 such that 𝐿𝑘 ≤ 𝑓𝑘 ≤ 𝑈𝑘 for all 𝑘 = 1,… , 𝐾.
Obviously, 𝐿 = 0 and 𝑈 = 𝑄 are bounds for each 𝑓𝑘, but tighter ones
can be calculated if desired (see Corberán et al. [16]).

By defining the following sets of auxiliary variables 𝑡𝑘𝑒 and 𝑧𝑘𝑒 as

• 𝑡𝑘𝑒 = 𝑓𝑘(𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖), ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸𝑠,∀𝑘 = 1,… , 𝐾, and
• 𝑧𝑘𝑒 = 𝑓𝑘+1(𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑗 𝑖), ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 0, 1,… , 𝐾,

D. De Santis et al.

l

𝑘

(

w

t

w

t

c

Knowledge-Based Systems 312 (2025) 113146
and by adding constraints

𝑡𝑘𝑒 ≤ 𝑓𝑘 + 𝐿𝑘

(

𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖 − 1
)

, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 1,… , 𝐾 , (1)

𝑡𝑘𝑒 ≥ 𝑓𝑘 + 𝑈𝑘

(

𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖 − 1
)

, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 1,… , 𝐾 , (2)

𝑡𝑘𝑒 ≤ 𝑈𝑘

(

𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖
)

, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 1,… , 𝐾 , (3)

𝑡𝑘𝑒 ≥ 𝐿𝑘

(

𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖
)

, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 1,… , 𝐾 , (4)

𝑧𝑘𝑒 ≤ 𝑓𝑘+1+𝐿𝑘+1

(

𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑗 𝑖 − 1
)

, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 0, 1,… , 𝐾− 1, (5)

𝑧𝑘𝑒 ≥ 𝑓𝑘+1+𝑈𝑘+1

(

𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑗 𝑖 − 1
)

, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 0, 1,… , 𝐾− 1, (6)

𝑧𝑘𝑒 ≤ 𝑈𝑘+1

(

𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑗 𝑖
)

, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 0, 1,… , 𝐾 − 1, (7)

𝑧𝑘𝑒 ≥ 𝐿𝑘+1

(

𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑗 𝑖
)

, ∀𝑒 = (𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 0, 1,… , 𝐾 − 1, (8)

to the formulation of the problem, the non-linear objective function can
be linearized as
𝐾
∑

𝑘=1

∑

𝑒=(𝑖,𝑗)∈𝐸𝑠

(

𝑑𝑒
(

𝑊 −
𝑤𝑒
2
)(

𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖
)

+ 𝑑𝑒𝑡
𝑘
𝑒

)

+
𝐾
∑

𝑘=0

∑

𝑒=(𝑖,𝑗)∈𝐸

(

𝑑𝑒𝑊 (𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑗 𝑖) + 𝑑𝑒𝑧
𝑘
𝑒

)

. (9)

Moreover, in the formulation of the problem we will use additional
notation:

• 𝑦𝑘(𝛿+(𝑖)) = ∑

𝑒∈𝐸𝑠
𝑦𝑘𝑖𝑗 and, similarly, 𝑦𝑘(𝛿−(𝑖)) = ∑

𝑒∈𝐸 𝑦𝑘𝑗 𝑖. Note that
some of these sets could be empty if node 𝑖 is not incident with
required edges.

• 𝑥𝑘(𝛿+(𝑖)) = ∑

𝑒∈𝐸 𝑥𝑘𝑖𝑗 and, similarly, 𝑥𝑘(𝛿−(𝑖)) = ∑

𝑒∈𝐸 𝑥𝑘𝑗 𝑖.

Then, the RPP-LC can be formulated with the following integer
inear programming problem:

Min (9)

s.t.:

Constraints (1)–(8), and

𝐾
∑

=1
(𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖) = 1, ∀𝑒 ∈ 𝐸𝑠, (10)

∑

𝑖,𝑗)∈𝐸𝑠

(𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖) = 1, ∀𝑘 = 1,… , 𝐾 , (11)

𝑓𝑘+1 = 𝑓𝑘 −
∑

𝑒=(𝑖,𝑗)∈𝐸𝑠

𝑤𝑒(𝑦𝑘𝑖𝑗 + 𝑦𝑘𝑗 𝑖), ∀𝑘 = 1,… , 𝐾 , (12)

𝑓1 = 𝑄, 𝑓𝐾+1 = 0, (13)

𝑦𝑘(𝛿−(𝑖)) + 𝑥𝑘(𝛿−(𝑖)) = 𝑦𝑘+1(𝛿+(𝑖)) + 𝑥𝑘(𝛿+(𝑖)), ∀𝑖 ∈ 𝑉 ,∀𝑘 = 1,… , 𝐾 − 1,
(14)

𝑥0(𝛿−(𝑖)) = 𝑦1(𝛿+(𝑖)) + 𝑥0(𝛿+(𝑖)), ∀𝑖 ∈ 𝑉 ⧵ {1}, (15)

𝑦𝐾 (𝛿−(𝑖)) + 𝑥𝐾 (𝛿−(𝑖)) = 𝑥𝐾 (𝛿+(𝑖)), ∀𝑖 ∈ 𝑉 ⧵ {1}, (16)

𝑥0(𝛿+(1)) + 𝑦1(𝛿+(1)) = 𝑦𝐾 (𝛿−(1)) + 𝑥𝐾 (𝛿−(1)) = 1, (17)

𝑥𝑘𝑖𝑗 ≤
𝑘−1
∑

𝓁=1
(𝑦𝓁𝑖𝑗 + 𝑦𝓁𝑗 𝑖) + 𝑦𝑘𝑗 𝑖, ∀(𝑖, 𝑗) ∈ 𝐸𝑠,∀𝑘 = 1,… , 𝐾 , (18)

𝑘 𝑘
𝑥𝑖𝑗 + 𝑥𝑗 𝑖 ≤ 1, ∀(𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 0,… , 𝐾 , (19)

4
𝑥𝑘𝑖𝑗 , 𝑥𝑘𝑗 𝑖, 𝑦𝑘𝑖𝑗 , 𝑦𝑘𝑗 𝑖 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐸 ,∀𝑘 = 2,… , 𝐾 , (20)

𝐿𝑘 ≤ 𝑓𝑘 ≤ 𝑈𝑘, ∀𝑘 = 2,… , 𝐾 . (21)

In this model, constraints (10) and (11), respectively, guarantee
that each required edge is serviced in one period, and that only one
required edge is serviced at each period. Constraints (12) assure that

hen a required edge 𝑒 ∈ 𝐸𝑠 is serviced, the vehicle load is decreased
by 𝑤𝑒 units. Symmetry conditions on the vertices are implied by
constraints (14)–(17). We do so by imposing in (14) that every time
he tour enters a node 𝑖, it has to leave it, for all the periods except the

first and last; (15) and (16) are the corresponding equations for periods
0 and 𝐾 in nodes other than the depot, and (17) are for periods 0 and
𝐾 at the depot. Variables 𝑥 and 𝑦 are related through constraints (18),

hich state that a required edge can be deadheaded only if serviced in
a previous period or in the same period but traversed in the opposite
direction. Constraints (19) allow a non-required edge to be deadheaded
only once in a given period.

We note that constraints (18) and (19) are not needed to find the
optimal CPP-LC tour. Their removal would allow feasible solutions in
which some edges could be deadheaded before being served, although,
as has been said, these solutions would never be optimal. Nevertheless,
these constraints have proved to be useful from a computational point
of view and so we include them. We also note that this formulation
extends and generalizes the arc routing formulation of Corberán et al.
[16] for the CPP to the case of the RPP.

This formulation can be provided to an integer linear program
solver for a specific instance in order to obtain optimal solutions.

3. A genetic algorithm

Metaheuristic algorithms (see, e.g., Gendreau and Potvin [17] and
Martí et al. [18], as well as the references therein) have become a
very popular family of solution methods for hard optimization prob-
lems because, very frequently, they are capable of finding high-quality
solutions in short computing times. Thus, they can be employed as an
alternative approach to find close-to-optimal solutions for the RPP-LC
when exact methods, based on searching the solution space described
by formulations, turn out to be impractical.

In this section, we present an adaptation of the classical metaheuris-
ic methodology known as Genetic Search. Genetic algorithms (GAs)

were first proposed by Holland [19] as population-based searching
frameworks to find optimal solutions for mathematical problems by
simulating the natural evolution process, inspired by biological organ-
isms. Nowadays, they constitute a well-established search framework
that can be applied to deal with a wide range of problems in statistics,
machine learning [20], combinatorial optimization and other domains.

Various types of genetic algorithms can be found in the literature,
lassified by various factors:

• Concerning the type of information used to encode solution char-
acteristics, we find binary-coded GAs, in which characteristics are
coded in binary strings comprising boolean variables, permutation-
coded GAs, in which a string of natural numbers represents a
useful sequence (permutation), and real-coded GAs, where real
numbers associated with problems are used to store information.

• Regarding the number of objectives that need to be optimized,
we can find single- and multi-objective GAs. In the former, we wish
to find the best solution for a unique specific objective. In the
latter, we face problems with several objectives and we do not
necessarily have an optimal solution that optimizes all the objec-
tive functions simultaneously. Often, objectives conflict with each
other, and the optimal solutions of some objectives usually con-
flict with the optimality of other objectives. Therefore, we have to

choose some trade-off or achieve a certain balance of objectives.

D. De Santis et al.

a
h
(

b

d

o

c
a
i
i
r
i
p
c
r
(
t
p
n
w
s
c

f
l
l

m

i
i
i
p
n
p
r

a

Knowledge-Based Systems 312 (2025) 113146
We refer the reader to Deb et al. [21] for specific implementation
details of a well established and powerful methodology, known
as NGSA-II, to solve multi-objective optimization problems with
GAs.

• Regarding the simultaneity of searches that the algorithm carries
out in a run, we find serial (also known as sequential) and parallel
GAs. Parallel algorithms are parallel implementations of GAs.
For instance, when creating a population of solutions, a GA can
instruct multiple processors to create their own populations and
merge them later in a common space. Such parallelism may bring
advantages, e.g., parallel searches with information exchange be-
tween multiple searches are often better than serial computation.
We refer the reader to Rivera [22] and Konfrst [23] for more
detailed information on parallel GAs, and to Akopov et al. [24]
and Zhong et al. [25] for insights of advanced implementations
on their multiagent versions.

We note that the above-mentioned types of GAs can also have subtypes,
for example those that use different selection and mutation operators
s genetic operators. In addition, the flexibility of GAs allows us to
ybridize some of their elements and produce hybrid genetic algorithms
see, e.g., [26] for details on experiences with hybridization).

Next, we explain how we represent a feasible solution of the prob-
lem. Then, we explain the main structure of the heuristic algorithm,
and finally, we provide details of each of its ingredients used in this
solving technique.

3.1. Solution representation
Let us recall that a feasible solution of the RPP-LC is a tour that

egins and ends at the depot and traverses, among others, all the
required edges. If we assign a unique identifier, for example the natural
numbers from 1 to |𝐸𝑠|, to each required edge in such a way that
each identifier represents a unique edge of 𝐸𝑠, any permutation x of
{1,… , |𝐸𝑠|}, which can be stored using an array of integers, provides
an ordered sequence of required edges that a vehicle can visit, in that
order, in a feasible tour for the RPP-LC.

Once we obtain a particular x, to define the direction in which any
edge {𝑖, 𝑗} ∈ 𝐸𝑠, for 𝑖 < 𝑗, will be traversed, we can use two identifiers:
a 1 if we traverse it from 𝑖 to 𝑗, and a 0 otherwise. This information
can be saved in a vector of directions, say d, of size |𝐸𝑠|, which can be
efficiently stored in a boolean array.

The remaining information that completes a solution is the sequence
of non-required edges to be traversed along the tour. Although, once we
know x and d, we can always compute — inline — the shortest path
between any pair of required edges to obtain the shortest sequence of
non-required edges, for our genetic algorithm proposal it will be helpful
to pre-compute some information:

• A matrix, say 𝐷sp, with the shortest distance between each pair
of nodes in 𝑁 , where 𝑁 is the set with all nodes that are incident
with the edges in 𝐸𝑠 plus the depot (if it is not already included
in 𝑁).

• A list 𝑆p of the shortest path between each pair of nodes in 𝑁 .
This information will speed up the construction of the complete
tour, given x and d.

𝐷sp and 𝑆p will be used, as proposed by Corberán et al. [16], in a
ynamic programming method that guarantees an optimal sequence of
d from a given x. Hence, for us, a feasible solution s of an instance
f the RPP-LC can be represented by 𝚜 = (𝚡, 𝚍) and completed with the

information pre-computed and saved in 𝐷sp and 𝑆p.
We will see later that this representation is very useful for the

application of the heuristic methodology chosen.

3.2. Adaptation of the genetic algorithm framework

In essence, a GA consists of methods to generate, maintain, and
transform a set of solutions (called chromosomes), which change (evolve)
 r

5
over successive iterations (generations) using three operators: selection,
rossover, and mutation. The initial step of the GA consists of obtaining
n initial set (a population) of solutions. Each solution in this population
s evaluated, based on certain criteria, and accordingly a fitness value
s assigned to it. Then, a selection mechanism is invoked to choose
elatively good (fit) solutions to be part of a special subset (generation)
n which the crossover (reproduction) process will be applied. That
rocess creates new solutions — a new population — by recombining
haracteristics of existing solutions, through a crossover from the cur-
ent generation. Mimicking nature and its processes, random changes
mutations) may occur at any point in some solutions, as a measure
o prevent premature convergence of the method. From the resulting
opulation, one can re-apply the process to successfully generate a
ew generation and continue with the search process. This search stops
hen a stopping criterion is met, which is usually related to the time

pent in the entire process, a maximum number of generations, or a
onvergence criterion.

Standard and advanced GA implementations have been developed
or a wide variety of hard-to-solve combinatorial optimization prob-
ems. See, among others, some successful applications on related prob-
ems in the works by Domínguez-Casasola et al. [27], Felipe et al. [28],

Liu and Zeng [29], and Romanuke [30] for solving the TSP, and also
in the works by Felipe et al. [31], Sgarro and Grilli [32], Shen et al.
[33], and Wang et al. [34] for solving the VRP.

For the RPP-LC, we next describe a detailed adaptation of the
ethodology, whose general structure is depicted in Algorithm 1.

This procedure receives some user-defined parameters as input: the
size of each population, N, the percentage of the population that
will be selected for crossover, 𝑝𝑐 , the probability of mutation for a
given solution, 𝑝𝑚, and the maximum computing time allowed for
the entire procedure to be performed, maxTime. As the methodology
suggests, the framework starts by obtaining a population of solutions
from scratch as a first step. We do so, in line 2 of Algorithm 1, by
nvoking the InitialPopulation method. Then, in a while loop,
n which the process will be kept until a maximum computing time
s reached, a block of sub-processes for evaluating solutions, selecting
arents, crossover, improvement and mutation is performed to generate
ew offspring for a new population, which will replace the current
opulation. Once the stopping criterion has been met, the procedure
eturns the best solution found during the whole process. Each of these

sub-processes will be explained in detail below.

3.2.1. Obtaining Pop , the initial population of solutions
The underlying idea of this sub-process, whose structure is depicted

in Algorithm 2, is to construct N solutions from scratch. As we men-
tioned before, a solution 𝚜 can be represented by (𝚡, 𝚍). Hence, the
procedure we have designed returns a duple of this kind.

In GAs, Pop is frequently generated by purely random methods.
Such randomization has advantages, such as having a diverse initial
population that prevents premature convergence. Accordingly, our pro-
cedure generates several x vectors by invoking, each time, a standard
shuffle function that returns a random permutation of the required
edges numbered from 1 to |𝐸𝑠|. Note that this may render x vectors
that were generated before. We can avoid such occurrences by checking
the previous outcomes every time a new vector x is generated, at
the expense of extra computing time. Since we wish to obtain a first
set of solutions quickly, we decided not to impose any guaranteeing
mechanism to check for previous occurrences.

Later, to obtain d for each x, we apply the dynamic programming
lgorithm by Corberán et al. [16], which is able, on receiving x as

input, to obtain the shortest paths between any pair of required edges
and, hence, the best directions in which to traverse the required edges.
During this shortest path calculation, the objective function cost is
calculated using ∑

𝑒∈𝐸 𝑑𝑒(𝑊 + 𝑞𝑒), and therefore it is not necessary to
do this computation in a separate step.

At the end of each global iteration, x, d and cost are placed, in
ows, in an array of each corresponding type, say X, D and F. The output

D. De Santis et al.

s

r

R

b

c

s
r
m
w

Knowledge-Based Systems 312 (2025) 113146
Algorithm 1: GA proposal for the RPP-LC
Input: N, 𝑝𝑐 , 𝑝𝑚, maxTime.

1 Initiate a global variable elapsedTime ← 0.
2 Obtain Pop, a set of feasible solutions that constitute a

population, by invoking the InitialPopulation function.

3 while elapsedTime < maxTime do
4 Evaluate the fitness of each individual in Pop using the

Fitness function.
5 Select a percentage 𝑝𝑐 of the population in Pop, using the

roulette wheel function, and place them in a new set
called Selected.

6 Activate an new empty set, NextPop, in which to store the
individuals of the next population.

7 while |NextPop| < N do
8 Select parent1 and parent2 from Selected using

the roulette wheel function.
9 Perform the order crossover operator between

parent1 and parent2 to create offspring child.
10 Apply the improvement method localSearch to

child.
11 Generate rand ← random number in the interval (0, 1).
12 if rand < 𝑝𝑚 then
13 Perform a mutation on child using the relocation

operator.
14 Add child to NextPop.
15 Add the best individual from Pop to NextPop.
16 Replace Pop by NextPop.
17 Update elapsedTime.
Output: The best individual from Pop.

Algorithm 2: InitialPopulation function
Input: N.

1 for 𝑖 = 1 to N do
2 Generate x ← shuffle(1,… , |𝐸𝑠|).
3 Apply dynamic programming to obtain d and cost.
4 Store x, d and cost in row 𝑖 of X, D and F, respectively.
Output: (X,D,F)

of the procedure is the triplet (𝚇, 𝙳, 𝙵), which constitutes the initial Pop.

3.2.2. Evaluating the fitness of an individual
We calculate the fitness of an individual (𝚡, 𝚍) as the cost of its ob-

jective function. However, we note that this measure could be adapted,
if desired, to consider another characteristic of the problem.

3.2.3. Selection of individuals
Once we have obtained Pop, a percentage 𝑝𝑐 of its solutions will be

elected and placed in a special subset called Selected. The underly-
ing idea of this sub-routine is that the most promising solutions (with
elatively good fitness) are kept in it to be used later for generating new

solutions with better fitness.
We make this selection random using an empirical distribution

function that considers the fitness of each individual. This well-known
mechanism, known as roulette wheel (see Hancock [35]), guarantees
that individuals with good fitness are more likely to be chosen. Addi-
tionally, the best individual of Pop according to the fitness function, if
not previously selected by roulette wheel, is also placed in Selected
due to elitism criteria. The purpose of such criteria is to maintain the
quality of the solutions generation after generation (see, e.g., Ahn and

amakrishna [36]).
6
3.2.4. Crossover of solutions
The idea of the crossover process is that two individuals, parent1

and parent2, from Selected are randomly paired using the roulette
wheel function to obtain a new individual that we call child.

We carry out the crossover function using the 2 cut-off technique
y combining the x vectors from parent1 and parent2 to obtain

a new x for child. The specific details of the implementation of this
operator can be found in Algorithm 3. For brevity, we will refer to the
orresponding x vectors in such solutions as parent1, parent2 and
child.
Algorithm 3: Order crossover operator

Input: parent1, parent2.
1 Activate child as a new empty individual.
2 Randomly generate two integer numbers 𝑔1, 𝑔2 ∈ {1,… , |𝐸𝑠|}

such that 𝑔1 < 𝑔2.
3 for int 𝑖 = 𝑔1 to 𝑖 = 𝑔2 do
4 child[i] ← parent1[i]. //Copy parent1’s attribute.
5 Declare an integer variable attributesTransferred and

store in attributesTransferred ← 𝑔2 + 1.
6 if attributesTransferred > |𝐸𝑠| then
7 attributesTransferred ← 1.
8 Declare two integer variables, posParent2 and posChild,

and store in posParent2 ← attributesTransferred
and posChild ← attributesTransferred.

9 while posParent2 ≠ 𝑔2 do
10 while parent2[posParent2] ∈ child do
11 posParent2 + +.
12 if posParent2 > |𝐸𝑠| then
13 posParent2 ← 1.

14 child[posChild] ← parent2[posParent2]. //Copy
parent2’s attribute.

15 posParent2 + +.
16 posChild + +.
17 if posChild > |𝐸𝑠| then
18 posChild ← 1.

Output: child.

The idea of this operator is not only to copy the ordered sequence of
a subset of required edges from parent1 directly to child, but to do
so in exactly the same position where parent1 had them (lines 3 to 6
of the pseudo-code). The partial solution child is then completed by
copying parent2’s information in the remaining positions in a similar
way, while also maintaining the same order as in parent2 (lines 11 to
20 in the pseudo-code). Once a child is obtained from the crossover,
we apply the DP algorithm to obtain d and cost.

3.2.5. Improvement phase via local search
Any solution previously obtained by our methods can be used as the

tarting point of a procedure that aims at finding a local optimum with
espect to some neighborhood structure. In the design of this improve-
ent phase (see the details of the specific application in Algorithm 4),
e have considered three well-known local improvement algorithms

based on simple tour modifications:

• 2-Exchange: We select two different edges in the tour and
exchange (swap) their positions.

• 1-OPT: We select one edge in the tour and place it in a different
position in the tour by moving the other edges to the left and right
of these new places.

• 2-OPT: We select two edges in the tour and place them in
different positions in the tour, again by moving the other edges
to the left and right of this new place.

An example of the application of these movements is provided in
Fig. 2.

D. De Santis et al.

m

s
s
c

p
i
r
p

e
g
p
s

Knowledge-Based Systems 312 (2025) 113146
Fig. 2. Examples of the different applications of local search procedures.
For each s that is used as a starting point, we explore each of
these three neighborhoods, and the next solution 𝚜best is the one that

aximizes the improvement in terms of objective function among those
three. In our design, the algorithm repeatedly performs operations for
as long as it reduces the cost of the solution, until no operation yields
any further improvement, returning the best solution found so far as
the output of the procedure.

3.2.6. Mutation procedure
A set of feasible solutions, e.g. Pop, may eventually contain many

solutions with very similar attributes. This drastically reduces the pos-
ibilities of creating new better solutions — through combination and
election — after several iterations. The purpose of a mutation pro-
edure is to prevent such premature convergence. Typically, this is

performed by applying small but random changes in some part of the
solution at any stage of the solution process. This allows solutions to
acquire different attributes that will be used in the following iterations.

We propose applying a random change subjected to a mutation
rocess with probability 0 < 𝑝𝑚 < 1 for any child created after the
mprovement method via local search. If the event occurs, an edge is
andomly selected in the x vector of child and placed in another
osition, the latter also being randomly selected.

4. Computational experiments

This section is devoted to reporting some computational experi-
ments performed to complement the previous sections.

We start by providing details of the experimental setting. Then,
we present the results of a comprehensive numerical study, performed
using a set of instances, to investigate the computational efficacy of
the formulation as well as its potential application to solve the RPP-
CL. Following this, we present the results of several computational
xperiments that were conducted to assess the performance of the
enetic algorithm, and we show the advantages of using the procedures
roposed. The detailed information about these results is provided in

Appendix.
everal tables in

7
Algorithm 4: localSearch procedure
Input: x, d, cost.

1 Let sorig be the solution associated to the input (x,d,cost).
2 Activate a new empty solution sbest with cost +∞.
3 Declare a boolean flag variable STOP ← FALSE.
4 while STOP == FALSE do
5 Change flag STOP ← TRUE.
6 for int 𝑖 = 1 to 𝑖 < |𝐸𝑠| do
7 for int 𝑗 = 𝑖 + 1 to 𝑗 = |𝐸𝑠| do
8 // Explore the 1-OPT neighborhood:
9 Activate a temporary solution s1-OPT and copy in it

all the attributes of sorig.
10 Apply 1-OPT(𝑖, 𝑗) to s1-OPT.
11 if Cost of s1-OPT < Cost of sbest then
12 sbest ← s1-OPT.
13 // Explore the 2-OPT neighborhood:
14 Activate a temporary solution s2-OPT and copy in it

all the attributes of sorig.
15 Apply 2-OPT(𝑖, 𝑗) to s2-OPT.
16 if Cost of s2-OPT < Cost of sbest then
17 sbest ← s2-OPT.
18 // Explore the 2-EXCH neighborhood:
19 Activate a temporary solution s2-EXCH and copy in

it all the attributes of sorig.
20 Apply 2-EXCH(𝑖, 𝑗) to s2-EXCH.
21 if Cost of s2-EXCH < Cost of sbest then
22 sbest ← s2-EXCH.
23 // Store the best solution found so far:
24 if Cost of sbest < Cost of sorig then
25 sorig ← sbest.
26 Change flag STOP ← FALSE.

Output: sbest

D. De Santis et al.

R
o
m
i
f
e
o
a
i
a
𝑝
s
I
s
m
a
w
t

g

R
r
a
t
r

1
a
t
u

A
8

i

Knowledge-Based Systems 312 (2025) 113146
4.1. Experimental design: technology employed and test instances

All the experiments we will report were performed on an AMD
yzen 7-5700U processor with 1.8 GHz and 16 GB of RAM, running
n the Windows 11 64-bit operating system. On the one hand, the
athematical formulation presented in Section 2.2 was implemented

n Python 3 and solved with IBM ILOG CPLEX solver version 22.1
or integer programming models, with a time limit of 3600 s and the
xploitation of multi-threading capabilities, that is, all cores (eight in
ur case) were available for use. Other than this, its default parameters
re assumed unless otherwise stated. On the other hand, the GA was
mplemented in the Matlab programming language version R2016b,
nd it was run with the following parameters: 𝙽 = 20, 𝑝𝑐 = 0.7,
𝑚 = 0.1, and 𝚖𝚊𝚡𝚃𝚒𝚖𝚎 = 300. Some of the chosen parameter values were
elected based on some preliminary experimentation and observation.
n particular, N was selected to allow the genetic algorithm to perform a
mall quantity of individuals in each global iteration in order to obtain
ore generations during the running time. However, 𝑝𝑐 was selected

ccording to related literature, and maxTime was selected considering
e wanted to compete against the formulation in very short computing

imes.
Regarding the instances used in the experiments, Corberán et al. [9]

enerated three sets for the CPP-LC:

• Set E: 18 instances obtained from Eulerian graphs, with |𝑉 | =
7, 10 and 20, as well as |𝐸| = 12, 18 and 32. For each graph, three
different values of 𝑊 were considered: 0, 𝑄2 and 5𝑄, with 𝑄 =
∑

𝑒∈𝐸 𝑤𝑒. For each of these nine combinations, they generated two
instances, one with 𝑤𝑒 = 𝑑𝑒 and another with randomly generated
demands 𝑤𝑒.

• Set P: 18 instances derived from three RPP instances proposed
by Christofides et al. [37], namely P1, P2 and P4, with |𝑉 | =
11, 14 and 17, as well as |𝐸| = 13, 32 and 35. For each graph, they
generated six instances, proceeding as before.

• Set H: 24 instances obtained from 12 RPP instances proposed
by Hertz et al. [38], namely r1 to r8 (with |𝑉 | ∈ [6, 14] and
|𝐸| ∈ [11, 48]), as well as d10, d11, g10 and g11 (with |𝑉 | ∈
[18, 27] and |𝐸| ∈ [22, 33]). For each graph, a proportional and a
non-proportional instance was generated, all of them with 𝑊 =
𝑄
2 .

We have made use of these instances as a basis for the generation of
PP-LC instances. To adapt them, only some of their edges need to be
equired. To do so, for each type of instance described above, we made
 random selection of 25%, 50% and 75% of the edges to be required. In
otal, we obtained 180 instances, which have been placed in a Dropbox
epository to be available for public access1 and reproducibility.

4.2. Usability of the formulation

The first experiments we carried out aimed to explore whether the
set of instances is solvable by using CPLEX when the formulation is
provided with a time limit of 3600 s. Two main factors could affect the
solvability of an instance, namely the density of required edges and the
type of instance. Regarding the former, in Table 1 we summarize, for
the three levels of density tested (25%, 50% and 75%), the number
of instances that the formulation solved to optimality out of a total of
80. From this table, we can clearly see that the formulation could solve
ll instances tested with 25% density. We can also see that the higher
he density values, the more difficult it is to optimally solve instances
sing the formulation. Using the results in Table 1, we performed a 𝜒2

statistical test to verify whether the difficulty of solving the instances

1 https://www.dropbox.com/scl/fo/pue18avllpzi0hmhnf28k/
ISr3UC1hhrC7sZG_8hJn3U?rlkey=vbkl9ixs3cy762e8g1m7xqpkq&st=
u7ya19b&dl=0.
8
Table 1
Number of instances solved to optimality for groups of different density.

Density Solved Not solved

25% 60 0
50% 48 12
75% 33 27

Table 2
Number of instances solved to optimality for different types of data.

Set Solved Not solved

E 51 3
P 38 16
H 52 20

is related to the different densities of the three groups tested. The
resulting 𝑝-value of 0.002658 indicates, in our opinion, that such a
statistical relationship exists.

Regarding the type of instances solved, we summarize in Table 2, for
the three types of instances tested (namely, sets E, P and H), the number
of instances that the formulation solved to optimality out of 180. From
this table, we can see that 94.4% (51 out of 54) of the instances in set
E were solved to optimality. That percentage diminishes to 70.3% and
72.2%, respectively, for sets P and H. Using the results in the table,
we also performed a 𝜒2 statistical test to verify whether the difficulty
of solving the instances is related to the type of instances tested. The
resulting 𝑝-value of 0.00000001569 also indicates, in our opinion, that
there is such a statistical relationship.

We are now interested in studying the CPU time needed to solve the
instances that we were able to solve to optimality as well as the bounds
obtained for those instances that were not. In Table 3 we show, for
each instance and density tested, the CPU time, in seconds, needed to
solve it. For the cases in which the solver could not solve an instance to
optimality due to the limitation in computing time, the table reports a
‘‘t.l’’., indicating that a time limit was reached. From this table, several
nteresting insights arise:

• Most instances with 25% density (first column) need less than a
second to be solved. Only those in subset Hd need more CPU time.

• From the previous experiments, we already noticed that the
higher the density, the more time the solver needed to guarantee
optimality. When we look at the results of the instances with
50% density, we appreciate a change in the magnitude of CPU
time needed in many subsets. See, for example, the results for
subsets E20, Hg and P04: despite the fact that the solver could
solve almost all instances in these subsets to optimality, the effort
needed now is one or two orders of magnitude higher. In other
subsets such as Hd, the change in density directly results in the
impossibility of solving all their instances to optimality.

In Table 4 we report, only for the unsolved instances, the linear
relaxation value and the best feasible solution value (labeled as LB and
UB, respectively) that the solver had obtained on reaching the time
limit. In this table, it is interesting to note that the differences when
LB and UB are compared after an hour of computation are large for
most instances, which means that these instances would have required
a large additional amount of computing time to be solved to optimality.

In summary, Tables 3 and 4 indicate that for medium and high
density instances it may be reasonable to resort to ad-hoc metaheuristic
methods if we need high-quality feasible solutions in short computing
times for the RPP-LC.

4.3. Solving the problem with the GA

In this section, we test the ability of our GA method to obtain
high-quality solutions in short computing times.

https://www.dropbox.com/scl/fo/pue18avllpzi0hmhnf28k/AISr3UC1hhrC7sZG_8hJn3U?rlkey=vbkl9ixs3cy762e8g1m7xqpkq&st=8u7ya19b&dl=0
https://www.dropbox.com/scl/fo/pue18avllpzi0hmhnf28k/AISr3UC1hhrC7sZG_8hJn3U?rlkey=vbkl9ixs3cy762e8g1m7xqpkq&st=8u7ya19b&dl=0
https://www.dropbox.com/scl/fo/pue18avllpzi0hmhnf28k/AISr3UC1hhrC7sZG_8hJn3U?rlkey=vbkl9ixs3cy762e8g1m7xqpkq&st=8u7ya19b&dl=0

D. De Santis et al.

t

t
t

m

b

t

w
G
a
d

w
s
t

Knowledge-Based Systems 312 (2025) 113146
Table 3
CPU time (sec.) required to solve each instance.

Instance information Density

Set Subset Name 25% 50% 75%

E

E07

E07W0NP 0.52 0.48 0.93
E07W0P 0.11 0.32 1.39
E07W1000NP 0.41 0.31 1.57
E07W100NP 0.54 0.67 0.97
E07W200P 0.21 0.66 2.2
E07W20P 0.13 0.47 1.17

E10

E10W0NP 0.77 1.83 3,0
E10W0P 0.75 1.23 20.73
E10W1000NP 0.57 0.83 2.61
E10W1000P 0.63 1.05 135.56
E10W200NP 0.73 1.43 3.89
E10W200P 0.55 1.86 6.45

E20

E20W0NP 1.05 36.19 514.52
E20W0P 2.03 104.73 t.l.
E20W10000NP 1.51 4.94 1292.24
E20W2000NP 0.89 20.79 703,0
E20W2000P 0.69 21.46 t.l.
E20W400P 0.92 130.38 t.l.

H

Hd

hertzd10_np 153.33 t.l. t.l.
hertzd10_p 3048.07 t.l. t.l.
hertzd11_np 118.92 t.l. t.l.
hertzd11_p 28.26 t.l. t.l.

Hg

hertzg10_np 0.79 10.28 99.98
hertzg10_p 0.58 5.88 327.72
hertzg11_np 1.31 795.77 t.l.
hertzg11_p 2.3 45.75 3541.55

Hr

hertzr1_np 0.1 0.16 0.89
hertzr1_p 0.07 0.24 2.37
hertzr2_np 0.1 0.29 2.13
hertzr2_p 0.14 0.29 4.58
hertzr3_np 0.13 0.27 1.76
hertzr3_p 0.13 0.27 36,0
hertzr4_np 1.42 t.l. t.l.
hertzr4_p 4.88 t.l. t.l.
hertzr5_np 0.54 7.06 187.72
hertzr5_p 0.46 22.38 t.l.
hertzr6_np 0.28 6.06 12.3
hertzr6_p 0.47 22.11 t.l.
hertzr7_np 9.33 t.l. t.l.
hertzr7_p 13.71 t.l. t.l.
hertzr8_np 0.5 3.56 3107.43
hertzr8_p 0.47 13.56 t.l.

P

P01

P01W0NP 0.21 0.29 0.72
P01W0P 0.16 0.36 2.58
P01W300NP 0.09 0.31 0.38
P01W300P 0.12 0.27 0.53
P01W35P 0.11 0.41 0.62
P01W65NP 0.11 0.31 0.66

P02

P02W0NP 1.67 3425.58 t.l.
P02W0P 1.56 t.l. t.l.
P02W2000NP 1.79 219.69 t.l.
P02W2000P 1.99 t.l. t.l.
P02W250NP 1.75 832.01 t.l.
P02W250P 1.3 t.l. t.l.

P04

P04W0NP 1.22 441.76 t.l.
P04W0P 37.54 t.l. t.l.
P04W1000NP 1.06 909.93 t.l.
P04W1000P 1.32 194.87 t.l.
P04W130NP 0.79 797.47 t.l.
P04W70P 3.31 1368.18 t.l.

For this purpose, we first perform an experiment to see whether
he GA is a good method to match the optimal solutions for the

instances in the test-bed for which we know the optimal value. This
information is collected in Table 5, in which we present the results
for the objective value and CPU time in those instances for which we
obtained the optimal value using the formulation. In this table, the first
hree columns contain the instance information. They are followed by
hree sets of columns, one for each density value (25%, 50% and 75%).
For each density, the table includes three columns: the first provides the

9
Table 4
Best bounds for each instance on reaching the time limit.

Instance information Density

Set Subset Name 50% 75%

LB UB LB UB

E E20
E20W0P 208 237 238 647
E20W2000P 1 668 044 1 906 916
E20W400P 523 025 577 061

H

Hd

hertzd10_np 141 771 153 391 181 597 232 784
hertzd10_p 109 056 130 926 175 565 222 270
hertzd11_np 84 999 93 779 133 550 159 974
hertzd11_p 69 654 83 318 89 120 130 507

Hg hertzg11_np 2793 3191

Hr

hertzr4_np 1 665 032 1 839 675 2 785 578 3 196 238
hertzr4_p 1 640 723 1 808 576 3 400 065 3 976 624
hertzr5_p 302 663 317 609
hertzr6_p 314 891 333 375
hertzr7_np 1 282 996 1 492 385 2 121 829 2 356 577
hertzr7_p 728 382 785 191 1 147 418 1 323 872
hertzr8_p 669 534 744 845

P

P02

P02W0NP 33 458 40 192
P02W0P 30 218 34 087 50 361 70 933
P02W2000NP 746 983 819 375
P02W2000P 759 816 768 073 882 226 945 387
P02W250NP 137 491 148 675
P02W250P 88 511 90 788 137 051 153 925

P04

P04W0NP 7643 8608
P04W0P 2107 2492 5012 7005
P04W1000NP 110 944 120 885
P04W1000P 110 283 116 538
P04W130NP 19 370 21 064
P04W70P 13 059 14 807

optimal value obtained with CPLEX; the second provides the GAP value
easured as 100 × UBGA−UBCPLEX

UBCPLEX
; and the third provides the CPU time

of the GA in seconds. These last columns showing the CPU time can
e directly compared with the values of the CPU time needed by the

formulation that are collected in Table 3. Some observations arise from
his table:

• From the set of columns for 25% density, we can see that the GA
was able to match the optimal value of all the instances tested (all
with 0.0% of GAP). When looking at the CPU times, we can see
that, in general, the GA method finishes in very short computing
times. Hd was the only subset of instances that required more
computing effort, but even for that set, the resulting CPU times
compare favorably to the CPU times with CPLEX in Table 3.

• When looking at the results in the columns for 50% density, we
first notice that the GA method matched all the optimal values
(again, 0% GAP), and that it clearly outperforms CPLEX in terms
of computing times.

• Regarding the results of the instances with 75% density, we see
that the GA method matches all the optimal values except for four
instances (those boldfaced in the table). For these four instances,
the GAP is quite small. When looking at the CPU times, again,
they compare favorably to the CPU time with CPLEX in Table 3.

Given that most of the instances for which we know the optimal value
ere solved by the GA in very low CPU times, we can say that the
A is able to obtain high-quality solutions in short computing times,
nd can be recommended as a very good alternative to the formulation
eployed in CPLEX if one needs a reliable and fast solving method.

To supplement the information above on the robustness of the GA,
e performed an experiment to compare the values of the best feasible

olutions obtained by the GA and CPLEX when the latter could not solve
he instance to optimality in the time limit provided. In Table 6 we

report the results of that experiment. Concerning this comparison, we
can see that the GA clearly outperforms CPLEX in terms of the values
of the best solutions provided in very short computing times, since it

D. De Santis et al.

t
t

Knowledge-Based Systems 312 (2025) 113146
Table 5
Comparison of GA and CPLEX in optimally solved instances.

Instance information Density

Set Subset Name 25% 50% 75%

UB Cplex Gap GA CPU GA UB Cplex Gap GA CPU GA UB Cplex Gap GA CPU GA

E

E07

E07W0NP 391 0% 0.0 992.5 0% 0.03 1967.5 0% 0.09
E07W0P 49.5 0% 0.0 176 0% 0.03 302 0% 0.08
E07W1000NP 16 222 0% 0.0 21 775.5 0% 0.05 33 698.5 0% 0.06
E07W100NP 1882 0% 0.0 2561 0% 0.03 4195.5 0% 0.07
E07W200P 3276 0% 0.0 5202.5 0% 0.02 7616 0% 0.06
E07W20P 469.5 0% 0.0 758.5 0% 0.03 1192 0% 0.08

E10

E10W0NP 7542 0% 0.06 20 223.5 0% 0.72 38 212.5 0% 1.28
E10W0P 12 255.5 0% 0.05 22 366 0% 0.07 52 045.5 0% 0.44
E10W1000NP 195 921 0% 0.01 257 328 0% 0.06 400 306 0% 0.47
E10W1000P 200 663 0% 0.01 299 568 0% 0.07 434 771.5 0% 0.54
E10W200NP 46 662.5 0% 0.04 77 038.5 0% 0.08 122 444.5 0% 0.7
E10W200P 45 088.5 0% 0.03 78 039 0% 0.08 113 452 0% 0.29

E20

E20W0NP 185 987.5 0% 0.05 637 128 0% 5.53 1 225 498 0.44% 207.1
E20W0P 42 582 0% 0.05 93 732.5 0% 0.35
E20W10000NP 4 717 132 0% 0.04 5 927 434.5 0% 0.69 8 529 676 0.13% 13.98
E20W2000NP 1 188 121 0% 0.05 1 963 934 0% 1.45 2 766 971.5 0% 9.7
E20W2000P 704 420.5 0% 0.05 1 280 905 0% 5.84
E20W400P 195 831 0% 0.08 395 670 0% 6.62

H

Hd

hertzd10_np 68 847 0% 2.87
hertzd10_p 66 702.5 0% 23.16
hertzd11_np 51 172.5 0% 0.28
hertzd11_p 38 750 0% 1.51

Hg

hertzg10_np 964.5 0% 0.03 1402.5 0% 0.68 1789 0% 24.58
hertzg10_p 560.5 0% 0.04 795 0% 0.74 1291 0% 9.43
hertzg11_np 1147 0% 0.06 2219 0% 18.6
hertzg11_p 601.5 0% 0.08 937 0% 2.08 1403 0.78% 125.17

Hr

hertzr1_np 89 436.5 0% 0.0 176 403.5 0% 0.03 280 360.5 0% 0.12
hertzr1_p 165 216.5 0% 0.0 243 444 0% 0.02 335 500.5 0% 0.06
hertzr2_np 118 772.5 0% 0.0 216 845 0% 0.03 295 413.5 0% 0.24
hertzr2_p 112 946.5 0% 0.0 125 868 0% 0.04 234 076.5 0% 1.01
hertzr3_np 79 245.5 0% 0.0 118 480 0% 0.03 209 564 0% 0.36
hertzr3_p 84 804.5 0% 0.0 197 336 0% 0.03 319 300.5 0% 0.15
hertzr4_np 902 738 0% 0.19
hertzr4_p 682 282 0% 0.1
hertzr5_np 103 262.5 0% 0.04 177 665 0% 0.37 296 577 0% 19.35
hertzr5_p 99 600.5 0% 0.05 195 347.5 0% 0.59
hertzr6_np 139 532.5 0% 0.03 231 063.5 0% 0.11 307 200 0% 3.12
hertzr6_p 128 476 0% 0.02 212 934.5 0% 0.6
hertzr7_np 601 730 0% 0.27
hertzr7_p 391 570 0% 3.12
hertzr8_np 194 362 0% 0.03 378 357.5 0% 1.68 623 000.5 0.01% 7.42
hertzr8_p 222 149.5 0% 0.03 452 583.5 0% 0.49

P

P01

P01W0NP 1067.5 0% 0.0 1850.5 0% 0.2 3982.5 0% 0.09
P01W0P 855 0% 0.0 1567.5 0% 0.08 2108 0% 0.24
P01W300NP 18 809 0% 0.0 20 492.5 0% 0.03 27 150.5 0% 0.16
P01W300P 15 355.5 0% 0.01 22 623.5 0% 0.02 25 429.5 0% 0.09
P01W35P 2180.5 0% 0.0 3420.5 0% 0.04 4913 0% 0.88
P01W65NP 5566.5 0% 0.0 7046.5 0% 0.05 9062 0% 0.18

P02

P02W0NP 6695 0% 0.06 22 759 0% 38.76
P02W0P 14 460 0% 0.08
P02W2000NP 288 112.5 0% 0.06 481 899.5 0% 3.28
P02W2000P 425 078 0% 0.06
P02W250NP 52 048.5 0% 0.06 90 402 0% 15.43
P02W250P 57 104.5 0% 0.17

P04

P04W0NP 1419 0% 0.06 3811 0% 78.01
P04W0P 1313.5 0% 0.09
P04W1000NP 45 333 0% 0.07 84 370 0% 16.18
P04W1000P 58 627.5 0% 0.13 83 371.5 0% 8.49
P04W130NP 6490.5 0% 0.06 14 779.5 0% 2.46
P04W70P 4202.5 0% 0.08 9061.5 0% 9.95
is able to systematically improve on the bounds, in almost all cases,
compared to the CPLEX results. In our opinion, this confirms the fact
hat the GA we designed is an attractive alternative solving method for
he RPP-LC.

A comment on the stability of the obtained solutions
When comparing the best GA solutions with other algorithms, it

is essential to demonstrate the stability of the solutions obtained with
 w

10
respect to the randomness applied in some parts of the algorithm. This
is especially important when randomness plays an important role, as is
the case for our proposed GA, to check whether the resulting solution
outputs differ from each other.

Such stability can be analyzed by repeatedly running the GA with
different random seeds. In particular, we performed an experiment in

hich each of the 180 instances was solved five times by our GA, using

D. De Santis et al.

c

o

s
f
s
m
c
s

s

Knowledge-Based Systems 312 (2025) 113146
Table 6
Comparison of best-known solution values with GA and CPLEX.

Instance information Density

Set Subset Name 50% 75%

UB Cplex UB GA Gap GA CPU GA UB Cplex UB GA Gap GA CPU GA

E E20
E20W0P 238 647 229 378 −3.88% 151.12
E20W2000P 1 906 915.5 1 890 231.5 −0.87% 137.49
E20W400P 577 061 562 138 −2.59% 225.03

H

Hd

hertzd10_np 153 390.5 150 122.5 −2.13% 194.59 232 783.5 207 615.5 −10.81% 222.28
hertzd10_p 130 926 128 293 −2.01% 31.71 222 270 212 145 −4.56% 177.91
hertzd11_np 93 778.5 92 028.5 −1.87% 129.6 159 974 149 599 −6.49% 301.03
hertzd11_p 83 317.5 80 822.5 −2.99% 8.28 130 507 111 977 −14.20% 39.49

Hg hertzg11_np 3191 3040 −4.73% 45.5

Hr

hertzr4_np 1 839 674.5 1 839 217.5 −0.02% 69.28 3 196 238 3 098 112 −3.07% 123.97
hertzr4_p 1 808 576 1 808 576 0.00% 7.51 3 976 623.5 3 962 092.5 −0.37% 46.9
hertzr5_p 317 609 317 420 −0.06% 92.27
hertzr6_p 333 375 333 375 0.00% 0.74
hertzr7_np 1 492 384.5 1 454 855.5 −2.51% 143.7 2 356 577 2 343 967 −0.54% 224.62
hertzr7_p 785 191 784 432 −0.10% 8.38 1 323 871.5 1 303 384.5 −1.55% 301.36
hertzr8_p 744 844.5 744 325.5 −0.07% 48.15

P

P02

P02W0NP 40 192 38 576 −4.02% 203.65
P02W0P 34 087 34 087 0.00% 9.56 70 933 65 114 −8.20% 37.6
P02W2000NP 819 375 811 188 −1.00% 184.05
P02W2000P 768 073 768 061 0.00% 53.35 945 387 941 813 −0.38% 52.78
P02W250NP 148 675 147 343 −0.90% 209.53
P02W250P 90 787.5 90 787.5 0.00% 1.23 153 924.5 153 844.5 −0.05% 13.52

P04

P04W0NP 8607.5 8611.5 0.05% 216.8
P04W0P 2492 2492 0.00% 178.9 7004.5 6746.5 −3.68% 274.18
P04W1000NP 120 884.5 119 843.5 −0.86% 225.75
P04W1000P 116 538 116 517 −0.02% 98.86
P04W130NP 21 063.5 20 769.5 −1.40% 30.96
P04W70P 14 807 14 517 −1.96% 126.75
e
o

o

a different random seed generator each time in our GA code—in our
ase, setting the Matlab’s rng(𝑖) function with 𝑖 ∈ {1,… , 5} at the

beginning of the code.
In 161 of the 180 instances, the GA produced completely stable

ptimal solutions, that is, it did not show any differences among the
five solutions obtained. This indicates that in the set of instances that
we are dealing with, in almost 90% of the cases the GA produced
stable results. For the remaining 19 instances, the GA showed different
optimal values in their repeated executions. In Table 7, we report
some statistical summaries of the results obtained in these 19 instances.
Specifically, we calculated the sample mean (column denoted by 𝑥̄), the
standard deviation (𝑠), the minimum and maximum observation values
(min and max, respectively) and the coefficient of variation (cv = 𝑠

𝑥̄)
for the five runs of each instance. We use the coefficient of variation
as a scale-free metric that provides a standardized way to compare
variability between data sets in which the scales differ greatly among
instances. A high cv value indicates a greater dispersion of data points
around the mean, suggesting higher relative variability. Conversely, a
low cv implies lower relative variability. In domains where accuracy is
paramount, a cv < 0.1 may be considered acceptable. From Table 7, we
can see that the cv values are very small in all of the instances reported,
indicating that our GA is very stable and robust.

Comparison with Hexaly
The last point we wish to address concerns the justification of a

pecialized GA proposal to solve the RPP-LC rather than a straight-
orward application of a mathematical formulation to an off-the-shelf
olver based on (meta) heuristic rules. This analysis would provide a
ore comprehensive assessment of the performance of the GA in the

ontext of the task it is intended to accomplish: to obtain high-quality
olutions in short computing times.

To perform such an analysis, we carried out an experiment that con-
isted of providing our formulation from Section 2.2 to the commercial

solver Hexaly.2 Hexaly is a well-known solver, previously marketed as

2 https://www.hexaly.com.
11
LocalSolver, mainly based on heuristic and meta-heuristic searching
strategies. Similarly to our GA method, Hexaly can be used as an
alternative solving method for a given problem formulation and input
data for which we do not require a guarantee of optimality. In our
xperiment, for each of the 180 instances, we let Hexaly use all cores
f our CPU and set the time limit to 300 s.

In Table 8, we report a summary of the comparison of the results
btained by Hexaly and our GA, for which we also set the time limit to

300 s. In particular, for each of the two methods, we report the relative
deviation of the best solution value obtained (UB) with respect to the
best known bound (UB∗), computed as 100 × UB−UB∗

UB∗ , only for those
instances with relative deviation greater than 0. The last row of the
table reports the average relative deviation for both methods in each
set of instances reported. From this table, several interesting findings
arise:

• On the one hand, we can see that our GA method performs very
well, since almost all relative deviations are 0%.

• On the other hand, we can see that Hexaly performs quite well
when solving instances with 25% of density. However, for the
instances with density 50% and 75%, the relative deviation dra-
matically increases, hence it underperforms compared to our GA
proposal. Notice that, for some instances, Hexaly cannot obtain
a feasible solution after the time limit provided, indicated with
‘‘t.l’’. in the table.

Therefore, these results provide convincing evidence of the superior
performance of our proposed modified genetic single-objective algo-
rithm, especially when compared to other off-the-shelf alternatives
based on heuristic and metaheuristic strategies.

5. Conclusions

In this paper, we have introduced a variant of the Chinese postman
problem that takes account of load-dependent cost, considering only
a subset of the edges in the graph as required edges. A mathematical

https://www.hexaly.com

D. De Santis et al. Knowledge-Based Systems 312 (2025) 113146
Table 7
Statistical summary of the 19 instances with variability among five repeated runs.

Instance information Density

Set Subset Name 50% 75%

𝑥̄ 𝑠 min max cv 𝑥̄ 𝑠 min max cv

E E20 E20W2000NP 2 770 802 8565 2 766 972 2 786 125 0.0031

H

Hd

hertzd10_np 202 520 1021 201 084 203 891 0.0050
hertzd10_p 128 067 97 128 005 128 233 0.0008 210 791 122 210 663 210 930 0.0006
hertzd11_np 146 474 761 145 213 147 147 0.0052
hertzd11_p 111 878 115 111 720 112 030 0.0010

Hg hertzg11_np 3013 15 3001 3040 0.0051
hertzg11_p 1406 6 1403 1417 0.0045

Hr
hertzr4_np 1 838 745 1056 1 836 857 1 839 218 0.0006
hertzr7_np 1 456 509 3697 1 454 856 1 463 122 0.0025 2 319 845 3704 2 317 310 2 325 477 0.0016
hertzr7_p 1 303 444 172 1 303 295 1 303 678 0.0001

P

P02

P02W0NP 38 768 430 38 576 39 538 0.0111
P02W0P 65 116 4 65 114 65 122 0.0001
P02W250NP 147 019 74 146 943 147 132 0.0005
P02W250P 132 442 6 132 436 132 447 0.0001

P04

P04W0NP 8550 74 8471 8617 0.0087
P04W0P 2493 3 2492 2498 0.0011 6720 7 6714 6731 0.0011
P04W1000P 116 515 1 116 514 116 517 0.0001
P04W130NP 20 675 28 20 663 20 726 0.0014
P04W70P 14 523 8 14 517 14 531 0.0005
Table 8
Comparison of relative deviation values of GA and Hexaly.

Instance information Density

Set Subset Name 25% 50% 75%

GA Hexaly GA Hexaly GA Hexaly

E E20

E20W0NP 0.45% 0.00%
E20W0P 0% 4.10% 0% 17.55%
E20W10000NP 0% 11.95%
E20W2000NP 0% 16.40%
E20W2000P 0% 5.51% 0% 11.78%
E20W400P 0% 3.07% 0% 29.01%

H

Hd

hertzd10_np 0% 2.22% 0% 42.82% 0% t.l.
hertzd10_p 0% 7.52% 0% t.l. 0% t.l.
hertzd11_np 0% 1.69% 0% 10.91% 0% t.l.
hertzd11_p 0% 27.95% 0% t.l.

Hg

hertzg10_np 0% 7.83%
hertzg10_p 0% 4.49%
hertzg11_np 0% 2.21% 0% 5.62%
hertzg11_p 0% 20.65%

Hr

hertzr4_np 0% 11.86% 0% 50.13%
hertzr4_p 0% 47.16% 0% 20.21%
hertzr5_np 0% 1.56%
hertzr5_p 0% 0.24%
hertzr7_np 0% 30.75% 0% t.l.
hertzr7_p 0% 4.38% 0% t.l.
hertzr8_np 0% 2.30%
hertzr8_p 0% 7.64%

P

P02

P02W0NP 0% 6.27% 0% 1.41%
P02W0P 0% 0.34% 0% 3.41%
P02W2000NP 0.01% 0.00% 0% 8.18%
P02W2000P 0% 0.07% 0% 2.65%
P02W250NP 0% 2.88% 0% 7.56%
P02W250P 0% 0.01% 0% 0.99% 0% 29.86%

P04

P04W0NP 0% 4.38% 0.19% 0.00%
P04W0P 0% 1.44% 0% 1.93%
P04W1000NP 0% 6.13% 0% 21.53%
P04W1000P 0% 2.70% 0% 95.62%
P04W130NP 0% 8.65% 0% 67.24%
P04W70P 0% 5.69% 0% 29.99%

Average 0.00% 2.86% 0.00% 10.01% 0.02% 17.03%
12

D. De Santis et al.

i

o
V
t
p
o
t
S

S
a
m
t

Knowledge-Based Systems 312 (2025) 113146
model for the new variant has been formulated, adapting the case in
which the edges are not connected with the depot directly. We have
proposed a genetic algorithm to solve it, using a 2-cut points technique
for crossover, a relocation method for mutation, elitist criteria, and
three local search methods.

To test the formulation proposed and the genetic algorithm, a set of
nstances derived from well-known related problems has been created,

considering densities of 25%, 50%, and 75% or the original graphs. The
performance of the GA has been satisfactory, outperforming in terms of
computing time almost all the results obtained by exact and heuristic
methods based on the formulation, thus confirming that the GA we
have designed is an attractive solving method.

CRediT authorship contribution statement

David De Santis: Writing – original draft, Software, Methodol-
gy, Conceptualization. Mercedes Landete: Writing – original draft,
isualization, Supervision, Methodology, Funding acquisition, Concep-

ualization. Xavier Cabezas: Writing – original draft, Visualization, Su-
ervision, Software, Conceptualization. José María Sanchis: Writing –
riginal draft, Visualization, Supervision, Methodology, Conceptualiza-
ion. Juanjo Peiró: Writing – original draft, Visualization, Validation,

upervision, Methodology, Funding acquisition, Conceptualization.

13
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by Gobierno de España through Ministerio
de Ciencia, Innovación y Ministerio de Universidades and Fondo Eu-
ropeo de Desarrollo Regional (FEDER), Spain under projects PID2021-
122344NB-I00, and RED2018-102363-T, by Generalitat Valenciana,
pain under projects PROMETEO/ 2021/063 and CIGE/2022/57. The
uthors would like to thank the anonymous reviewers for their com-
ents and suggestions, which have contributed to improving the con-

ent and readability of the article.

Appendix

See Tables 9–11
Table 9
25% density.
Instance Exact method GA Exact method vs GA

UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP

P01W0NP 1067.50 1067.50 0.00 optimal 0.21 1067.50 0.00 0.00 0.20
P01W0P 855.00 855.00 0.00 optimal 0.16 855.00 0.00 0.00 0.16
P01W65NP 5566.50 5566.50 0.00 optimal 0.11 5566.50 0.00 0.00 0.11
P01W35P 2180.50 2180.50 0.00 optimal 0.11 2180.50 0.00 0.00 0.11
P01W300NP 18 809.00 18 809.00 0.00 optimal 0.09 18 809.00 0.00 0.00 0.09
P01W300P 15 355.50 15 355.50 0.00 optimal 0.12 15 355.50 0.01 0.00 0.10
P02W0NP 6695.00 6695.00 0.00 optimal 1.67 6695.00 0.06 0.00 1.61
P02W0P 14 460.00 14 460.00 0.00 optimal 1.56 14 460.00 0.08 0.00 1.48
P02W250NP 52 048.50 52 048.50 0.00 optimal 1.75 52 048.50 0.06 0.00 1.69
P02W250P 57 104.50 57 104.50 0.00 optimal 1.30 57 104.50 0.17 0.00 1.13
P02W2000NP 288 112.50 288 112.50 0.00 optimal 1.79 288 112.50 0.06 0.00 1.73
P02W2000P 425 078.00 425 078.00 0.00 optimal 1.99 425 078.00 0.06 0.00 1.93
P04W0NP 1419.00 1419.00 0.00 optimal 1.22 1419.00 0.06 0.00 1.16
P04W0P 1313.50 1313.50 0.00 optimal 37.54 1313.50 0.09 0.00 37.45
P04W70P 4202.50 4202.50 0.00 optimal 3.31 4202.50 0.08 0.00 3.24
P04W130NP 6490.50 6490.50 0.00 optimal 0.79 6490.50 0.06 0.00 0.73
P04W1000NP 45 333.00 45 333.00 0.00 optimal 1.06 45 333.00 0.07 0.00 0.99
P04W1000P 58 627.50 58 627.50 0.00 optimal 1.32 58 627.50 0.13 0.00 1.19

E07W0NP 391.00 391.00 0.00 optimal 0.52 391.00 0.00 0.00 0.52
E07W0P 49.50 49.50 0.00 optimal 0.11 49.50 0.00 0.00 0.11
E07W100NP 1882.00 1882.00 0.00 optimal 0.54 1882.00 0.00 0.00 0.54
E07W20P 469.50 469.50 0.00 optimal 0.13 469.50 0.00 0.00 0.13
E07W1000NP 16 222.00 16 222.00 0.00 optimal 0.41 16 222.00 0.00 0.00 0.41
E07W200P 3276.00 3276.00 0.00 optimal 0.21 3276.00 0.00 0.00 0.21
E10W0NP 7542.00 7542.00 0.00 optimal 0.77 7542.00 0.06 0.00 0.71
E10W0P 12 255.50 12 255.50 0.00 optimal 0.75 12 255.50 0.05 0.00 0.70
E10W200NP 46 662.50 46 662.50 0.00 optimal 0.73 46 662.50 0.04 0.00 0.70
E10W200P 45 088.50 45 087.50 1.00 optimal 0.55 45 088.50 0.03 0.00 0.52
E10W1000NP 195 921.00 195 921.00 0.00 optimal 0.57 195 921.00 0.01 0.00 0.56
E10W1000P 200 663.00 200 663.00 0.00 optimal 0.63 200 663.00 0.01 0.00 0.62
E20W0NP 185 987.50 185 987.50 0.00 optimal 1.05 185 987.50 0.05 0.00 1.00
E20W0P 42 582.00 42 582.00 0.00 optimal 2.03 42 582.00 0.05 0.00 1.98
E20W2000NP 1 188 121.00 1 188 121.00 0.00 optimal 0.89 1 188 121.00 0.05 0.00 0.84
E20W400P 195 831.00 195 831.00 0.00 optimal 0.92 195 831.00 0.08 0.00 0.84
E20W10000NP 4 717 132.00 4 717 132.00 0.00 optimal 1.51 4 717 132.00 0.04 0.00 1.47
E20W2000P 704 420.50 704 420.50 0.00 optimal 0.69 704 420.50 0.05 0.00 0.65

hertzr1_np 89 436.50 89 436.50 0.00 optimal 0.10 89 436.50 0.00 0.00 0.10
hertzr1_p 165 216.50 165 216.50 0.00 optimal 0.07 165 216.50 0.00 0.00 0.07
hertzr2_np 118 772.50 118 772.50 0.00 optimal 0.10 118 772.50 0.00 0.00 0.10
hertzr2_p 112 946.50 112 946.50 0.00 optimal 0.14 112 946.50 0.00 0.00 0.14
hertzr3_np 79 245.50 79 245.50 0.00 optimal 0.13 79 245.50 0.00 0.00 0.13
hertzr3_p 84 804.50 84 804.50 0.00 optimal 0.13 84 804.50 0.00 0.00 0.13
hertzr4_np 902 738.00 902 738.00 0.00 optimal 1.42 902 738.00 0.19 0.00 1.23
hertzr4_p 682 282.00 682 282.00 0.00 optimal 4.88 682 282.00 0.10 0.00 4.77
hertzr5_np 103 262.50 103 262.50 0.00 optimal 0.54 103 262.50 0.04 0.00 0.50

(continued on next page)

D. De Santis et al. Knowledge-Based Systems 312 (2025) 113146
Table 9 (continued).
Instance Exact method GA Exact method vs GA

UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP

hertzr5_p 99 600.50 99 600.50 0.00 optimal 0.46 99 600.50 0.05 0.00 0.42
hertzr6_np 139 532.50 139 532.50 0.00 optimal 0.28 139 532.50 0.03 0.00 0.25
hertzr6_p 128 476.00 128 476.00 0.00 optimal 0.47 128 476.00 0.02 0.00 0.45
hertzr7_np 601 730.00 601 730.00 0.00 optimal 9.33 601 730.00 0.27 0.00 9.06
hertzr7_p 391 570.00 391 570.00 0.00 optimal 13.71 391 570.00 3.12 0.00 10.60
hertzr8_np 194 362.00 194 362.00 0.00 optimal 0.50 194 362.00 0.03 0.00 0.48
hertzr8_p 222 149.50 222 149.50 0.00 optimal 0.47 222 149.50 0.03 0.00 0.43
hertzd10_np 68 847.00 68 847.00 0.00 optimal 153.33 68 847.00 2.87 0.00 150.46
hertzd10_p 66 702.50 66 702.50 0.00 optimal 3048.07 66 702.50 23.16 0.00 3024.91
hertzd11_np 51 172.50 51 172.50 0.00 optimal 118.92 51 172.50 0.28 0.00 118.64
hertzd11_p 38 750.00 38 750.00 0.00 optimal 28.26 38 750.00 1.51 0.00 26.75
hertzg10_np 964.50 964.50 0.00 optimal 0.79 964.50 0.03 0.00 0.76
hertzg10_p 560.50 560.50 0.00 optimal 0.58 560.50 0.04 0.00 0.54
hertzg11_np 1147.00 1147.00 0.00 optimal 1.31 1147.00 0.06 0.00 1.25
hertzg11_p 601.50 601.50 0.00 optimal 2.30 601.50 0.08 0.00 2.22
Table 10
50% density.
Instance Exact method GA Exact method vs GA

UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP

P01W0NP 1850.50 1850.50 0.00 optimal 0.29 1850.50 0.20 0.00 0.09
P01W0P 1567.50 1567.50 0.00 optimal 0.36 1567.50 0.08 0.00 0.28
P01W65NP 7046.50 7046.50 0.00 optimal 0.31 7046.50 0.05 0.00 0.27
P01W35P 3420.50 3420.50 0.00 optimal 0.41 3420.50 0.04 0.00 0.37
P01W300NP 20 492.50 20 492.50 0.00 optimal 0.31 20 492.50 0.03 0.00 0.27
P01W300P 22 623.50 22 623.50 0.00 optimal 0.27 22 623.50 0.02 0.00 0.25
P02W0NP 22 759.00 22 759.00 0.00 optimal 3425.58 22 759.00 38.76 0.00 3386.81
P02W0P 34 087.00 30 218.11 3868.89 time_limit 3600.00 34 087.00 9.56 0.00 3590.44
P02W250NP 90 402.00 90 393.37 0.00 optimal 832.01 90 402.00 15.43 0.00 816.59
P02W250P 90 787.50 88 511.16 2276.34 time_limit 3601.80 90 787.50 1.23 0.00 3600.57
P02W2000NP 481 899.50 481 899.50 0.00 optimal 219.69 481 899.50 3.28 0.00 216.41
P02W2000P 768 073.00 759 815.92 8257.08 time_limit 3600.00 768 061.00 53.35 12.00 3546.65
P04W0NP 3811.00 3811.00 0.00 optimal 441.76 3811.00 78.01 0.00 363.76
P04W0P 2492.00 2106.67 385.33 time_limit 3600.75 2492.00 178.90 0.00 3421.85
P04W70P 9061.50 9061.50 0.00 optimal 1368.18 9061.50 9.95 0.00 1358.23
P04W130NP 14 779.50 14 779.50 0.00 optimal 797.47 14 779.50 2.46 0.00 795.01
P04W1000NP 84 370.00 84 370.00 0.00 optimal 909.93 84 370.00 16.18 0.00 893.75
P04W1000P 83 371.50 83 371.50 0.00 optimal 194.87 83 371.50 8.49 0.00 186.38

E07W0NP 992.50 992.50 0.00 optimal 0.48 992.50 0.03 0.00 0.45
E07W0P 176.00 176.00 0.00 optimal 0.32 176.00 0.03 0.00 0.29
E07W100NP 2561.00 2561.00 0.00 optimal 0.67 2561.00 0.03 0.00 0.65
E07W20P 758.50 758.50 0.00 optimal 0.47 758.50 0.03 0.00 0.44
E07W1000NP 21 775.50 21 775.50 0.00 optimal 0.31 21 775.50 0.05 0.00 0.26
E07W200P 5202.50 5202.50 0.00 optimal 0.66 5202.50 0.02 0.00 0.64
E10W0NP 20 223.50 20 223.50 0.00 optimal 1.83 20 223.50 0.72 0.00 1.11
E10W0P 22 366.00 22 366.00 0.00 optimal 1.23 22 366.00 0.07 0.00 1.16
E10W200NP 77 038.50 77 038.50 0.00 optimal 1.43 77 038.50 0.08 0.00 1.35
E10W200P 78 039.00 78 039.00 0.00 optimal 1.86 78 039.00 0.08 0.00 1.78
E10W1000NP 257 328.00 257 328.00 0.00 optimal 0.83 257 328.00 0.06 0.00 0.77
E10W1000P 299 568.00 299 568.00 0.00 optimal 1.05 299 568.00 0.07 0.00 0.97
E20W0NP 637 128.00 637 128.00 0.00 optimal 36.19 637 128.00 5.53 0.00 30.66
E20W0P 93 732.50 93 732.50 0.00 optimal 104.73 93 732.50 0.35 0.00 104.39
E20W2000NP 1 963 934.00 1 963 934.00 0.00 optimal 20.79 1 963 934.00 1.45 0.00 19.34
E20W400P 395 670.00 395 670.00 0.00 optimal 130.38 395 670.00 6.62 0.00 123.77
E20W10000NP 5 927 434.50 5 927 434.50 0.00 optimal 4.94 5 927 434.50 0.69 0.00 4.25
E20W2000P 1 280 905.00 1 280 905.00 0.00 optimal 21.46 1 280 905.00 5.84 0.00 15.62

hertzr1_np 176 403.50 176 403.50 0.00 optimal 0.16 176 403.50 0.03 0.00 0.13
hertzr1_p 243 444.00 243 444.00 0.00 optimal 0.24 243 444.00 0.02 0.00 0.21
hertzr2_np 216 845.00 216 845.00 0.00 optimal 0.29 216 845.00 0.03 0.00 0.26
hertzr2_p 125 868.00 125 868.00 0.00 optimal 0.29 125 868.00 0.04 0.00 0.25
hertzr3_np 118 480.00 118 480.00 0.00 optimal 0.27 118 480.00 0.03 0.00 0.24
hertzr3_p 197 336.00 197 336.00 0.00 optimal 0.27 197 336.00 0.03 0.00 0.24
hertzr4_np 1 839 674.50 1 665 032.18 174 642.32 time_limit 3600.00 1 839 217.50 69.28 457.00 3530.72

(continued on next page)
14

D. De Santis et al. Knowledge-Based Systems 312 (2025) 113146
Table 10 (continued).
Instance Exact method GA Exact method vs GA

UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP

hertzr4_p 1 808 576.00 1 640 722.89 167 853.11 time_limit 3600.00 1 808 576.00 7.51 0.00 3592.49
hertzr5_np 177 665.00 177 665.00 0.00 optimal 7.06 177 665.00 0.37 0.00 6.69
hertzr5_p 195 347.50 195 347.50 0.00 optimal 22.38 195 347.50 0.59 0.00 21.79
hertzr6_np 231 063.50 231 063.50 0.00 optimal 6.06 231 063.50 0.11 0.00 5.95
hertzr6_p 212 934.50 212 934.50 0.00 optimal 22.11 212 934.50 0.60 0.00 21.51
hertzr7_np 1 492 384.50 1 282 995.93 209 388.57 time_limit 3600.00 1 454 855.50 143.70 37 529.00 3456.30
hertzr7_p 785 191.00 728 382.31 56 808.69 time_limit 3600.00 784 432.00 8.38 759.00 3591.62
hertzr8_np 378 357.50 378 357.50 0.00 optimal 3.56 378 357.50 1.68 0.00 1.88
hertzr8_p 452 583.50 452 559.70 23.80 optimal 13.56 452 583.50 0.49 0.00 13.07
hertzd10_np 153 390.50 141 771.01 11 619.49 time_limit 3600.00 150 122.50 194.59 3268.00 3405.41
hertzd10_p 130 926.00 109 056.40 21 869.60 time_limit 3600.00 128 293.00 31.71 2633.00 3568.29
hertzd11_np 93 778.50 84 999.01 8779.49 time_limit 3600.00 92 028.50 129.60 1750.00 3470.40
hertzd11_p 83 317.50 69 654.01 13 663.49 time_limit 3600.00 80 822.50 8.28 2495.00 3591.72
hertzg10_np 1402.50 1402.41 0.09 optimal 10.28 1402.50 0.68 0.00 9.60
hertzg10_p 795.00 795.00 0.00 optimal 5.88 795.00 0.74 0.00 5.14
hertzg11_np 2219.00 2219.00 0.00 optimal 795.77 2219.00 18.60 0.00 777.17
hertzg11_p 937.00 937.00 0.00 optimal 45.75 937.00 2.08 0.00 43.67
Table 11
75% density.
Instance Exact method GA Exact method vs GA

UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP

P01W0NP 3982.50 3982.50 0.00 optimal 0.72 3982.50 0.09 0.00 0.63
P01W0P 2108.00 2108.00 0.00 optimal 2.58 2108.00 0.24 0.00 2.34
P01W65NP 9062.00 9062.00 0.00 optimal 0.66 9062.00 0.18 0.00 0.48
P01W35P 4913.00 4913.00 0.00 optimal 0.62 4913.00 0.88 0.00 −0.26
P01W300NP 27 150.50 27 150.50 0.00 optimal 0.38 27 150.50 0.16 0.00 0.22
P01W300P 25 429.50 25 429.50 0.00 optimal 0.53 25 429.50 0.09 0.00 0.45
P02W0NP 40 192.00 33 457.65 6734.35 time_limit 3600.00 38 576.00 203.65 1616.00 3396.35
P02W0P 70 933.00 50 360.53 20 572.47 time_limit 3600.00 65 114.00 37.60 5819.00 3562.40
P02W250NP 148 675.00 137 491.16 11 183.84 time_limit 3600.00 147 343.00 209.53 1332.00 3390.47
P02W250P 153 924.50 137 050.85 16 873.65 time_limit 3613.38 153 844.50 13.52 80.00 3599.85
P02W2000NP 819 375.00 746 983.37 72 391.63 time_limit 3600.00 811 188.00 184.05 8187.00 3415.95
P02W2000P 945 387.00 882 226.07 63 160.93 time_limit 3600.00 941 813.00 52.78 3574.00 3547.22
P04W0NP 8607.50 7642.75 964.75 time_limit 3600.00 8611.50 216.80 −4.00 3383.20
P04W0P 7004.50 5012.23 1992.27 time_limit 3600.00 6746.50 274.18 258.00 3325.82
P04W70P 14 807.00 13 058.98 1748.02 time_limit 3600.00 14 517.00 126.75 290.00 3473.25
P04W130NP 21 063.50 19 370.13 1693.37 time_limit 3600.00 20 769.50 30.96 294.00 3569.04
P04W1000NP 120 884.50 110 944.43 9940.07 time_limit 3600.00 119 843.50 225.75 1041.00 3374.25
P04W1000P 116 538.00 110 282.61 6255.39 time_limit 3600.00 116 517.00 98.86 21.00 3501.14

E07W0NP 1967.50 1967.50 0.00 optimal 0.93 1967.50 0.09 0.00 0.84
E07W0P 302.00 302.00 0.00 optimal 1.39 302.00 0.08 0.00 1.30
E07W100NP 4195.50 4195.50 0.00 optimal 0.97 4195.50 0.07 0.00 0.90
E07W20P 1192.00 1192.00 0.00 optimal 1.17 1192.00 0.08 0.00 1.09
E07W1000NP 33 698.50 33 698.50 0.00 optimal 1.57 33 698.50 0.06 0.00 1.51
E07W200P 7616.00 7616.00 0.00 optimal 2.20 7616.00 0.06 0.00 2.14
E10W0NP 38 212.50 38 212.50 0.00 optimal 3.00 38 212.50 1.28 0.00 1.72
E10W0P 52 045.50 52 045.50 0.00 optimal 20.73 52 045.50 0.44 0.00 20.29
E10W200NP 122 444.50 122 444.50 0.00 optimal 3.89 122 444.50 0.70 0.00 3.19
E10W200P 113 452.00 113 452.00 0.00 optimal 6.45 113 452.00 0.29 0.00 6.17
E10W1000NP 400 306.00 400 306.00 0.00 optimal 2.61 400 306.00 0.47 0.00 2.14
E10W1000P 434 771.50 434 771.50 0.00 optimal 135.56 434 771.50 0.54 0.00 135.01
E20W0NP 1 225 498.00 1 225 498.00 0.00 optimal 514.52 1 230 961.00 207.10 −5463.00 307.42
E20W0P 238 647.00 208 236.84 30 410.16 time_limit 3600.00 229 378.00 151.12 9269.00 3448.88
E20W2000NP 2 766 971.50 2 766 971.50 0.00 optimal 703.00 2 766 971.50 9.70 0.00 693.30
E20W400P 577 061.00 523 024.97 54 036.03 time_limit 3600.00 562 138.00 225.03 14 923.00 3374.97
E20W10000NP 8 529 676.00 8 529 676.00 0.00 optimal 1292.24 8 541 314.00 13.98 −11638.00 1278.26
E20W2000P 1 906 915.50 1 668 043.76 238 871.74 time_limit 3600.00 1 890 231.50 137.49 16 684.00 3462.51

hertzr1_np 280 360.50 280 360.50 0.00 optimal 0.89 280 360.50 0.12 0.00 0.77
hertzr1_p 335 500.50 335 500.50 0.00 optimal 2.37 335 500.50 0.06 0.00 2.31
hertzr2_np 295 413.50 295 413.50 0.00 optimal 2.13 295 413.50 0.24 0.00 1.89
hertzr2_p 234 076.50 234 076.50 0.00 optimal 4.58 234 076.50 1.01 0.00 3.57
hertzr3_np 209 564.00 209 564.00 0.00 optimal 1.76 209 564.00 0.36 0.00 1.40
hertzr3_p 319 300.50 319 300.50 0.00 optimal 36.00 319 300.50 0.15 0.00 35.85
hertzr4_np 3 196 238.00 2 785 577.91 410 660.09 time_limit 3600.00 3 098 112.00 123.97 98 126.00 3476.03
hertzr4_p 3 976 623.50 3 400 065.37 576 558.13 time_limit 3600.00 3 962 092.50 46.90 14 531.00 3553.10
hertzr5_np 296 577.00 296 577.00 0.00 optimal 187.72 296 577.00 19.35 0.00 168.37
hertzr5_p 317 609.00 302 663.09 14 945.91 time_limit 3600.00 317 420.00 92.27 189.00 3507.73
hertzr6_np 307 200.00 307 200.00 0.00 optimal 12.30 307 200.00 3.12 0.00 9.19
hertzr6_p 333 375.00 314 891.06 18 483.94 time_limit 3600.00 333 375.00 0.74 0.00 3599.26

(continued on next page)
15

D. De Santis et al. Knowledge-Based Systems 312 (2025) 113146
Table 11 (continued).
Instance Exact method GA Exact method vs GA

UB_Exact LB_Exact GAP Sol_status T_Exact UB_GA T_GA UB_GAP T_GAP

hertzr7_np 2 356 577.00 2 121 828.85 234 748.15 time_limit 3600.00 2 343 967.00 224.62 12 610.00 3375.38
hertzr7_p 1 323 871.50 1 147 417.66 176 453.84 time_limit 3600.00 1 303 384.50 301.36 20 487.00 3298.64
hertzr8_np 623 000.50 623 000.50 0.00 optimal 3107.43 623 052.50 7.42 −52.00 3100.01
hertzr8_p 744 844.50 669 533.81 75 310.69 time_limit 3600.00 744 325.50 48.15 519.00 3551.85
hertzd10_np 232 783.50 181 596.55 51 186.95 time_limit 3600.00 207 615.50 222.28 25 168.00 3377.72
hertzd10_p 222 270.00 175 564.91 46 705.09 time_limit 3600.00 212 145.00 177.91 10 125.00 3422.09
hertzd11_np 159 974.00 133 549.96 26 424.04 time_limit 3600.00 149 599.00 301.03 10 375.00 3298.97
hertzd11_p 130 507.00 89 120.31 41 386.69 time_limit 3600.00 111 977.00 39.49 18 530.00 3560.51
hertzg10_np 1789.00 1789.00 0.00 optimal 99.98 1789.00 24.58 0.00 75.40
hertzg10_p 1291.00 1291.00 0.00 optimal 327.72 1291.00 9.43 0.00 318.29
hertzg11_np 3191.00 2793.06 397.94 time_limit 3600.00 3040.00 45.50 151.00 3554.50
hertzg11_p 1403.00 1403.00 0.00 optimal 3541.55 1414.00 125.17 −11.00 3416.38
Data availability

Data will be made available on request.

References

[1] L. Euler, Solutio problematis ad geometriam situs pertinentis, Comment. Acad.
Sci. Imp. Petropolitanae 8 (1736) 128–140.

[2] K. Mei-Ko, Graphic programming using odd or even points, Chin. Math. 1 (1962)
273–277.

[3] J. Edmonds, E. Johnson, Matching, Euler tours and the Chinese postman problem,
Math. Program. 5 (1973) 88–124.

[4] C. Papadimitriou, On the complexity of edge traversing, J. ACM 23 (3) (1976)
544–554.

[5] E. Minieka, The Chinese postman problem for mixed networks, Manag. Sci. 25
(7) (1979) 643–648.

[6] C. Orloff, A fundamental problem in vehicle routing, Netw. 4 (1974) 35–64.
[7] J.K. Lenstra, A.H.G. Rinnooy Kan, Complexity of vehicle routing and scheduling

problems, Netw. 11 (1981) 221–227.
[8] Á. Corberán, G. Laporte, in: A. Corberán, G. Laporte (Eds.), Arc Routing, SIAM

– Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015.
[9] A. Corberán, R. Eglese, G. Hasle, I. Plana, J.M. Sanchis, Arc routing problems:

A review of the past, present, and future, Netw. 77 (1) (2020) 88–115.
[10] M.C. Mourão, L.S. Pinto, An updated annotated bibliography on arc routing

problems, Netw. 70 (2017) 144–194.
[11] C. Malandraki, M. Daskin, The maximum benefit Chinese postman problem and

the maximum benefit traveling salesman problem, European J. Oper. Res. 65 (7)
(1993) 218–234.

[12] B. Golden, R. Wong, Capacitated arc routing problems, Netw. 11 (1981) 305–315.
[13] E. Benavent, Á. Corberán, D. Laganá, F. Vocaturro, The periodic rural postman

problem with irregular services on mixed graphs, European J. Oper. Res. 276
(2019) 826–839.

[14] M. Reula, R. Martí, Heuristics for the profitable close-enough arc routing
problem, Expert Syst. Appl. 230 (2023) 120513.

[15] E.E. Zachariadis, C.D. Tarantilis, C.T. Kiranoudis, The load-dependent vehicle
routing problem and its pick-up and delivery extension, Transp. Res. B: Methodol.
71 (2015) 158–181.

[16] Á. Corberán, G. Erdoğan, G. Laporte, I. Plana, J.M. Sanchis, The Chinese postman
problem with load-dependent costs, Transp. Sci. 52 (2) (2018) 370–385.

[17] M. Gendreau, J.-Y. Potvin (Eds.), Handbook of Metaheuristics, Springer, Cham,
Switzerland, 2019.

[18] R. Martí, M. Sevaux, K. Sörensen, 50 years of metaheuristics, To Appear. Eur. J.
Oper. Res. (2024).

[19] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975.
16
[20] D.E. Goldberg, J.H. Holland, Genetic algorithms and machine learning, Mach.
Learn. 3 (2) (1988) 195–199.

[21] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197.

[22] W. Rivera, Scalable parallel genetic algorithms, Artif. Intell. Rev. 16 (2001)
153–168.

[23] Z. Konfrst, Parallel genetic algorithms: Advances, computing trends, applica-
tions and perspectives, in: International Parallel and Distributed Processing
Symposium, Vol. 18, 2004, p. 162.

[24] A.S. Akopov, L.A. Beklaryan, M. Thakur, B.D. Verma, Parallel multi-agent real-
coded genetic algorithm for large-scale black-box single-objective optimisation,
Knowl.-Based Syst. 174 (2019) 103–122.

[25] W. Zhong, J. Liu, M. Xue, L. Jiao, A multiagent genetic algorithm for global
numerical optimization, IEEE Trans. Syst. Man Cybern. B 34 (2) (2004)
1128–1141.

[26] C. Grosan, A. Abraham, Hybrid evolutionary algorithms: Methodologies, archi-
tectures, and reviews, in: A. Abraham, C. Grosan, H. Ishibuchi (Eds.), Hybrid
Evolutionary Algorithms, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007,
pp. 1–17.

[27] S. Domínguez-Casasola, J.L. González-Velarde, Y.Á. Ríos-Solís, K.A. Reyes-Vega,
The capacitated family traveling salesperson problem, Int. Trans. Oper. Res. 31
(2024) 2123–2153.

[28] A. Felipe, M.T. Ortuño, G. Tirado, New neighborhood structures for the double
traveling salesman problem with multiple stacks, Top 17 (2009) 190–213.

[29] F. Liu, G. Zeng, Study of genetic algorithm with reinforcement learning to solve
the TSP, Expert Syst. Appl. 36 (2009) 6995–7001.

[30] V. Romanuke, Deep clustering of the traveling salesman problem to parallelize
its solution, Comput. Oper. Res. 165 (2024) 106548.

[31] A. Felipe, M.T. Ortuño, G. Righini, G. Tirado, A heuristic approach for the green
vehicle routing problem with multiple technologies and partial recharges, Transp.
Res. E: Logist. Transp. Rev. 71 (2014) 111–128.

[32] G.A. Sgarro, L. Grilli, Ant colony optimization for Chinese postman problem,
Neural Comput. Appl. 36 (2024) 2901–2920.

[33] L. Shen, X. Xu, F. Shao, H. Shao, Y. Ge, A multi-objective optimization model
for medical waste recycling network design under uncertainties, Transp. Res. E:
Logist. Transp. Rev. 184 (2024) 103492.

[34] Y. Wang, S. Luo, J. Fan, L. Zhen, The multidepot vehicle routing problem with
intelligent recycling prices and transportation resource sharing, Transp. Res. E:
Logist. Transp. Rev. 185 (2024) 103503.

[35] P.J.B. Hancock, An empirical comparison of selection methods in evolutionary
algorithms, Lecture Notes in Comput. Sci. 865 (1994) 80–94.

[36] C.W. Ahn, R.S. Ramakrishna, Elitism-based compact genetic algorithms, IEEE
Trans. Evol. Comput. 7 (4) (2003) 367–385.

[37] N. Christofides, V. Campos, Á. Corberán, E. Mota, An Algorithm for the Rural
Postman Problem, Technical Report, Imperial College London ICOR 81.5, 1981.

[38] A. Hertz, G. Laporte, P. Nanchen-Hugo, Improvement procedures for the
undirected rural postman problem, INFORMS J. Comput. 11 (1999) 53–62.

http://refhub.elsevier.com/S0950-7051(25)00193-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb1
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb2
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb3
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb4
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb5
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb6
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb7
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb8
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb9
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb10
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb11
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb12
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb13
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb14
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb15
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb16
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb17
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb18
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb19
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb20
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb21
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb22
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb23
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb24
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb25
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb26
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb27
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb28
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb29
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb30
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb31
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb32
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb33
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb34
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb35
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb36
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb37
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb38
http://refhub.elsevier.com/S0950-7051(25)00193-5/sb38

	A modified single-objective genetic algorithm for solving the rural postman problem with load-dependent costs
	Introduction
	Our contribution

	Problem statement and mathematical model formulation
	Illustrative example
	A formulation

	A genetic algorithm
	Solution representation
	Adaptation of the genetic algorithm framework
	Obtaining Pop , the initial population of solutions
	Evaluating the fitness of an individual
	Selection of individuals
	Crossover of solutions
	Improvement phase via local search
	Mutation procedure

	Computational experiments
	Experimental design: technology employed and test instances
	Usability of the formulation
	Solving the problem with the GA
	A comment on the stability of the obtained solutions
	Comparison with Hexaly

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Appendix . Data availability
	References

