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 A B S T R A C T

The resource-constrained project scheduling problem is one of the most investigated problems in the project 
scheduling literature, and has a rich history. This article provides a perspective on this challenging scheduling 
problem, without having the ambition to provide a complete overview. Instead, the article does aim 
to summarize a number of reasons why this problem has been so intensely investigated from different 
perspectives.

It will be shown that this scheduling problem has many faces, and therefore deserves a lot of research time 
from a computational and theoretical point of view as well as from a practical point of view. An overview of 
possible extensions to other problems and a detailed overview of the used (both heuristic and exact) solution 
methods will be given. In addition, the data used will be discussed and interesting avenues for further research 
will be mentioned throughout the different sections.
1. Introduction and problem definition

The problem of assigning start times to activities of a project sub-
ject to precedence constraints in order to minimize the project total 
duration was the subject of intensive research in the 1950’s because of 
its relevance to large-scale industrial or military projects. Researchers 
found that the problem can be solved in polynomial time by finding 
longest paths, or equivalently by duality minimum potentials, in the 
precedence graph. Efficient methods were independently proposed such 
as the program evaluation and review technique (PERT) (Malcolm 
et al., 1959), the critical path method (Kelley Jr & Walker, 1959) 
and the metra potential method (Roy & Dibon, 1966). Incorporating 
resource constraints in this problem gave birth in the 1960’s to the
resource-constrained project scheduling problem (RCPSP) (Dike, 1964; 
Kelley, 1963; Wiest, 1964) and a first survey appeared in 1966 (Davis, 
1966). During this decade and in the 1970’s, complexity results were 
established and the first integer programming formulations and heuris-
tic methods dealing with resource-constraints were proposed. In his 
survey, Herroelen (1972) mentions already 54 papers, and the number 
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of new studies has grown exponentially since then. The interest on the 
RCPSP and its variants grew rapidly in the 1980’s with different meth-
ods to solve this problem under multiple conflicting criteria (Slowinski, 
1980) and different categories of resources (Slowinski, 1981). From 
the 1990’s on, the research studies started with the development of 
various heuristic and metaheuristic approaches, powerful dedicated 
branch-and-bound methods based on specific dominance rules, lower 
bounds and a large research effort on algorithm competition on various 
problem instance libraries. This growth is well illustrated by publi-
cations at that time of several survey studies (Brucker et al., 1999; 
Herroelen et al., 1998; Icmeli et al., 1993; Kolisch & Padman, 2001; 
Özdamar & Ulusoy, 1995) with references to 42, 83, 22, 203 and 211 
papers, respectively. The next two decades saw the advent of constraint 
programming, satisfiability problem (SAT) based and newly efficient 
integer programming methods as well as more and more sophisticated 
metaheuristics and hybridizations. The maturity of the field is assessed 
by the publication of several books (Artigues et al., 2013; Brucker 
& Knust, 2012; Demeulemeester & Herroelen, 2006; Dorndorf, 2002; 
Neumann et al., 2002; Schwindt et al., 2015; Vanhoucke, 2012). This 
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paper reviews some of the most investigated research lines on the 
RCPSP and highlights some reasons of this never-ending enthusiasm 
for this challenging resource-constrained scheduling problem.

First and foremost, researchers spend their time on developing 
new procedures because the problem has an impressive variety of 
applications. Initially and still today, the RCPSP is a combinatorial 
optimization problem situated at the core of project management (De-
meulemeester & Herroelen, 2006; Vanhoucke, 2012). The problem is 
proposed as the basic problem in the project scheduling literature and 
follows a number of assumptions that, despite the fact that they often 
do not arise in this way in practice, make the problem attractive for 
academic research. Naturally, the complexity of the problem is one 
of the main reasons why researchers continuously develop improved 
scheduling algorithms. However, one of the most attractive aspects of 
the well-defined assumptions of the RCPSP is that many real project 
scheduling problems that arise in practice often contain the basic 
problem as a sub-problem. These assumptions, which in practice are 
often regarded as too restrictive and insufficiently applicable for real 
projects, can therefore also be seen as an advantage because it allows to 
define many extensions in a simple manner without affecting the core of 
the scheduling problem. The best example of such a modular approach 
can be seen in the classification schemes of Brucker et al. (1999) 
and Herroelen et al. (1999) that have classified the basic problem and 
its various possible extended components, in order to provide a clear 
picture of the many applications of this problem. As an example, in 
a study by Vanhoucke (2013), a number of possible extensions to the 
basic RCPSP formulation was tested on a number of real projects from 
practice to demonstrate that the problem, if properly defined, does 
indeed have many applications. It is also no coincidence that thanks to 
its practical value, this problem was also included in most commercial 
software tools.

The problem appears in many other and sometimes unexpected ap-
plication domains such as make-to-order production scheduling (Wang 
et al., 2021), batch scheduling in the process industry (Schwindt 
& Trautmann, 2000), assembly line balancing (De Reyck & Herroe-
len, 1995), timetabling (Brucker & Knust, 2000b), evacuation plan-
ning (Even et al., 2015), hazardous material inspection scheduling 
(Polo-Mejía et al., 2023), spacecraft experiments scheduling (Simonin 
et al., 2015), register allocation and instruction scheduling in compil-
ers (Lozano & Schulte, 2019), circuit generation by high level syn-
thesis (Sittel et al., 2018). Moreover, the RCPSP is extremely com-
putationally challenging even on problem instance of modest size, 
even with the tremendous progress made in the 1990s for solving 
disjunctive scheduling problems (a particular case of the RCPSP where 
any resource can perform only one activity at a time). Notably, there 
are still today 60-activity RCPSP instances resisting to the exact solvers 
since almost 30 years.

In what follows, we formally define the RCPSP and discuss its 
position in the scheduling literature that may explain its current in-
tractability. Then, we present the different sections of this survey. The 
problem considers a set of activities  constituting the project, a set of 
resources  and a time horizon  = [0, 𝑇 ), where 𝑇  is an upper bound 
on the project duration. Each resource 𝑘 ∈  has a constant integer, 
non negative availability 𝐵𝑘. The resources are of the renewable type, 
meaning that once an activity that required the resource is completed, 
the resource units occupied by the activity are released and can be 
used again by another activity. A resource may model various real-life 
resources such as a team of technicians of identical skills, an area with 
limited space, etc. An activity, also called a task or an operation in 
other contexts where the RCPSP model applies, is an elementary stage 
of the project with a uniform resource usage. Each activity 𝑖 ∈  has 
a constant integer processing time 𝑝𝑖 and requires a non negative, also 
constant and integer, amount 𝑏𝑖𝑘 of each of the resources 𝑘 ∈ . A typi-
cal example of an activity in aircraft assembly is a riveting operation on 
the fuselage which requires 2 technicians, a surface area of 5 m2 in the 
assembly area and lasts 2 h. The problem consists in assigning a start 
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time 𝑆𝑖 to each activity, which inductively defines its completion time 
𝐶𝑖 equal to the start time 𝑆𝑖 plus the processing time 𝑝𝑖 so that at any 
time point, the resource usage of the activities in progress never exceeds 
the resource availability, which is called the cumulative constraint.1 
For example, if we have a team of only 5 technicians then only two 
riveting activities can be in progress simultaneously. Assuming that 
the area around the aircraft is subdivided in 5 m2 zones, among two 
riveting activities located in the same zone, only a single one can be 
executed at any time period due to space limitation. The activities are 
also linked by precedence constraints that are usually represented by 
means of an activity-on-node directed graph with arc set 𝐸 where an 
arc (𝑖, 𝑗) ∈ 𝐸 from an predecessor activity 𝑖 ∈  to a successor activity 
𝑗 ∈  models the fact that the successor activity cannot be started while 
the predecessor activity is not completed. Coming back to the aircraft 
assembly example, the fuselage elements must be positioned before 
the riveting activity can take place, which is modeled by a precedence 
constraint linking the corresponding positioning and riveting activities. 
The most common objective is to minimize the total project duration 
or makespan 𝐶max.

The RCPSP can be formally stated as follows: 
min 𝐶max

s.t. 𝐶max ≥ 𝑆𝑖 + 𝑝𝑖 ∀𝑖 ∈ ,

𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖 ∀(𝑖, 𝑗) ∈ 𝐸,
∑

𝑖∈(𝑡)
𝑏𝑖𝑘 ≤ 𝐵𝑘 ∀𝑘 ∈ , 𝑡 ∈ 

where (𝑡) gives the subset of activities in progress at time point 𝑡, 
i.e. such that 𝑡 ∈ [𝑆𝑖, 𝑆𝑖 + 𝑝𝑖[. The objective and the first constraints set 
the makespan as the maximum completion time among all activities. 
The second constraints are the precedence constraints and the last 
constraints are the cumulative constraints.

The RCPSP occupies a special place in what is now humorously 
called the scheduling zoo (Dürr, 2023), which we can define as the 
(huge) family of different scheduling problems that can be obtained 
by varying the parameters of the famous three-field notation of the 
form 𝛼|𝛽|𝛾 where 𝛼 describes the machine environment (1 for single 
machine, 𝑃  for parallel machine, 𝐹  for flow-shop, 𝑂 for open-shop, 𝐽
for job-shop, etc.), 𝛽 gives additional constraints (such as precedence 
constraints denoted by 𝑝𝑟𝑒𝑐, release dates are denoted by 𝑟𝑖, etc.) and 
𝛾 gives the objective function (e.g. 𝐶max). In 1979, when (Graham 
et al., 1979) introduced the three-field notation, the RCPSP could be 
denoted as 𝑃∞|𝑝𝑟𝑒𝑐, 𝑟𝑒𝑠|𝐶max, where 𝑟𝑒𝑠 indicates the presence of re-
newable resources of limited capacity (precisely the standard resource 
constraints as defined above in the formal RCPSP model). To have the 
number of activities simultaneously scheduled in parallel only limited 
by these resource constraints, the machine environment had to be 
relaxed to an infinite number of parallel machines, which is denoted 
by 𝛼 = 𝑃∞.2 More notation schemes able to classify variants and 
extensions of the RCPSP were proposed by the previously mentioned 
classifications studies of Herroelen et al. (1998) where the RCPSP is 
denoted 𝑚, 1|𝑐𝑝𝑚|𝐶max and Brucker et al. (1999) where the RCPSP is 
denoted 𝑃𝑆|𝑝𝑟𝑒𝑐|𝐶max. Discussions about the merits and drawbacks of 
these classification schemes can be found in Herroelen et al. (2001). In 
what follows, we will use the Graham et al. (1979) notation, which is 
sufficient for the standard RCPSP and its special cases.

1 In the constraint programming literature, such renewable resources on 
which the cumulated resource usage at each time point cannot exceed 
the resource capacity, are called cumulative resources and the correspond-
ing constraint is called the cumulative constraint (see e.g. Schutt et al., 
2013), while other authors use sometimes the cumulative term for storage 
resources (Schwindt & Trautmann, 2000).

2 In the three-field notation, 𝛼 = 𝑃𝑚 means a number of machines fixed to 
𝑚 while 𝛼 = 𝑃  means an arbitrary number of machines, which is part of the 
input.
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Despite the simplicity of its definition, the RCPSP offers a rich mod-
eling framework as it admits several well-known scheduling problems 
as special cases. For example, if each activity 𝑖 ∈  has an individual 
due date 𝑑𝑖 and if instead of the makespan, one wants to minimize the 
maximum lateness 𝐿max = max𝑖∈ 𝑆𝑖+𝑝𝑖−𝑑𝑖 then it suffices to consider 
an RCPSP instance with activity set ′, precedence constraint set 𝐸′

and the same resource set  such that all activities of  are present in 
′ with the same characteristics. In addition, for each activity 𝑖 ∈ , 
an activity 𝑖′ is present in ′ of duration 𝐷 − 𝑑𝑖, no resource demand 
and having 𝑖 as unique predecessor. 𝐷 must be a constant larger than 
max𝑖∈ 𝑑𝑖 for having non negative processing times. Hence, precedence 
constraint set 𝐸′ includes all precedence constraints in 𝐸 plus an arc 
(𝑖, 𝑖′) for each activity 𝑖 ∈ . Any method that minimizes the makespan 
in the RCPSP instance built this way minimizes the maximum lateness 
in the original instance.

If each activity 𝑖 ∈  has additionally a release date 𝑟𝑖 yielding 
constraint 𝑆𝑖 ≥ 𝑟𝑖, a similar instance modification can be made to 
incorporate all release dates. Each activity 𝑖 is paired with an additional 
predecessor having a processing time equal to 𝑟𝑖 and no resource 
demand.

We just saw the RCPSP model can be used to solve the more general 
𝑃∞|𝑝𝑟𝑒𝑐, 𝑟𝑒𝑠, 𝑟𝑖|𝐿max problem, involving release dates, due date and the 
maximum lateness criterion. Taking this equivalence into account and 
by varying the resource availability the activity requirements and the 
precedence constraint form, the RCPSP also encompasses the famous 
one-machine problem 1|𝑟𝑖|𝐿max, several parallel machine problems such 
as 𝑃 |𝑟𝑖, 𝑝𝑟𝑒𝑐|𝐿max, the flow-shop problem 𝐹 ∥ 𝐶max, the open-shop 
problem 𝑂 ∥ 𝐶max, the job-shop problem 𝐽 ∥ 𝐶max and some flexible 
variants of the last two problems.

The fact that the RCPSP has all these NP-hard problems as particular 
cases inspires at least two reflexions. First, the RCPSP is obviously 
an NP-hard optimization problem. However, the complexity status of 
simpler particular cases has been studied and will be reviewed in 
Section 2. Second, the RCPSP structure is highly polymorphic. Know-
ing the gigantic amount of research papers that have been necessary 
before obtaining efficient methods to solve, exactly or approximatively 
the job-shop problem, to name only this one, having a generic and 
stable method to solve (nearly) optimally the RCPSP in all its gener-
ality appears a more than serious challenge. This is why the RCPSP 
is the ideal playground for all categories of combinatorial optimiza-
tion methods. Section 3 discusses the different data generators and 
benchmark instance sets that have been produced to evaluate these 
methods. Concerning exact solution approaches Sections 4–6 review 
the mixed-integer linear programming methods, constraint program-
ming and SAT-based methods and specific branch-and-bound methods, 
respectively. Section 7 is devoted to heuristics and metaheuristics. Sec-
tion 8 presents the different lower bounds that have been investigated. 
The numerous mentioned real-life applications of the RCPSP often 
involve additional constraints and/or objectives and optimization con-
texts than the standard RCPSP. Section 9 briefly reviews the different 
variants of the RCPSP while Section 10 draws some final conclusions 
and highlights some future research paths.

2. Structural properties and complexity

Several observations can be made from the formulation given in Sec-
tion 1. First, despite the fact that the start time variables are continuous, 
there always exist an integer optimal solution if all data parameters also 
take integer values (Artigues, 2008). Hence, a restriction to integer start 
times can be assumed. Second, omitting resource constraints yield the 
standard resource-unconstrained project scheduling problem that can 
be solved in polynomial time since the formulation of Section 1 is a 
linear program with || continuous variables and |𝐸|+ || constraints. 
The problem can be nicely represented and efficiently solved via the 
activity-on-node graph representation. A graph is build with a node per 
activity including a dummy start activity 0 and a dummy end activity 
3 
|| + 1 both of zero duration. An arc is defined between two node 
associated to activities linked by a precedence constraint, considering 
that activity 0 is a predecessor of all other nodes while node || + 1
is a successor of all other nodes. The arc is valuated by the duration 
of the origin activity. Then, the minimum makespan of the problem is 
equal to the length of the longest path in this graph from 0 to || + 1. 
This is the core of the PERT, CPM and MPM methods mentioned above. 
It follows that the problem difficulty comes from the adjunction of 
resource constraints.

2.1. Complexity analysis and approximation

A fundamental question is to establish the boundary between poly-
nomially solvable problems and NP-hard particular cases of the RCPSP. 
One of the first such results was established by Lenstra and Rinnooy Kan 
(1978) who found minimal NP-hardness results when adding basic 
resource constraints: all activities require one machine to be selected 
among two identical ones. They proved that while 𝑃 2|𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1|𝐶max
is polynomially solvable, 𝑃 2|𝑝𝑟𝑒𝑐, 𝑝𝑖 ∈ {1, 2}|𝐶max is strongly NP-hard 
by reduction from Clique.3 They also established that 𝑃 |𝑡𝑟𝑒𝑒, 𝑝𝑖 = 1|𝐶max
(the precedence constraints form a tree) can be solved in polynomial 
time whereas 𝑃 |𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1|𝐶max is NP-hard, also by reduction from 
Clique. This illustrates the influence of the processing time variability 
and the precedence constraint structure on the complexity.

Another question getting closer to the RCPSP is to determine the 
complexity boundary when adding renewable resource constraints to 
simple parallel machine problems with or without precedence con-
straints. Under the Graham et al. (1979) notation, Garey and Johnson 
(1975) showed that the unit duration RCPSP with two parallel ma-
chines 𝑃2|𝑟𝑒𝑠, 𝑝𝑖 = 1|𝐶max is polynomially solvable while 𝑃 3|𝑟𝑒𝑠1, 𝑝𝑖 =
1|𝐶max and 𝑃2|𝑟𝑒𝑠1, 𝑡𝑟𝑒𝑒, 𝑝𝑖 = 1|𝐶max are both NP-hard, where 𝑟𝑒𝑠1
stands for the consideration of a unique renewable resource (|| = 1).
Blazewicz et al. (1983) further refined their boundaries by considering 
other particular cases identified by the notation 𝑟𝑒𝑠𝛿𝜎𝜌 where 𝛿 is the 
number of resources, 𝜎 is an upper bound on the maximal resource 
availability and 𝜌 is an upper bound on the resource requirement of 
each activity on any resource. They showed that 𝑃 3|𝑟𝑒𝑠.11, 𝑝𝑖 = 1|𝐶max
and that 𝑃 2|𝑟𝑒𝑠111, 𝑐ℎ𝑎𝑖𝑛, 𝑝𝑖 = 1|𝐶max are both strongly NP-hard, where 
𝑐ℎ𝑎𝑖𝑛 means that precedence constraints are in the form of a set of 
chains of activities. The source of difficulty that these results reveal is 
not related to the cumulative constraint (i.e. the presence of require-
ments on a resource available in multiple units) since 𝜎 = 1 and tasks 
have unit processing times, but rather to the fact that the activities 
require several resources simultaneously for the first case and that 
the number of required resources can vary from 0 to 1, jointly with 
precedence constraints, even in the form of chains, in the second case.

The multi-resource source of difficulty can be also illustrated by 
reduction from the graph coloring problem for unit time activities 
𝑃∞|𝑟𝑒𝑠.11, 𝑝𝑖 = 1|𝐶max: an RCPSP instance is obtained by defining a 
resource for each arc and the makespan corresponds to the number 
of colors (Schäffter, 1997). On the other hand, about the influence of 
cumulative constraint on the problem difficulty, note that the bin pack-
ing problem is a famous special case of the RCPSP that can be denoted 
𝑃∞|𝑟𝑒𝑠1.., 𝑝𝑖 = 1|𝐶max. It can be considered as the simplest cumulative 
scheduling problem and is known to be strongly NP-hard (Garey & 
Johnson, 1979).

On the positive side, polynomial-time complexity results can be ob-
tained by fixing a part of the input. Blazewicz and Ecker (1983) showed 
that when all resource parameters (number of resources, maximal ca-
pacity and maximal requirement) are fixed, problem 𝑃∞|𝑟𝑒𝑠𝛿𝜎𝜌, 𝑝𝑖 = 1|
𝐶max can be solved in linear time. Blazewicz and Kubiak (1989) consid-
ered the case of typed activities where all tasks of the same type have 

3 Clique is the NP-complete  problem answering whether a clique of a given 
cardinality exists in an undirected graph.
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the same processing time and resource requirements. When the number 
of activity classes is fixed and either the number of parallel machines or 
the maximum processing time is also fixed (𝑃 |𝑟𝑒𝑠, 𝑝𝑖 < 𝑝, 𝑡𝑦𝑝𝑒𝑠 = 𝑘|𝐶max
and 𝑃𝑚|𝑟𝑒𝑠, 𝑡𝑦𝑝𝑒𝑠 = 𝑘|𝐶max), Blazewicz and Kubiak (1989) proposed a 
polynomial time dynamic programming algorithm. Brucker and Krämer 
(1996) extended these results to 𝑃 |𝑟𝑒𝑠, 𝑝𝑖 < 𝑝, 𝑡𝑦𝑝𝑒𝑠 = 𝑘, 𝑟𝑖|𝐶max. Kova-
lyov and Shafransky (1998) provided an 𝑂(1) algorithm for 𝑃 |𝑟𝑒𝑠1.1, 𝑝𝑖
= 1|𝐶max. A synthesis of known complexity results for the RCPSP, 
i.e. the complexity map of the problem, can be found in Ganian et al. 
(2020).

For some of the above-considered NP-hard RCPSP special cases, 
there exists polynomial time approximation algorithms with perfor-
mance guarantee. First, for unit duration activities, Graham et al. 
(1979) showed that for 𝑃∞|𝑟𝑒𝑠, 𝑝𝑟𝑒𝑐, 𝑝𝑖 = 1|𝐶max the algorithm that 
sorts the activities in a non-decreasing order of maximum resource 
requirements (DMR) has a worst case approximation ratio of 1710 ||+1. 
Without precedence constraints (𝑃∞|𝑟𝑒𝑠, 𝑝𝑖 = 1|𝐶max), the makespan 
produced by the list scheduling4 with an arbitrary priority list is at 
most || + 7

10  times the optimal value, plus a constant factor of 
7
2 . 

For the bin-packing special case, a survey of approximation results 
can be found in Coffman et al. (2013). Restricting the problem to a 
single resource and 𝑚 parallel machines, for 𝑃 |𝑟𝑒𝑠1, 𝑝𝑖 = 1|𝐶max, the 
makespan of the solution produced by the DMR algorithm is at most 
2 − 2

𝑚  times the optimal makespan plus a constant factor of 1 (Krause 
et al., 1975). Restricting further the activities to occupy 0% or 100%
of the resource (𝑃 |𝑟𝑒𝑠111, 𝑝𝑖 = 1|𝐶max), Goyal (1976) showed that the 
worst case ratio of list scheduling is 3 − 2

𝑚 . For the more general case 
𝑃 |𝑟𝑒𝑠, 𝑝𝑟𝑒𝑐|𝐶max, i.e. the RCPSP in which no more than 𝑚 jobs can be 
scheduled in parallel, list scheduling has a worst case ratio of 𝑚 (Garey 
& Graham, 1975). Without precedence constraints (𝑃 |𝑟𝑒𝑠|𝐶max), the 
worst case ratio of list scheduling becomes min(𝑚+12 , 𝑠 + 2 − 2𝑠+1

𝑚 ), with 
𝑠 = ||. Without the 𝑚-machine restriction, 𝑃∞|𝑟𝑒𝑠|𝐶max, the ratio 
of list scheduling improves to || + 1. A survey on the complexity 
of parallel machine problems with resource constraints can be found 
in Edis et al. (2013). However more negative approximation results 
were established. Because of the equivalence with graph coloring, the 
RCPSP is not in APX, which define the class of problems having a worst-
case ratio bounded by a constant (Uetz, 2001). More recently, Gafarov 
et al. (2014) provided non approximability results for less specific 
instances.

Research on the complexity of combinatorial optimization prob-
lems gained recently a new interest with parameterized complexity. A 
problem is fixed parameter tractable (FPT) if one can find an optimal 
algorithm that runs in a polynomial time w.r.t. the input size, but in 
a potentially exponential time w.r.t. a given parameter (Downey & 
Fellows, 2012). Bevern et al. (2016) proved that the RCPSP is fixed-
parameter tractable parameterized with the width of the precedence 
graph combined with the maximum difference between the earliest 
start time and the factual start time of any activity.

2.2. Structural properties

Given the NP-hardness of the RCPSP, structural properties have 
been established to reduce the search space. Indeed, even if the activity 
start times can be restricted to integer values, in a problem without 
precedence constraints there are 𝛱𝑖∈𝐴(𝑇 − 𝑝𝑖) different start time vec-
tors, which yields a huge search space. Bartusch et al. (1988) study 
an order theoretic model for the RCPSP inspired by the disjunctive 
graph approach for machine scheduling (Balas, 1969) as well as by 
the resource-unconstrained case and the potentials in the precedence 
graphs evoked in the introduction. They established that, geometrically, 
the solution space of the RCPSP is a union of finitely many polyhedra, 

4 The list scheduling algorithm in presence of resource constraints is similar 
to the parallel scheduling scheme described in Section 7.
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each polyhedron defining the set of potentials associated to the prece-
dence graph augmented by additional precedence constraints given by 
a so called feasible strict partial order.5 The rationale is the intuition 
that if the earliest start schedule associated to the precedence graph 
is infeasible, then there is a set of activities in process simultaneously 
that violates the resource constraint because on some resource the sum 
of their requirement exceeds the resource capacity. Such a set is called a
forbidden set. At least one precedence constraint must be added between 
two activities of each forbidden set to obtain a feasible schedule. So 
a strict partial order is feasible if the precedence constraints it adds 
to the precedence graph destroys all inclusion-minimal forbidden sets 
(MFS). The RCPSP then resorts to finding the feasible strict partial 
order yielding the precedence graph of minimal longest path length. 
The set of earliest start schedules associated with a feasible strict partial 
order is called the set of quasi-active schedule (Neumann et al., 2000). 
It is strictly included in the feasible set and dominant for makespan 
minimization. Unfortunately, the number of feasible strict partial orders 
can be huge.

Beyond the computational complexity gap from the resource-uncon
strained to the resource-constrained case illustrated in the previous 
section, this definition of the RCPSP underlines that some intuitive 
properties have to be reconsidered when limited resources are in-
troduced. The typical example is that of the activity slack time and 
criticality. Without resource constraint, the slack of an activity is the 
difference between the longest path length in the precedence graph 
and the length of the longest path passing through the activity. It gives 
the time interval on which the activity can start without increasing 
the minimum project duration and critical activities, the ones with 
a slack equal to zero, should be monitored carefully as any increase 
on their start time unavoidably increase the end time of the project. 
Now with resource constraints, given an optimal set of additional 
precedence constraints destroying all forbidden sets, we can define 
slacks and critical activities as in the resource-unconstrained case. 
But there exist in general may optimal ways of adding precedence 
constraints, each potentially leading to different slacks and critical 
activities. Hence, as already remarked by Wiest (1964), slacks and 
critically are ill-defined and so misleading concepts in the RCPSP. This 
questions the use of methods based on activity slacks such as the critical 
chain methods (Goldratt, 2017) whose aim is to insert buffers based 
on activity criticality. Merits and pitfalls of the critical chain method 
where analyzed by Herroelen and Leus (2001).

The search space can be further reduced by remarking that from a 
quasi-active schedule, left-shifting an activity by one unit while leaving 
the other activities at their start time may be feasible and cannot 
increase the makespan, as remarked by Sprecher et al. (1995). Such 
a shift is called a local left shift by Kolisch (2015) and is equivalent 
for the RCPSP to the order-monotonic left shift presented by Neumann 
et al. (2000). The set of schedules in which no feasible local left shift 
exists is called the set of semi-active schedules and corresponds to the 
set of pseudo-active schedules given by Neumann et al. (2000). This set 
is in turn included in the set of quasi-active schedules.

The smallest set of dominant schedules considered in the literature 
is the set of active schedules, for which no global left-shift (a left shift 
of more than one unit) exists. Interestingly, this set can be generated 
by enumerating all activity permutations (total orders) compatible with 
the precedence constraints and computing for each of them a schedule 
by the serial generation scheme algorithm (Kolisch, 2015) that takes 
the activities one by one in the permutation order and schedule each 
activity as early as possible. This method is widely used in heuristic 
approaches (see Section 7). The search space reduction can be dras-
tic, as for 4 activities without precedence constraints, there are 219 
possible strict partial orders and only 24 permutations. Even if these 

5 In mathematics a strict partial order in an irreflexive, antisymmetric and 
transitive binary relation on a set.
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numbers are only upper bounds on the numbers of pseudo-active and 
active schedules, respectively, as different orders may give the same 
schedule, this give an idea of the drastic reduction on the search space 
that considering active schedules can bring. However, generating only 
active schedules in a branch-and-bound scheme is not trivial and some 
efficient exact methods for the RCPSP work in the quasi-active schedule 
space, such as the one by Laborie (2005).

3. Project data

Despite the known complexity of the RCPSP, enormous progress has 
been made in the last few decades in the use of data. The research 
took off when Patterson (1984) introduced his well-known dataset 
consisting of 110 instances extracted from various papers. This dataset 
soon became the standard to perform experiments on, until it was 
shown in 1992 that all instances could be optimally solved (using the 
algorithm of Demeulemeester & Herroelen, 1992). Kolisch and Sprecher 
(1996) therefore decided to generate a new project scheduling library 
(PSPLIB) that in no time became (and still is) the standard dataset 
on which to test new algorithms. Despite the fact that many of these 
instances already have a known optimal solution, quite a few of these 
PSPLIB instances are not solved to optimally to this day, and it can be 
expected that, even with the current rapid progress in research, this set 
will last for some time to come.

Unlike the Patterson set, the PSPLIB set does not consist of a random 
collection of projects, but they were accurately generated with a gener-
ator that uses network and resource indicators to control the generation 
process. This network generator ProGen (Kolisch et al., 1995) uses 
the coefficient of network complexity (CNC, Pascoe, 1966) to control 
network structure, and the resource strength (RS, Kolisch et al., 1995) 
to determine resource use. Given the success of the dataset, a number 
of other researchers started to build their own alternative network 
generator, or proposed extensions and improvements to the indicators. 
New network generators emerged such as ProGen/Max (Schwindt, 
1995), RanGen (Demeulemeester et al., 2003; Vanhoucke et al., 2008) 
and RiskNet (Tavares, 1999). They relied on other network indicators 
such as order strength (OS, Mastor, 1970), the serial/parallel indicator
(SP, Vanhoucke et al., 2008) and other resource indicators such as
resource-constrainedness (RC, Patterson, 1976) to generate the projects. 
This growth of new generators also very quickly led to new datasets 
and we would like to refer the reader to two websites where the data 
(and solutions) for the RCPSP were made available.6 Much of the data 
available at these websites is the results of various research studies for 
which a summary is recently provided by Vanhoucke (2024).

Elmaghraby and Herroelen (1980) were among the first to draw our 
attention to the importance of estimating the complexity of the project 
scheduling problem with indicators, but their real importance was only 
fully emphasized when Herroelen and De Reyck (1999) discussed the 
presence of so-called phase transitions for the RCPSP. A phase transition 
shows a sudden change in complexity for the problem, where one 
algorithm can handle it better than the other. The ultimate goal of such 
a study is to provide insights into the threshold values for the indicators 
that indicate such a transition, so that future algorithms can better 
respond to them. Tailoring (exact or heuristic) scheduling algorithms 
by taking into account specific values for the instance indicators is often 
done, but should done be much better in the future. After all, a number 
of researchers have shown that the existing network and resource 
indicators are not always reliable for predicting this complexity, and 

6 The PSPLIB website to download instances and upload solutions is avail-
able at http://www.om-db.wi.tum.de/psplib/library.html. A similar system has 
been introduced for the single- and multi-mode version of the RCPSP at 
http://solutionsupdate.ugent.be. The most complete set with many instances 
and solutions for the RCPSP and many variants is available at https://www.
projectmanagement.ugent.be/research/data.
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that results from different studies contradict each other. Vanhoucke 
and Coelho (2021) have shown that the resource indicator values can 
even have different values for the same instance, which can completely 
obscure our knowledge about the phase transition values. To overcome 
this problem, new complexity indicators (Van Eynde et al., 2024) and 
a new theoretical framework (Van Eynde & Vanhoucke, 2022b) to 
better discriminate between easy and hard instances for the RCPSP 
have been proposed. In addition to new complexity indicators, new 
artificial project datasets were recently generated, leading to the NetRes 
dataset (Vanhoucke & Coelho, 2018) for machine learning training 
purposes, the CV set (Coelho & Vanhoucke, 2020) for testing exact 
algorithms, and the sD set (Coelho & Vanhoucke, 2023) for testing 
meta-heuristics to solve the RCPSP.

What the future research to project data will bring is of course 
unknown, but there is little doubt that the new datasets and improved 
indicators can lead to new insights in several ways. A potentially 
promising future research avenue in the research of the RCPSP is 
the collection and use of empirical data, although this path is not 
yet very well explored. Perhaps the theoretical nature of the research 
has something to do with it, but what certainly also plays a role is 
that the basic assumptions of the RCPSP are not often met for real 
projects, which makes collecting real data not easy. For the time being, 
to the best of our knowledge, the empirical dataset of Batselier and 
Vanhoucke (2015) is the only freely available set that can be used for 
the research, although not all projects contain the necessary resource 
data. In contrast, many of these projects contain data on the risk profile 
of activities and sometimes even follow-up data reflecting the progress 
of the project, so these project can be used for different variants of the 
RCPSP (for realistic extensions of the basic assumptions of the RCPSP, 
see Section 9). At the time of the publication of the original paper, the 
data set contained 52 projects, but it already consisted of 183 projects 
at the time of publication of the current paper (and the set is still 
growing, cf. Vanhoucke, 2023). If the research community wants to 
make this challenging project scheduling problem and all its algorithms 
more practical, then testing on empirical data will be necessary to 
convince professional project managers that the gap between theory 
and practice is not unbridgeable.

One of the methods that can help to achieve this ambitious goal is 
a procedure to calibrate empirical project data. This idea was initially 
proposed in a paper by Trietsch et al. (2012) and involves a series of 
hypotheses tests using empirical progress data for activity durations. 
The calibration aims making these activity durations suitable for further 
research by testing whether they correspond to a predefined statistical 
distribution (they use the lognormal distribution as their null hypoth-
esis). The novelty of their calibration procedure is that it cannot be 
reduced to a simple curve fitting method, since it incorporates the re-
moval of data points that cannot be fully trusted due to being collected 
by humans (empirical data is collected by real project managers and not 
automatically generated by the network generators). The calibration 
procedure was validated on 24 projects from the empirical database 
by Colin and Vanhoucke (2016) and an extended version of it was 
extensively and successfully tested on 83 projects by Vanhoucke and 
Batselier (2019a, 2019b). Despite the fact that such research is still 
in its infancy, it may serve as an impetus to make the RCPSP more 
accessible to professional project managers, and it may also provide 
leverage in research into the stochastic version of this problem. It is 
therefore quite clear that research into project data for the RCPSP and 
all its extensions is still not over, and perhaps in the coming years, given 
the growing attention to data in general, many innovative ideas will be 
developed which (hopefully) will further increase our understanding of 
this complex scheduling problem.

4. Mixed-integer linear programming approaches

The brief historical review in the introduction reveals that, like for 
many other combinatorial optimization problems, mixed-integer linear 

http://www.om-db.wi.tum.de/psplib/library.html
http://solutionsupdate.ugent.be
https://www.projectmanagement.ugent.be/research/data
https://www.projectmanagement.ugent.be/research/data
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programming branch and bound has most probably been the first exact 
method proposed for the RCPSP. Three types of MILP formulations 
are encountered in the literature, that can be distinguished by the 
type of integer variables they involve. There is a relation between 
these formulation types and the dominant schedule sets presented in 
Section 2. Surveys on MILP formulations for the RCPSP have been 
proposed by Artigues et al. (2015), Demassey (2013), Demeulemeester 
and Herroelen (2006). To compare different formulations, we are inter-
ested in their size, in terms of number of variables and/or constraints 
and their relaxation strength, in terms of the quality of the lower 
bound obtained by relaxing the integrity of the integer variables. More 
precisely, if 𝑃  denotes a MILP formulation and (𝑃 ) denotes the convex 
polyhedron of its continuous relaxation, then a formulation 𝑃  strictly 
dominates formulation 𝑃 ′ if (𝑃 ) ⊊ (𝑃 ′).

Weak and strong time-indexed formulations The most common MILP 
formulation is the time-indexed formulation aiming at representing all 
the feasible integer schedules by means of a binary variable 𝑥𝑖𝑡 for each 
activity 𝑖 ∈ 𝐴 and time period 𝑡 ∈   with the meaning that 𝑥𝑖𝑡 = 1 if 
and only if the start time of 𝑖 is equal to 𝑡. The start time can directly 
been expressed as 𝑆𝑖 =

∑

𝑖∈ 𝑡𝑥𝑖,𝑡. The set (𝑡) of activities in process at 
a given time period 𝑡 can be defined as the set of activities 𝑖 that start 
at 𝜏 ∈ [𝑡 − 𝑝𝑖 + 1, 𝑡]. Hence, expression ∑𝑖∈𝐴

∑𝑡
𝜏=𝑡−𝑝𝑖+1

𝑏𝑖𝑘𝑥𝑖𝜏 gives the 
amount of resource 𝑘 used by all activities of (𝑡), where 𝑏𝑖𝑘 denotes 
the requirement of activity 𝑖 on resource 𝑘 (see Section 1). This allows 
to express the resource constraints as || knapsack inequalities per time 
period. This formulation is called the pulse discrete time formulation 
(𝑃−𝐷𝑇 ) by Artigues (2017). A stronger formulation (𝑃−𝐷𝐷𝑇 ) can be 
obtained by reinforcing the precedence constraints, expressing them in 
a disaggregated way while the 𝑃−𝐷𝑇  formulation that aggregates all 
variables 𝑥𝑖𝑡 and 𝑥𝑗𝑡 in a single constraint 𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖 per precedence 
constraints is called the aggregated formulation. The disaggregated 
formulation (Christofides et al., 1987) introduces for each precedence 
constraint (𝑖, 𝑗) and each time period 𝑡 the implication 𝑆𝑗 ≤ 𝑡 ⟹

𝑆𝑖 ≤ 𝑡 − 𝑝𝑖, which, given the definition of variables 𝑥𝑖𝑡 is expressed by 
∑𝑡

𝜏=0 𝑥𝑗𝜏 ≤
∑𝑡−𝑝𝑖

𝜏=0 𝑥𝑖𝜏 . Other time-indexed formulations can be obtained 
by changing the semantics of the binary variable. The step discrete time 
formulation (𝑆−𝐷𝑇 ) proposed by Pritsker and Watters (1968) and its 
disaggregated variant (de Souza & Wolsey, 1997; Sankaran et al., 1999; 
Wolsey, 1997) considers variable 𝑦𝑖𝑡 where 𝑦𝑖𝑡 = 1 iff activity 𝑖 starts 
at 𝑡 or before 𝑡. The on–off discrete time formulation (𝑂𝑂−𝐷𝑇 ) and its 
disaggregated variant (𝑂𝑂−𝐷𝐷𝑇 ) introduce variable 𝑧𝑖𝑡 where 𝑧𝑖𝑡 = 1
iff activity 𝑖 is in process at time 𝑡. It can be established (Sousa, 1989) 
that the three aggregated formulations 𝑃−𝐷𝑇 , 𝑆−𝐷𝑇  and 𝑂𝑂−𝐷𝑇  are 
equivalent in terms of linear relaxation as they can all be obtained from 
each other by linear non singular transformations. The same holds for 
the stronger 𝑃−𝐷𝐷𝑇 , 𝑆−𝐷𝐷𝑇  and 𝑂𝑂−𝐷𝐷𝑇  formulations. Artigues 
(2017) reports that many formulations presented as new contributions 
in the literature are in fact linear transformations of either the aggre-
gated or the disaggregated formulations, that have exactly the same 
relaxed solution space as the corresponding 𝑋−𝐷𝑇  or 𝑋−𝐷𝐷𝑇  formu-
lation, for 𝑋 ∈ {𝑃 , 𝑆,𝑂𝑂}. The disaggregated time-indexed formulation 
is stronger than the aggregated one because if resource and integrity 
constraints are omitted, the resulting polytope of the disaggregated 
formulations is integral, which is assessed by the total unimodularity of 
the 𝑆−𝐷𝐷𝑇  matrix (de Souza & Wolsey, 1997; Sankaran et al., 1999; 
Wolsey, 1997). Hence, the 𝑋−𝐷𝐷𝑇  formulation are ideal formulations 
w.r.t. the precedence constraints. To summarize we have

(𝑃−𝐷𝐷𝑇 ) = (𝑆−𝐷𝐷𝑇 ) = (𝑂𝑂−𝐷𝐷𝑇 ) ⊊ (𝑃−𝐷𝑇 ) = (𝑆−𝐷𝑇 )

= (𝑂𝑂−𝐷𝑇 )

Valid inequalities for time-indexed formulations The time indexed for-
mulations can be strengthened by generating valid inequalities w.r.t. 
the resource constraints. Christofides et al. (1987)  propose knapsack 
6 
cover inequalities. A cover corresponds to a forbidden set, i.e. a set of 
activities 𝐶 such that the sum of the activity requirements on some 
resource 𝑘 exceeds the resource capacity. Constraint ∑𝑡∈ 𝑥𝑖𝑡 ≤ 1 is 
valid for any activity 𝑖 due to the fact that the activity can only be 
started once and is called a generalized upper bounding constraint 
(GUB). Combined with the knapsack constraint on resource 𝑘 at any 
time 𝑡, constraint ∑𝑖∈𝐶

∑𝑡
𝑡=𝑡−𝑝𝑖+1

𝑥𝑖𝜏 ≤ |𝐶| − 1 is valid for any time 
period 𝑡 and is called a GUB cover inequality (Cavalcante et al., 2001; 
Christofides et al., 1987; Sankaran et al., 1999). It simply states that 
at least one activity of the cover cannot be in process at time 𝑡. The 
inequalities are stronger if the cover is minimal, i.e. if any subset of the 
cover is not a cover anymore, i.e. a minimal forbidden set. Sankaran 
et al. (1999) propose clique inequalities that are conceptually based 
on a graph having a node per variable 𝑥𝑖𝑡. An edge links two nodes 
𝑥𝑖𝑡 and 𝑥𝑗𝑡′  if scheduling activity 𝑖 at time 𝑡 and activity 𝑗 at time 𝑡′
is infeasible. This can be due to a precedence relation between 𝑖 and 
𝑗, to a resource constraint or to a GUB constraint if 𝑖 = 𝑗. Then if 
𝑉  denotes a clique in this graph, the inequality ∑(𝑖,𝑡)∈𝑉 𝑥𝑖,𝑡 ≤ 1 is a 
valid clique inequality. Note that in general there is an exponential 
number of minimal GUB cover and clique inequalities, so they must 
be generated as cutting planes in the branch-and-bound tree. However, 
given a fractional solution, finding a violated GUB cover or clique 
inequality is NP-hard and heuristics are used to generate the valid 
inequalities (Cavalcante et al., 2001; Sankaran et al., 1999). Stronger 
inequalities based on the same principle have been proposed more 
recently and strengthened by lifting procedures. Hardin et al. (2008) 
consider lifted cover-clique inequalities while Araujo et al. (2020) 
describe a large set of lifted valid inequalities as well as the way to 
generate them and incorporate them in a branch-and-cut method. By 
the time of publishing this article, optimality of 247 instances from 
PSPLIB was proven for the first time, which underlines the potential 
of MILP approaches at the expense of a quite complex algorithmic 
engineering.

Exponential-size time indexed formulation Another way to improve the 
LP relaxation of time indexed formulation by strengthening the re-
source constraints was proposed by Mingozzi et al. (1998) via a kind 
of Dantzig–Wolfe decomposition, replacing the resource constraints 
by a convex combination of their solutions. A feasible subset 𝐹  of 
activities is an antichain7 of the precedence graph such that, in addi-
tion, ∑𝑖∈𝐹 𝑏𝑖𝑘 ≤ 𝐵𝑘 for each resource 𝑘 ∈ , where 𝐵𝑘 denotes the 
availability of resource 𝑘 as defined in Section 1. Consider the set ̄ of 
all such feasible subsets. This formulation introduces binary variable 
𝜉𝑙𝑡 if feasible subset 𝑙 is in process at time 𝑡. The resource constraints 
can be replaced by the constraint stating that at each time 𝑡 one and 
only one feasible subset must be executed, which is simply expressed 
by ∑𝑘∈̄ 𝜉𝑙𝑡 = 1. Then using the on–off time indexed formulation and 
indicator 𝑎𝑖𝑙 = 1 if activity 𝑖 is present in feasible set 𝑙, we can simply 
state that 𝑧𝑖𝑡 =

∑

𝑙∈̄ 𝑎𝑖𝑙𝜉𝑙𝑡to obtain the formulation A-DDT with the 
property that (𝐴−𝐷𝐷𝑇 ) ⊊ (𝑋−𝐷𝐷𝑇 ), with 𝑋 ∈ {𝑃 , 𝑆,𝑂𝑂}. Since 
there is an exponential number of feasible sets, the LP relaxation of 
this formulation is solved by column generation. This formulation was 
to our knowledge never used directly but its preemptive relaxation was 
widely exploited to obtain strong lower bounds, as detailed in Section 8.

The time indexed formulations augmented with strong valid in-
equalities and/or strengthened via Dantzig–Wolfe decomposition of the 
resource constraints yield good lower bounds and can be competitive 
with other exact methods to solve instances of modest size to optimal-
ity. However, due to the pseudo-polynomial number of time indexed 
variables of the (𝑋−𝐷𝑇 ) and (𝑋−𝐷𝐷𝑇 ) formulations, they cannot be 
used for instances with a large time horizon.

7 An antichain in a graph is a subset of nodes such that there is no path 
linking any pair of nodes in the subset.
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Continuous time sequencing formulation based on forbidden sets Compact 
formulations based on a continuous representation of time have been 
designed to deal with this issue. The first continuous-time formulation 
was however of exponential size. Inspired by the disjunctive formula-
tion of the job-shop problem Balas (1969), Alvarez-Valdes and Tamarit 
(1993) proposed a formulation based on continuous start-time variables 
𝑆𝑖 and ordering/sequencing variables 𝜎𝑖𝑗 where 𝜎𝑖𝑗 = 1 means that 
activity 𝑗 cannot start before the end of activity 𝑖. Such a relation 
can be linearly expressed using the big−𝑀 technique. Considering a 
large enough constant 𝑀𝑖𝑗 , we obtain 𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖 − 𝑀𝑖𝑗 (1 − 𝜎𝑖𝑗 ) for 
any activity pair (𝑖, 𝑗). For the inequality to be valid in case 𝜎𝑖𝑗 = 0, 
𝑀𝑖𝑗 can be set to the latest completion time of 𝑖 minus earliest start 
time of 𝑗. The precedence constraints are directly expressed by setting 
𝜎𝑖𝑗 = 1 for each precedence constraint (𝑖, 𝑗) ∈ 𝐸. To model resource 
constraints, Alvarez-Valdes and Tamarit (1993) consider the set of 
minimal forbidden sets and state that at least a pair of activities must 
be sequenced inside each MFS, i.e. ∑(𝑖,𝑗)∈𝐹 𝜎𝑖𝑗 ≥ 1 for each minimal 
forbidden set 𝐹 , yielding the sequencing formulation based on minimal 
forbidden sets (𝑀𝐹𝑆−𝑆). Unfortunately there is an exponential num-
ber of minimal forbidden sets, and the (𝑀𝐹𝑆−𝑆) is of exponential size, 
while the LP relaxation is really poor due to the big-𝑀 constraints.
Continuous time sequencing formulation based on resource flows A com-
pact model can be obtained by introducing additional continuous vari-
ables representing the flow of resource units through activities. The 
principle, inspired again by the disjunctive graph of Balas (1969), 
was stated by Fortemps and Hapke (1997) but the first MILP compact 
formulation for the RCPSP was given by Artigues et al. (2003). Variable 
𝜙𝑖𝑗𝑘 gives the number of resource units freed at the end of activity 𝑖 and 
allocated to activity 𝑗 before it starts. As flow conservation constraints, 
the formulation also states that the total number of entering resource 
units and the total number of exiting resource units of an activity 𝑖
on any resource 𝑘 must be equal to its requirement 𝑏𝑖𝑘. Artificial start 
and end activities are considered with a zero duration and a resource 
requirement equal to 𝐵𝑘 on each resource 𝑘. The link between 𝜎𝑖𝑗
and the flow is simply written 𝑓𝑖𝑗𝑘 ≤ min(𝑏𝑖𝑘, 𝑏𝑗𝑘)𝜎𝑖𝑗 for each resource 
𝑘. Compared to (𝑀𝐹𝑆−𝑆), the corresponding flow-based sequencing 
formulation (𝛷−𝑆) is compact but its LP relaxation is even poorer.
Valid inequalities for sequencing formulations Valid inequalities were 
defined by Alvarez-Valdes and Tamarit (1993) and Demassey et al. 
(2005). A part of them are variants of the inequalities defined for the 
equivalent formulation in the job-shop problem by Applegate and Cook 
(1991) and other express lifted precedence constraints strengthened 
by constraint propagation. The experiments carried out by Demassey 
et al. (2005) reveal that the LP relaxation of the sequencing formulation 
remains dramatically low compared to the discrete time formulation, 
even if it is considerably improved by the valid inequalities.
Continuous time event-based formulations Therefore a new set of com-
pact formulations, namely the event-based formulations, has been in-
vestigated by Koné et al. (2011). This family of formulations is inspired 
by the positional dates and assignment variable presented by Lasserre 
and Queyranne (1992), Queyranne and Schulz (1994) for the one 
machine problem that was extended to an event-based formulation 
for the flow-shop problem by Dauzère-Pérès and Lasserre (1995). A 
solution to the RCPSP is such that each start time of an activity is either 
equal to 0 or to the completion time of another activity. Hence, we have 
only ||+1 possible values for the activity start and completion times. 
Let us call one of these values an event and let us define continuous 
variable 𝑡𝑒 for each event 𝑒 ∈ {0,… , ||} giving the time of event 
𝑒 with 𝑡0 = 0. The on–off event based formulation (𝑂𝑂−𝐸) considers 
for each activity 𝑖 and each event 𝑒, assignment variable 𝛼𝑖𝑒 such that 
𝛼𝑖𝑒 = 1 models the fact that activity 𝑖 spans interval [𝑡𝑒, 𝑡𝑒+1]. The start-
end pulse event-based formulation (𝑃−𝐸) uses two binary variables 
𝛽𝑖𝑒 and 𝛾𝑖𝑒 where 𝛽𝑖𝑒 = 1 and 𝛾𝑖𝑓 = 1 mean that activity 𝑖 starts at 
time 𝑡  and ends at time 𝑡 . A start-end step formulation (𝑆−𝐸) was 
𝑒 𝑓
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proposed further by Tesch (2020), using two binary variables 𝜃𝑖𝑒 and 
𝜁𝑖𝑒 such that 𝜃𝑖𝑒 = 1 states that activity 𝑖 start no later than 𝑡𝑒 and 
𝜁𝑖𝑒 = 1 states that activity 𝑖 ends no later than 𝑡𝑒. In the (𝑆 − 𝐸)
formulation, the link between the event assignment and time variables 
is linearly expressed by 𝑡𝑓 ≥ 𝑡𝑒+(𝜃𝑖𝑒+𝜁𝑖𝑓 −1)𝑝𝑖 and events are ordered A 
precedence constraint (𝑖, 𝑗) ∈ 𝐸 is also simply expressed by a constraint 
𝜃𝑗𝑒 ≤ 𝜁𝑖𝑒 at each event 𝑒. The resource constraints are established 
by stating that on each resource 𝑘, the sum of the requirements of 
activities that overlap each event 𝑒 is lower than the resource capacity: 
∑

𝑖∈ 𝑏𝑖𝑘(𝜃𝑖𝑒 − 𝜁𝑖𝑒) ≤ 𝐵𝑘. Tesch (2020) improved the (𝑂𝑂−𝐸) and the 
(𝑃−𝐸) formulation by new valid inequalities and also proved total 
unimodularity of a part of the 𝑆−𝐸 formulation. He obtained that (via 
linear transformations) (𝑆−𝐸) = (𝑃−𝐸) ⊊ (𝑂𝑂−𝐸). The (𝑆−𝐸)
formulation has the ‘‘split property’’, meaning that only start and end 
events such that 𝑓 = 𝑒 + 1 need be considered for each activity. From 
this property, an equivalence of the LP relaxation of (𝑆−𝐸) with a 
linear program presented by Carlier and Néron (2003) is established 
(see Section 8). He also introduced the interval start end event-based 
formulation (𝐼−𝐸) using variable 𝜔𝑖𝑒𝑓  equal to 1 if activity 𝑖 starts at 
event 𝑒 and ends at event 𝑓 . He showed the new formulation dominates 
the other event-based formulations since via a linear transformation 
(𝐼−𝐸) ⊊ (𝑆−𝐸). The relation between (𝐼−𝐸) and (𝑃−𝐷𝐷𝑇 ) is also 
studied with no-dominance between both formulations. It is shown 
that performing an expansion and then a restriction of the number 
of events in (𝐼−𝐸) allows to obtain formulation (𝐷𝐷𝑇 ). In terms of 
computational experiments, the best event-based formulation is (𝑆−𝐸), 
which obtains better optimality gaps than (𝐷𝐷𝑇 ) on the 60-activity 
instances from the PSPLIB. A promising perspectives would be to find 
strong valid inequalities for the event-based formulations and then to 
apply powerful branch-and-cut algorithm engineering (Araujo et al., 
2020).

5. Constraint programming, SAT

In constraint programming (CP), a problem declaration is decom-
posed into constraints on finite-domain decision variables. Each con-
straint is associated with a dedicated filtering algorithm, which uses 
consistency tests allowing to reduce the domain of the decision vari-
ables involved in the constraint. CP is characterized by a rich constraint 
language, some constraints being elementary such as a linear constraint 
on 𝑛 variables, some other, called global constraints (van Hoeve & Ka-
triel, 2006), capturing a complex relation between a non-fixed number 
of variables. Once the problem is declared, the principle is to solve 
the so-described constraint satisfaction problem (CSP) by a tree search 
algorithm in which branching assigns values to decision variables, such 
as in a branch and bound tree. At each node, the filtering algorithms 
of the different constraints are orchestrated, which is often named the 
constraint propagation process, to reduce the domains of the decision 
variables taking account of the decisions made so far, and possibly 
detecting an global inconsistency that allows to prune the node. For 
more details on CP, we refer to Rossi et al. (2006) and for general 
descriptions of applications of CP to scheduling, we refer to Dorndorf 
et al. (2000b) and Baptiste et al. (2001).

For the RCPSP, the standard CP formulation uses the start time 
decision variables 𝑆𝑖, 𝑖 ∈  whose initial domain is the interval 
[0, 𝑇 − 𝑝𝑖] and two sets of constraints: the first set include the binary 
precedence constraints 𝑆𝑗 ≥ 𝑆𝑖 + 𝑝𝑖, ∀(𝑖, 𝑗) ∈ 𝐸 and the second set 
defines a global constraint for each resource denoted as Cumulative. This 
global constraint was defined by Aggoun and Beldiceanu (1993). The 
global constraint ensures that the capacity of each resource 𝑘 ∈  is 
not exceeded at each time point belonging to the domain of at least one 
task, which is expressed by Cumulative(𝑆, 𝑝, 𝑏.𝑘, 𝐵𝑘), where 𝑆, 𝑝, and 𝑏.𝑘
are the start time, duration and requirement vectors, respectively, while 
𝐵𝑘 is the capacity of resource 𝑘. Declaring a cumulative constraint for 
each resource to a CP solver is equivalent to enforcing the resource 
constraints of the RCPSP.
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The considered CSP aims at finding a schedule of makespan of 
at most 𝑇 . Optimization can be performed by a binary search on 
𝑇 . In the search tree, branching either assigns values to the start 
times or make decisions on the relative ordering of activities, such as 
in the branch-and-bound approaches presented in Section 6. At each 
node, constraint propagation iteratively runs the filtering/consistency 
checking algorithms of the precedence and cumulative constraints. In 
CP theory, different levels of consistencies have been defined, such 
as the generalized arc consistency that ensures that for any time 𝑡 in 
the domain of a start time variable 𝑆𝑖, there exists a support, i.e. an 
assignment of all other start times to some values in their domains that 
satisfies each constraint separately. This level of inconsistency generally 
is too costly and in most CP-based scheduling implementations, the 
domain of a start time is represented by an interval [𝐸𝑆𝑖, 𝐿𝑆𝑖] where 
𝐸𝑆𝑖 is the earliest start time of activity 𝑖 and 𝐿𝑆𝑖 is its latest start time 
given the makespan 𝑇 . In this case only bound consistency, i.e. the 
existence for a support for the bounds 𝐸𝑆𝑖 and 𝐿𝑆𝑖, is enforced. Note 
that the earliest completion time 𝐸𝐶𝑖 = 𝐸𝑆𝑖 + 𝑝𝑖 and the latest 
completion time 𝐿𝐶𝑖 = 𝐿𝑆𝑖 + 𝑝𝑖 are also values of interest. The 
principle of applying constraint programming and SAT approaches to 
the RCPSP has been described by Baptiste et al. (2001), Brucker and 
Knust (2012), Dorndorf (2002), Hebrard (2017), Schutt et al. (2015). 
In Section 5.1 the precedence and resource constraint propagation and 
the associated tradeoffs are introduced. Section 5.2 presents the main 
resource-constraints consistency checks for the cumulative constraint 
while Section 5.3 presents other variants of consistency checks, based 
on relaxations, special cases and redundant constraints. Finally, Sec-
tion 5.4 presents how the consistency tests are included in the CP search 
process and in hybrid CP/SAT approaches.

5.1. Constraint propagation and consistency checks trade-off: inference vs 
speed

For precedence constraints, bound consistency can be achieved by 
different polynomial algorithms that ensure that 𝐸𝑆𝑖 is not lower than 
length of the longest path entering 𝑖 in the precedence graph and 𝐿𝑆𝑖
is not larger than 𝑇  minus the length of the longest path issued from 𝑖
in the precedence graph (Dorndorf, 2002).

Unfortunately, ensuring bound consistency for the cumulative con-
straint is NP-hard (Baptiste et al., 2001). Several filtering algorithms 
achieving lower levels of consistency were proposed for the cumulative 
constraint. The principle of using sets of activities in conflict on a 
cumulative resource to necessary precedence constraints and update 
activity time windows was stated in the pioneering work of Erschler 
(1976), Erschler et al. (1979). An important concept is the compulsory 
part of an activity inside a given interval, i.e. given the activity time 
window, the minimum overlapping duration of the activity with the 
interval. The concept was defined by Lahrichi (1982) and the first 
consistency checking and time window adjustment rules were proposed 
by Lopez (1991) under the term ‘‘energetic reasoning’’. The funda-
mental consistency check is the energetic overload check that can be 
defined given a time interval [𝑡1, 𝑡2]. The minimum overlap length of 
the execution interval of an activity 𝑖 with [𝑡1, 𝑡2] is either equal to 
𝑡2 − 𝑡1 if [𝑡1, 𝑡2] ⊆ [𝐿𝑆𝑖, 𝐸𝐶𝑖], 𝑝𝑖 if [𝐸𝑆𝑖, 𝐿𝐶𝑖] ⊆ [𝑡1, 𝑡2], 𝐸𝐶𝑖 − 𝑡1 if 
the minimum overlap is reached when left-shifting the activity and 
𝑡2 − 𝐿𝑆𝑖 if the minimum overlap is reached when right-shifting the 
activity. The minimum of these 4 values when they are all positive 
gives the compulsory part of activity 𝑖. By multiplying the compulsory 
part of an activity 𝑖 in [𝑡1, 𝑡2] by its requirement on some resource 𝑘, 
we have the maximum required ‘‘energy’’ consumption 𝑒𝑖,𝑘,𝑡1 ,𝑡2  of the 
activity inside the interval. The maximum required energy of set 𝛺 is 
𝑒𝛺,𝑘,𝑡1 ,𝑡2 =

∑

𝑖∈𝛺 𝑒𝑖,𝑘,𝑡1 ,𝑡2 . Then, the energy slack of resource 𝑘 for activity 
set 𝛺 in interval [𝑡1, 𝑡2] is 𝑠(𝛺, 𝑘, 𝑡1, 𝑡2) = (𝑡2− 𝑡1)𝐵𝑘−𝑒𝛺,𝑡,𝑡1 ,𝑡2 . If the slack 
is negative then no solution exists.

This fundamental property gave rise to a wide variety of consistency 
checking algorithms, regrouped under the name of interval consistency 
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tests by Dorndorf (2002). These tests differ by the type of considered 
[𝑡1, 𝑡2] intervals and 𝛺 sets. Generally, each type of consistency test 
comes with an overload check, an earliest start adjustment rule and a 
symmetric latest completion adjustment rule. The consistency check-
ing algorithms of interest offer a trade-off between inference power 
and computational complexity. In the next subsection, the only main 
consistency tests for resources constraints are presented and only the 
earliest time adjustments are presented.

5.2. Consistency tests for the cumulative constraint

Timetable constraint propagation The timetable consistency test (Caseau 
& Laburthe, 1996; Le Pape, 1994, 1995; Nuijten, 1994) considers inter-
vals of unit length [𝑡, 𝑡 + 1] and is thus called unit-interval consistency 
test by Dorndorf (2002). In this case 𝑒𝑖,𝑘,𝑡,𝑡+1 = 𝑏𝑖𝑘 if 𝐿𝑆𝑖 ≤ 𝑡 < 𝐸𝐶𝑖
and 0 otherwise. The overload check consists in verifying whether 
𝑠(, 𝑘, 𝑡, 𝑡 + 1) ≥ 0 for all resource 𝑘 and time 𝑡. For the time bound 
adjustment, given an activity 𝑖, if 𝑠( ⧵ 𝑖, 𝑘, 𝑡, 𝑡 + 1) < 𝑏𝑖𝑘 for some 
time 𝑡 < min(𝐿𝑆𝑖, 𝐸𝐶𝑖) and resource 𝑘, then the earliest start time of 
activity 𝑖 cannot be lower than 𝑡. Focusing on the time bounds of each 
activity, the overall test can be performed in 𝑂(||

2). Efficient sweep 
techniques to achieved the filtering in a better average complexity is 
proposed by Letort et al. (2012). Ouellet and Quimper (2013) reduce 
this complexity to 𝑂(|| log ||) using an AVL-tree to store relevant 
intervals while Fahimi and Quimper (2014) obtain an 𝑂(||) using 
a union find data structure. Gay et al. (2015) propose an 𝑂(||

2)
algorithm whose advantage is its simplicity and scalability.
Reasoning on task intervals Another family of interval consistency tests, 
the cumulative overload check, the cumulative edge-finding and not-
first/not-last adjustments were introduced by Nuijten (1994) inspired 
by their counterpart for disjunctive resources. The adjustments reason 
on the position of an activity 𝑖 relatively to a set of activities 𝛺 not 
including 𝑖 on a resource 𝑘. The considered intervals are called ‘‘task 
intervals’’ by Caseau and Laburthe (1996). A task interval relative to a 
set 𝛺 on a resource 𝑘 is the smallest interval [𝐸𝑆𝛺 , 𝐿𝐶𝛺] such that each 
task 𝑗 ∈ 𝛺 has a maximal energy consumption, i.e. 𝑝𝑗𝑏𝑗𝑘, in the interval. 
As the interval depends on 𝛺, we will denote 𝑒𝛺,𝑘,𝐸𝑆𝛺 ,𝐿𝐶𝛺

 as 𝑒𝛺𝑘. Given 
the current time bounds, the energy is maximal if 𝐸𝑆𝛺 = min𝑖∈𝛺 𝐸𝑆𝑖
and 𝐿𝐶𝛺 = max𝑖∈𝛺 𝐿𝐶𝑖 and 𝑒𝛺𝑘 =

∑

𝑖∈𝛺 𝑒𝑖𝑘 with 𝑒𝑖𝑘 = 𝑝𝑖 ⋅ 𝑏𝑖𝑘. A 
relaxation of the task interval concept was introduced by Vilım (2007) 
as the left cut of an activity 𝑖 relatively to a set 𝛺 and was proved useful 
in overload check and edge finding algorithms. Namely, 𝐿𝑐𝑢𝑡(𝛺, 𝑖) is the 
set of activities 𝑗 in 𝛺 such that 𝐿𝐶𝑗 ≤ 𝐿𝐶𝑖.

Cumulative overload check The overload check consists in evaluating 
the sign of the slack 𝑠(𝜔, 𝑘, 𝐸𝑆𝜔, 𝐿𝐶𝜔), i.e. testing if 𝑒𝜔𝑘 ≤ 𝐵𝑘(𝐿𝐶𝜔 −
𝐸𝑆𝜔) for all subsets 𝜔 ⊆  on a resource 𝑘. If the slack is not negative, 
the instance is said to be E-feasible. Interestingly, this is equivalent to 
finding a solution to the fully elastic relaxation where each task require-
ment can vary between 0 and 𝐵𝑘 provided that it occupies energy 𝑒𝑖𝑘
inside its time window. A link between the fully elastic relaxation and 
the preemptive one machine problem has been established by Baptiste 
et al. (2001). A one-machine instance can be obtained by defining an 
activity 𝑖′ for each activity 𝑖 with release date 𝑟𝑖′ = 𝐵𝑘𝐸𝑆𝑖, deadline 
𝑑𝑖′ = 𝐵𝑘𝐿𝐶𝑖 and duration 𝑝𝑖′ = 𝑒𝑖𝑘. Consequently the existence of a 
solution can be checked in 𝑂(|| log ||) by the Jackson’s preemptive 
scheduling algorithm. Note that value 𝐵𝑘𝐸𝑆𝑖 + 𝑒𝑖𝑘, i.e. the earliest 
completion time of 𝑖 in the one machine instance, corresponds to the 
maximal consumption of the resource up to the completion of i in a 
fully elastic schedule. It was defined as the energy envelope 𝐸𝑛𝑣(𝑖, 𝑘)
of an activity by Vilím (2009b) who also defined the energy envelope 
of a set of activities 𝛺 as 𝐸𝑛𝑣(𝛺, 𝑘) = 𝑚𝑎𝑥𝜔⊆𝛺(𝐵𝑘𝐸𝑆𝜔 + 𝑒𝜔𝑘). He 
remarked that the overload check can be rewritten for each activity 
𝑖 ∈ , 𝐸𝑛𝑣(𝐿𝑐𝑢𝑡(, 𝑖), 𝑘) ≤ 𝐵𝑘𝐿𝐶𝑖. Thanks to the so-called 𝛩-tree 
structure, a balanced binary tree where activities are sorted in non-
decreasing order of 𝐸𝑆 , the overload check can also be performed 
𝑖
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in 𝑂(|| log ||) as for the single machine case (Vilím, 2004; Wolf & 
Schrader, 2005). Fahimi and Quimper (2014) replaced the 𝛩-tree data 
structure by the ‘‘timeline’’ data structure based on union find structure 
that allow many operations to be made in constant time and obtain a 
linear complexity. A stronger overload check was proposed by Gingras 
and Quimper (2016) based on rewriting it as 𝐸𝑐𝜔 ≤ 𝐿𝐶𝜔 where 𝐸𝑐𝜔
is the earliest completion time of activity set 𝜔. Since the exact value 
of 𝐸𝑐𝜔 is NP-hard to compute, the ‘‘standard’’ overload check sets this 
value to 𝐸𝑆𝜔 + ⌈𝑒𝛺∕𝐵𝑘⌉ or equivalently with the envelope notation to 
⌈𝐸𝑛𝑣(𝛺)∕𝐵𝑘⌉, which corresponds to the fully elastic relaxation of the 
activities. Gingras and Quimper (2016) define a stronger ‘‘horizontally 
elastic’’ relaxation where an activity may require between 0 and 𝑏𝑖𝑘
units at each time point. Using a clever ‘‘profile’’ data structure, Gingras 
and Quimper (2016) obtain a stronger overload check in 𝑂(||

2).

Cumulative edge finding Concerning the edge finding rule, it can be 
simply stated as asking, given a set of activities 𝛺 and an activity 𝑖, 
whether the lower bound on the earliest completion time 𝐸𝐶𝛺∪𝑖 =
𝐸𝑆𝛺∪𝑖 + 𝑒𝛺∪𝑖∕𝐵𝑘 exceeds the latest completion 𝐿𝐶𝛺. If this is the case, 
then activity 𝑖 must end strictly after all activities of 𝛺 and the earliest 
date of 𝑖 can be increased. For any subset 𝜔 ⊆ 𝛺, in interval [𝐸𝑆𝜔, 𝐿𝐶𝜔], 
the available energy for the activities of 𝜔 allowing any start time 
of 𝑖 is at best 𝜌(𝜔, 𝑖) = (𝐿𝐶𝜔 − 𝐸𝑆𝜔)(𝐵𝑘 − 𝑏𝑖𝑘). Since activities in 𝜔
require an energy of 𝑒𝜔𝑘, a lower bound of the earliest start time of 
𝑖 is max𝜔⊆𝛺 𝐸𝑆𝜔 + ⌈max{0, (𝑒𝜔𝑘 − 𝜌(𝜔, 𝑖)∕𝑏𝑖𝑘)}⌉. An 𝑂(||

2) algorithm 
was given by Baptiste et al. (2001), while Mercier and Van Hentenryck 
(2008) proved that the previous algorithm is incomplete and provided 
a complete variant in 𝑂(𝜅||

2), where 𝜅 ≤ || is the number of 
distinct capacity requirements of the tasks. This algorithm was further 
improved with an even lower complexity of 𝑂(𝜅|| log ||) (Vilím, 
2009a) using the energy envelope expression and the 𝛩-trees. An 
𝑂(||

2) variant was proposed by Kameugne et al. (2014) based on 
minimum slack and maximum density concepts. It has to be noted that 
all these algorithms are not idempotent, i.e. they may need several 
iterations to converge to the same fixed point, and the latter algorithm 
may need more iterations than the one of Vilím (2009a). Under the 
same principle as with the overload check, Gingras and Quimper (2016) 
derive a stronger edge finder using the horizontally elastic relaxation 
in 𝑂(𝜅||

2). Kameugne et al. (2023) extend the minimum slack and 
maximum density approach of Kameugne et al. (2014) to obtain an 
𝑂(2) competitive ‘‘slack-density horizontally elastic’’ edge finder.
Cumulative extended edge finding The extended edge-finding rule (Nui-
jten, 1994) consider the case where an activity 𝑖 starts at its earliest 
start time and overlaps task interval [𝐸𝑆𝛺 , 𝐿𝐶𝛺] such that there is 
not enough energy available in the interval (𝐸𝑆𝑖 ≤ 𝐸𝑆𝛺 ≤ 𝐸𝐶𝑖 and 
𝑒𝛺𝑘 + 𝑏𝑖𝑘(𝐸𝐶𝑖 − 𝐸𝑆𝛺) > 𝐵𝑘(𝐿𝐶𝛺 − 𝐸𝑆𝛺)). In this case, 𝑖 must end 
after all activities in 𝛺, and the above-described 𝐸𝑆𝑖 adjustment can 
be applied. Mercier and Van Hentenryck (2008) propose a 𝑂(𝜅||

2)
algorithm. Ouellet and Quimper (2013) propose an extension of the 
edge finder of Vilím (2009a) based on new filtering rules allowing to 
reach a complexity of 𝑂(𝜅|| log ||).

Cumulative not first/not last The not first rule gives conditions such that 
an activity 𝑖 has to be scheduled after at least one activity of a set 
𝛺, which allows increasing 𝐸𝑆𝑖. If 𝐸𝑆𝛺 ≤ 𝐸𝑆𝑖 ≤ min𝑗∈𝛺 𝐸𝐶𝑗 and if 
𝑒𝛺,𝑘 + 𝑏𝑖𝑘(min(𝐸𝐶𝑖, 𝐿𝐶𝛺) − 𝐸𝑆𝛺) > 𝐵𝑘(𝐿𝐶𝛺 − 𝐸𝑆𝛺) then min𝑗∈𝛺 𝐸𝐶𝑗
is a valid lower bound for 𝐸𝑆𝑖. Schutt et al. (2005) found a mistake 
in the original algorithm by Nuijten (1994) and proposed a complete 
filtering algorithm in 𝑂(||

3 log ||) based on 𝛩-trees. Kameugne and 
Fotso (2010) reduce this complexity to 𝑂(||

2𝐻 log ||) where 𝐻
is the maximum between the number of distinct earliest completion 
and latest start times of tasks, while Kameugne and Fotso (2013) 
obtain the same fixed point with possibly more iterations with an 
𝑂(||

2 log ||) algorithm. Fahimi et al. (2018) further reduce the com-
plexity of the inner incomplete (non idempotent) algorithm by a log ||

factor thanks to a union-find data structure, yielding a quadratic com-
plexity. Recently, Kameugne et al. (2018) integrate the horizontally 
elastic relaxation into the not first/not last test yielding a stronger 
algorithm running in 𝑂(||

3).
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Energetic reasoning overload check The last family of interval consis-
tency tests consists in the energetic reasoning test originally presented 
by Lopez (1991). This test is called the left shift/right shift propagation 
technique by Baptiste et al. (1999) and include the energetic overload 
check as presented above and the energetic time adjustment rules. As 
stated above, the energetic overload check consists in testing if for all 
intervals [𝑡1, 𝑡2], and for any resource 𝑘, the energy slack 𝑠(, 𝑘, 𝑡1, 𝑡2)
remains positive. Baptiste et al. (1999) show that the slack function is a 
continuous and piecewise linear function of 𝑡1 and 𝑡2 whose minimum 
is necessarily reached in a breakpoint. They bound the number of 
breakpoints by a quadratic number of relevant intervals. An 𝑂(||

2)
algorithm is proposed. Based on a study by Schwindt (1998), Derrien 
and Petit (2014) further study the local minima of the slack function 
and manage to reduce the number of relevant intervals by a factor 
of 7 without decreasing the worst-case time complexity. Ouellet and 
Quimper (2018) show that for a resource 𝑘 and a given interval [𝑡1, 𝑡2], 
the required energy 𝑒(, 𝑘, 𝑡1, 𝑡2) can be computed in log || time after 
an || log || preprocessing step using the range tree data structure. 
Furthermore, based on the fact that 𝑒(, 𝑘, 𝑡1, 𝑡2) is a Monge matrix 
and the slack 𝑠(, 𝑘, 𝑡1, 𝑡2) is a reverse Monge matrix, the authors prove 
that only 𝑂(|| log ||) intervals need be checking, reducing the over-
load check complexity to 𝑂(|| log2 ||). These properties are further 
exploited by Carlier et al. (2022) to obtain an 𝑂(||𝛼(||) log ||)
algorithm, where 𝛼(.) is Ackermann’s inverse function.
Energetic reasoning adjustments The energetic filtering rule (Lopez, 
1991) evaluates the feasibility of starting an activity at its earliest start 
time w.r.t. an interval [𝑡1, 𝑡2] and a resource 𝑘. By doing so, activity 
𝑖 occupies an energy 𝑙(𝑖, 𝑡1, 𝑡2) = max(0,min(𝑡2 − 𝑡1, 𝐸𝐶𝑖 − 𝑡1))𝑏𝑖𝑘 in 
the interval. If this quantity is larger than the slack 𝑠( ⧵ 𝑖, 𝑘, 𝑡1, 𝑡2)
then a valid lower bound on the earliest start time of 𝑖 is ⌈𝑡2 − 𝑠( ⧵
𝑖, 𝑘, 𝑡1, 𝑡2)∕𝑏𝑖𝑘⌉. Baptiste et al. (1999) proposed an 𝑂(||

3) filtering 
algorithm. The reduction of the number intervals of interests exhibited 
by Derrien and Petit (2014) improved the experimental running times. 
The geometrical interpretation of energetic reasoning allows Bonifas 
(2017) to compute the maximum possible adjustment for at least one 
activity in 𝑂(||

2 log ||), which was improved by Tesch (2016) to 
obtain a possible adjustment on all activities with the same complexity 
and by Carlier et al. (2020) to obtain the same adjustments in 𝑂(||

2). 
These algorithms must be ran several times to reach the same fix point 
than the algorithm of Baptiste et al. (1999). A complete energetic 
reasoning filtering in 𝑂(||

2 log2 ||) was obtained by Ouellet and 
Quimper (2018) and in 𝑂(||

2 log2 ||) by Tesch (2018).
Dominance relations between consistency tests and compound rules In Bap-
tiste et al. (2001), dominance relations are stated in the sense that a 
consistency test 𝐶 dominates another one 𝐶 ′ if all deductions made 
by 𝐶 ′ are also made by 𝐶. The timetabling, edge-finding, extended 
edge finding and not/first not/last consistency checks are not com-
parable while energetic reasoning dominates all other tests except 
the not first/not last one. The integration of non dominated rules 
inside the same filtering algorithm while keeping a low time com-
plexity can pay off. The timetable, the edge finding and the extended 
edge finding rules were integrated by Vilím (2011) who proposed the 
(non idempotent) timetable (extended) edge finding algorithm running 
in (||

2) time. Ouellet and Quimper (2013) obtained an algorithm 
running in 𝑂(𝜅|| log ||) time and performing more adjustments at 
each iteration. Tesch (2018) proposed an 𝑂(||

2 log ||) algorithm that 
integrated energetic reasoning and edge finding, with a relaxed 𝑂(||

2)
variant that subsumes edge-finding while also performing incomplete 
energetic adjustments. Kameugne et al. (2013) propose an extended 
edge finding algorithm that also integrate such incomplete energetic 
adjustments running in 𝑂(||

3). All of the above-presented consistency 
checks focus solely on the cumulative constraint part of the problem. 
However taking account of the interaction of precedence and resource 
constraints is a key issue for efficient RCPSP solving. Laborie (2003) 
proposed the energy-precedence constraint that states that given an 
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activity 𝑖 a resource 𝑘 and a set 𝛺 of predecessors, 𝑖 cannot start before 
𝐸𝑆𝛺 + ⌈𝑒𝛺,𝑘∕𝐵𝑘⌉. An 𝑂(||(𝜆+ log ||)) filtering algorithm is proposed 
where 𝜆 is the maximal number of predecessors of an activity.

5.3. More consistency tests

Applying consistency tests from relaxations Other consistency tests can 
be applied for the cumulative constraints even if they were conceived 
for relaxations or special cases. Obviously, any consistency test valid 
for a relaxation of the decisional RCPSP is also valid for the deci-
sional RCPSP. Baptiste et al. (1999), consider three relaxations of the 
cumulative constraint: fully elastic, partially elastic and preemptive. 
Variants of the timetable, (extended) edge finding and energetic rea-
soning consistency tests exist for the relaxed versions and are weaker 
than their counterpart for the non preemptive cumulative constraints. 
However they may offer a good compromise in terms of computational 
effort. Carlier and Pinson (2004) suggest the use of the Jackson’s 
pseudo-preemptive scheduling algorithm to perform adjustments for 
the cumulative constraint, based on the pseudo-preemptive relaxation 
where several activities can share the same resource unit yielding non 
necessarily integer resource requirements.
Applying consistency tests from special cases Applying consistency tests 
for a special cases is also possible if this special case is detected, which 
may happen after decisions were taken along the search tree. Notably, a 
very efficient set of consistency sets have been proposed for the disjunc-
tive constraint (i.e. a cumulative constraint with 𝐵𝑘 = 1). Whenever two 
activities 𝑖 and 𝑗 are incompatible w.r.t. a resource, i.e. when 𝑏𝑖𝑘+𝑏𝑗𝑘 >
𝐵𝑘 then disjunctive constraint propagation can be applied to activity 
pair (𝑖, 𝑗). Actually, the disjunctive constraint propagation algorithm, 
such as disjunctive edge finding initiated in Carlier and Pinson (1989) 
for the jobshop scheduling problem, are very powerful when large sets 
of activities are in disjunction. Hence, several authors (Baptiste & Pape, 
2000; Brucker et al., 1998a; Dorndorf et al., 2000a) propose to search 
for maximal cliques in an incompatibility graph where nodes represent 
the activities and an edge represents either a resource incompatibility 
or a precedence relation, each maximal clique yielding a disjunctive set 
on which the disjunctive consistency checks can be applied. Brucker 
et al. (1998a) proposed the symmetric triple rule where a symmetric 
triple is a forbidden set {𝑖, 𝑗, 𝑘} where 𝑖 must overlap with 𝑘 and 𝑗 must 
overlap with 𝑘. Then 𝑖 and 𝑗 are in disjunction and other deductions 
can be made by considering the relative positioning of a fourth activity 
w.r.t. a symmetric triple.
Generating redundant cumulative constraints Generating redundant con-
straints is of interest in constraint programming in the case where the 
redundant constraint to be added has a potentially stronger filtering 
than the already present constraints. The above-presented generation of 
implied disjunctive constraint is a typical example. Redundant cumula-
tive constraints can be generated with the objective to obtain tighter 
constraints in terms of lower resource capacities or larger resource 
requirements, or both, in order to obtain stronger adjustments. Baptiste 
and Bonifas (2018) present a way to obtain redundant cumulative 
constraints based on dual solutions of a linear program that formulates 
the preemptive cumulative problem. Their method yield stronger con-
straints than the method proposed in Carlier and Néron (2003, 2007) 
based on dual feasible functions.

5.4. Constraint programming and boolean satisfiability search methods and 
solvers

Some constraint programming approaches rely on problem-agnostic 
branching heuristics such as DomOverWDeg (Boussemart et al., 2004). 
This is most often the case when the goal is to evaluate the mer-
its of new consistency checks or more efficient implementations of 
standard ones, such as in Ouellet and Quimper (2013) rather than 
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competing with the state-of-the-art dedicated branch-and-bound meth-
ods presented in Section 6. Other CP search approaches use depth-
first chronological backtracking. In particular there are similarities 
between (Baptiste & Pape, 2000; Caseau & Laburthe, 1996; Dorndorf 
et al., 2000a; Le Pape et al., 1994) who all generate a binary search 
tree. On the left branch an activity 𝑖 with a minimum earliest start 
time is selected to be scheduled at 𝐸𝑆𝑖. Upon failure, on the right 
branch the activity earliest start time is either increased (Baptiste & 
Pape, 2000; Caseau & Laburthe, 1996; Dorndorf et al., 2000a; Liess & 
Michelon, 2008) or marked non selectable until its earliest start time 
has increased (Le Pape et al., 1994). Baptiste and Pape (2000) propose 
to set 𝐸𝑆𝑖 to the earliest completion time of the set of activities such 
that 𝐸𝑆𝑗 < 𝐸𝐶𝑖. Non chronological branching schemes have also been 
experimented in CP approaches. In Brucker et al. (1998a), a branching 
scheme is based on the property that if for any pair of activities if it 
is known whether the activities cannot overlap or must overlap then a 
feasible schedule can be obtained in polynomial time if it exists. Then 
at each node, a pair of activities whose overlapping status is unknown 
is selected and two child nodes are created, one where the activities 
must overlap and the other one where the activities cannot overlap. 
In Laborie (2005), branching consists in selecting a minimal forbidden 
set and generating a child node for each precedence constraints that 
destroys the MFS. All these branching schemes have the objective 
to boost the above-presented consistency checks. Except for the last 
approach, none of the exact CP-based solvers were able to compete 
with the dedicated branch-and-bound approach by Demeulemeester 
and Herroelen (1997b) on the PSPLIB instances (Kolisch & Sprecher, 
1997). This is partly due to the special nature of these instance set, on 
which the hardest instances are highly disjunctive (Baptiste & Pape, 
2000). But it must also been remarked that the consistency checks 
for the cumulative constraint are not as efficient as their disjunctive 
counterpart that make standard CP as the technique of choice for the 
jobshop problem and its variants.

For these problems, the importance of guiding the search by conflict 
analyses has been underlined (Grimes & Hebrard, 2015). This was also 
suggested for the RCPSP by the efficiency of the cutset dominance 
rule by Demeulemeester and Herroelen (1997b) based on specific ‘‘no-
goods’’ learning. A SAT approach coupled with on the fly generation of 
cover clauses to deal with resource constraints was proposed by Hor-
bach (2010), based on time indexed encodings, i.e. using literal 𝑢𝑖𝑡
equivalent to the MIP on–off 𝑧𝑖𝑡 variable and literal 𝑠𝑖𝑡 equivalent to 
the MIP start pulse variable 𝑥𝑖𝑡 (see Section 4). Motivated by the success 
of boolean satisfiability (SAT) solvers, lazy clause generation (Feydy & 
Stuckey, 2009; Ohrimenko et al., 2009) is an hybrid method in which 
a CP solver maintains a clause data base issued from the explanations 
of the constraint propagation. Literals that encode the integer decision 
variables involved in the explanation and the related clauses are gener-
ated on-the-fly (lazily) and are transmitted to a SAT solver embedded in 
the CP solver as a constraint propagator. The SAT engine performs unit 
propagation and conflict analysis and update the clause base, which 
in turn transmits domain reductions to the CP solver variables. Schutt 
et al. (2009, 2011) applied this technique to solve the RCPSP using 
explanations of the timetable and (extended) edge finding propagators. 
In Schutt et al. (2013), the same technique is applied with explanations 
of the time table extended edge finding. Two SAT encodings are pro-
posed: a time indexed encoding similar to the one of Horbach (2010) 
but using also step variables equivalent to the MIP 𝑦𝑖𝑡 variables, and 
also a task-indexed encoding using a boolean variable 𝑙𝑖𝑗 meaning that 
when 𝑖 starts, 𝑗 is in process. The challenge for explaining a propagator 
is to have the smallest clauses possible to increase their generality. 
A related approach lies in satisfiability modulo theory solvers which 
are basically extensions of SAT solvers allowing other constraints than 
standard clauses, e.g. constraints involving integer variables, that are 
evaluated via a so-called ‘‘background theory’’. Such approaches were 
proposed in Ansótegui et al. (2011), Bofill et al. (2020). The theory 
used in the latter paper is the integer difference logic theory to encode 
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the precedence constraints while SAT encodings are used for resource 
constraints. The above-presented CP/SAT approach obtain state-of-the-
art results on various problem instances often outperforming in terms 
of exact solving the standard CP approaches and the former dedicated 
branch and bound approaches. To go further, a promising research 
area is certainly to integrate mixed-integer linear components into the 
CP/SAT solvers.
Constraint programming solvers Some of the above-defined constraint 
programming approaches are integrated into academic or commercial 
solvers. As already mentioned, the CHIP solver was the first to address 
the RCPSP via the cumulative constraint (Aggoun & Beldiceanu, 1993; 
Beldiceanu et al., 1996). Various publications present the constraint 
programming elements embedded into the ILOG Schedule solver (Le 
Pape et al., 1994) that became ILOG Scheduler (Laborie, 2003) and 
finally IBM CPoptimizer (Vilím et al., 2015). The Chuffed (Chu et al., 
2018) and Google OR-Tools CP-SAT (Perron & Didier, 2023) solvers 
implement lazy clause generation. SCIP (Berthold et al., 2010) is an 
hybrid solver implementing CP/SAT an MIP. More recently,  Hexaly 
(formerly LocalSolver) is not considered as a constraint programming 
solver but integrates disjunctive and cumulative constraint propagation 
algorithms (Blaise et al., 2020; Laborie, 2023) allowing to solve the 
RCPSP. Other constraint programming solvers such as OptalCP (Heinz 
et al., 2024) and choco-solver (Prud’homme & Fages, 2022) report 
result on the RCPSP.

6. Branch-and-bound methods

At the end of the last century, branch-and-bound procedures were 
much more investigated than today. That may be because meta-heuri-
stics were much less known than they are today, and they also were 
not yet powerful enough to generate very good solutions (although the 
times changed quickly, as will be discussed in Section 7). Moreover, at 
that time there were not many and powerful generic solvers available, 
so researchers were forced to develop the often very specific and 
fine-tuned components of a branch-and-bound procedure. Although 
branch-and-bound procedures often lead to very good, and theoretically 
optimal, solutions, the challenge of such procedures is to fine-tune 
the various algorithmic components with the characteristics of the 
problem. It is therefore often difficult to generalize these procedures 
so that they can easily deal with a slightly modified variant of the 
notorious scheduling problem. After the development and publication 
of some very good specific branch-and-bound procedures, which re-
main highly competitive to this day, the attention waned and most 
researchers began either to focus their research time on metaheuristics 
to push the RCPSP to near-optimality (cf. Section 7) or on more generic 
CP/SAT/MILP approaches (see Sections 4 and 5).

Despite the declining interest of many researchers in developing 
specific exact methods to solve the RCPSP, the focus of branch-and-
bound formulations is far from having disappeared, especially since this 
exact search method is exploited by the above-mentioned CP, SAT and 
MILP solvers. A few years ago Morrison et al. (2016) drew our attention 
to the fact that BnB procedures still have many challenges. They pro-
vided a survey of recent advances in searching, branching, and pruning 
for branch-and-bound algorithms, without particularly focusing on the 
project scheduling literature. At the end of their study, the authors 
gave some guidelines for future research that might be interesting and 
relevant for the RCPSP research. More recently, Coelho and Vanhoucke 
(2018) have implemented some of these ideas and proposed a so-
called exact composite lower bound strategy that brought together the 
existing components of the most competitive BnB procedures to solve 
the RCPSP. These components can be divided into the following four 
categories:

• Search strategy: The strategy to explore the tree can be done using 
a depth-first strategy (which is mostly used in the literature) but 
also by best-first, breadth-first or a hybrid strategies. Moreover, 
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each strategy can be implemented as the upper bound strat-
egy (U) or the minimum lower bound strategy (L), as proposed 
by Patterson (1974).

• Branching scheme: The branching scheme determines how nodes 
are constructed at each level of the tree, with three main strate-
gies: activity start time branching (A), serial branching (S), and 
parallel branching (P). The activity start time branching strategy 
involves selecting one activity and branching based on its possible 
start times within its allowable time window. For each node, the 
algorithm creates branches corresponding to the different feasible 
start times of the chosen activity, thus exploring different schedul-
ing scenarios for that activity. In the serial branching scheme, 
activities are selected one by one at their earliest possible start 
times. The algorithm follows an activity incrementation approach, 
where it iteratively schedules eligible activities. This means that 
it selects an activity, schedules it, and then moves on to the 
next activity, continuing this process until all activities are sched-
uled. The parallel branching approach uses a time incrementation 
method. The algorithm iteratively increases the time pointer in 
the schedule, looking for activities that can be scheduled at 
each time increment. Unlike serial branching, which focuses on 
scheduling activities one by one, parallel branching advances 
through time and at each time step considers all activities that 
can start at that particular time.

• Branching order: Every time a node is selected for branching, a 
number of child nodes are constructed and a ranking based is 
determined to select which child node is selected first (and next) 
for further branching. This selection can be done using the best 
lower bound (B), the activity ID (A), the minimum time window 
(M) or completely random (R).

• Lower bounds: The lower bounds are proposed by Klein and 
Scholl (1999) and combined into a composite version classified 
in 4 categories. The version CLB0 only calculates the critical 
path lower bound at each node and is standard in most BnB 
procedures. The other versions add 4, 8 or 12 other lower bounds 
on top of this fast and efficient critical path lower bound, and only 
a few BnB procedures in the literature make use of more than one 
lower bound.

Since this study builds on the existing components of the liter-
ature, it is tempting to think that such a study could not provide 
many innovative insights compared to the existing work. However, 
by combining all components, the authors ended up with 48 different 
configurations. The depth-first strategy was always chosen because it 
generally delivers much better performance. A selection was made for 
the other components, as follows:

[U,L] ×[A,P,S] ×[B,A] ×[0,4,8,12]
which eventually led to 48 combinations, i.e. 48 different BnB 

configurations.
Besides the implementation of these 48 configurations, the au-

thors also extended the BnB procedure with a so-called credit/tabu list 
system to dynamically add and remove lower bounds in the branch-
and-bound procedure. Although stronger lower bounds can lead to 
improvements in the search, they also require more CPU time, and 
the new credit/tabu list system should therefore allow better fine-
tuning of this quality/computation trade-off. After a thorough further 
analysis of the existing BnB procedures in Guo et al. (2023) based on 
12 existing procedures from the literature, it could be deduced that 
only 9 of these 48 configurations were investigated in the literature 
as presented in Table  1. Not every branch-and-bound procedure fits 
perfectly in the CLB framework because of the minor differences with 
the specific CLB implementation, and the procedures of Brucker et al. 
(1998b) and Dorndorf et al. (2000a) contain additional elements (not 
indicated in the table) that are too different to claim they are fully 
included in the CLB framework.

Above all, the study has shown what was already mentioned by Mor-
rison et al. (2016), namely that there is still plenty of room for 
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Table 1
The components of branch-and-bound procedures in the literature.
 References Search strategy (1) Search strategy (2) Branching scheme Branching order Lower bounds
 Depth Best Breadth Hybrid U L D A P S B M R A cp cp+1 cp+12 
 Patterson (1974) × × × × × – − – − ×  
 Stinson et al. (1978) × × × × ×  
 Talbot and Patterson (1978) × × × × ×  
 Christofides et al. (1987) × × × × ×  
 Bell and Park (1990) × × × × ×  
 Demeulemeester and Herroelen (1992) × × × × ×  
 Mingozzi et al. (1998) × × × × ×  
 Demeulemeester and Herroelen (1997a) × × × × × × ×  
 Brucker et al. (1998b) × × × ×  
 Nazareth et al. (1999) × × × × × ×  
 Dorndorf et al. (2000a) × × × × ×  
 Sprecher (2000) × × × × ×  
 Coelho and Vanhoucke (2018) × × × × × × × × × × × ×  
improvement, even for a problem like the RCPSP, which has been 
the subject of many decades of research. More specifically, in a com-
putational experiment on the PSPLIB instances, it was demonstrated 
that the parallel branching scheme (PAR) could optimally solve more 
instances within a 1-hour time limit compared to the other branching 
schemes (SER, AST), as already known in the literature. However, the 
other branching schemes were not completely dominated by this well-
performing branching scheme, as both the SER and AST branching 
schemes could find solutions that the PAR branching scheme could not. 
These results indicate that a carefully elaborated combination of dif-
ferent strategies has the potential for improvements, and that bringing 
together existing academic research can lead to new enhancements and 
insights.

Furthermore, the experiments also showed that there is still much 
room to find further improvements. Specifically, the experiments were 
repeated using the CSS procedure as a combined search strategy, al-
ternating between the different branching schemes (dividing the total 
1-hour time limit among the three branching schemes for 20 min 
each). Despite the fact that this CSS procedure could find nearly all 
solutions found by the PAR, SER, and AST procedures together, there 
were still 29% of the PSPLIB instances for which no optimal solu-
tions could be found, demonstrating that this challenging scheduling 
problem still holds many secrets. Since the experiment had shown 
that a combination of different branching schemes can lead to bet-
ter solutions, Guo et al. (2023) proposed a method for ranking and 
automatically selecting the best performing configuration(s) based on 
network and resource characteristics of the problem instance. They 
utilized two regression methods (kNN and ridge regression). Their 
findings consistently demonstrated that these machine learning meth-
ods outperform any single best configuration and often approach the 
optimal solution achievable by running each configuration separately, 
albeit at a significantly higher computational cost and running time.

Finally, with the recent attention to matheuristics, the importance 
of exact methods, such as the branch-and-bound methods discussed 
in this section, may increase further. Since matheuristics by definition 
try to combine the best elements of exact and heuristic methods (see 
Section 7), a correct and good understanding of both methods will be 
necessary to make these matheuristics performable. It may be a matter 
of time before the MIP and BnB procedures will access matheuristics 
to solve the RCPSP, hopefully with enhancements that will not only 
provide better solutions, but also fresh insights into the ongoing search 
for exact solution procedures for this challenging scheduling problem.

7. Heuristics and metaheuristics

Given the computational complexity of the RCPSP, the development 
of heuristics has always been a natural research direction. The first 
approaches were priority rule-based heuristics, which can be traced 
back to the 1960s. The development of metaheuristics for the RCPSP 
started in the 1990s, and in recent years, researchers began to apply 
machine learning methods. This section sketches out the evolution of 
heuristics for the RCPSP and discusses their performance.
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Priority rule heuristics. Papers like that of Kelley (1963) laid the founda-
tion for methods that were based on two main components, a schedule 
generation scheme (SGS) and a priority rule. The SGS organizes the 
scheduling process. The serial SGS (s-SGS) selects an activity in each 
step and schedules it to start at the earliest time that is feasible with 
regard to the precedence and resource constraints. In contrast, the 
parallel SGS (p-SGS) is based on a current time which is incremented 
during scheduling, and in each step, an activity is selected to start at 
that time. Of course, the serial and the parallel SGS are the heuristic 
counterparts of the two branching schemes of the same names (see 
Section 6). The priority rule specifies the calculation of a priority for 
each activity and thus determines which activity is selected in each step 
of an SGS. Classical rules include, for example, the latest finish time rule 
(LFT) and the minimum slack rule (MSLK).

The two SGS differ in their search spaces and thus in their behav-
ior (Kolisch, 1996). The parallel SGS outperforms the serial one when 
applied to larger projects with scarce resource capacities if the number 
of calculated schedules is rather small. This is because the parallel SGS 
tends to build compact schedules with high resource utilization. How-
ever, its search space is smaller than that of the serial SGS, and unlike 
the latter, it may in fact exclude all optimal solutions (Sprecher et al., 
1995). Thus, the serial SGS is better suited to reach (near-)optimal 
schedules.

To improve the solution quality, priority rule heuristics were ex-
tended by randomizing the activity selection in the SGS, and priority 
rules were used to derive probabilities for the activities to be selected. 
These so-called sampling methods allowed to produce many schedules 
with a priority rule (and to pick the best one). Naturally, the stochastic 
multi-pass heuristics outperform their deterministic single-pass rela-
tives and were state of the art in the mid-1990s (Kolisch, 1996). More 
recently, the automatic design of new priority rules to solve the RCPSP 
using genetic programming has been on the research agenda (Dumic & 
Jakobovic, 2021; Luo et al., 2022).
Metaheuristics. Multi-pass priority rule methods have a major limita-
tion: They are unable to learn from previously calculated schedules. 
This motivated the scientific community to shift the focus towards the 
more intelligent metaheuristics. Nevertheless, priority rule heuristics 
remain relevant as they are employed to find initial solutions for 
metaheuristics, and also the SGS remain important building blocks of 
metaheuristics. Moreover, priority rule methods are still applied in 
commercial software because they are fast and intuitive.

Many metaheuristics require the modification of a solution or the 
recombination of two solutions to produce a new one. However, there 
are no straightforward operators that would produce feasible and effi-
cient schedules for the RCPSP. Therefore, instead of operating directly 
on schedules, most metaheuristics operate on representations (or en-
codings) which are then transformed into schedules. Boctor (1996) was 
the first to present a simulated annealing heuristic for the RCPSP. He 
used an activity list (AL) representation which is turned into a schedule 
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by the serial SGS which, in each step, picks the next activity to be 
scheduled from the list. Hartmann (1998) compared three representa-
tions within a genetic algorithm (GA) in a computational study, and the 
activity list representation performed better than the random key and 
the priority rule representation.

The first and still fairly basic metaheuristics mentioned above were 
a starting point for many developments that took place since the 
late 1990s. Many new ideas have been developed, and metaheuris-
tics have been fine-tuned in rigorous computational experiments. The 
main trends that have shaped the evolution of metaheuristics are the 
following:

• New and improved representations were developed. One goal 
was to fix the shortcomings of standard representations like the 
activity list and the random key representations. Both of the 
latter contain redundancy, that is, different representations may 
represent the same schedule. To overcome this issue, more ad-
vanced approaches were proposed, including, e.g., the so-called 
standardized random key representation of Debels et al. (2006), 
disjunctive graph inspired representations (Artigues et al., 2003; 
Artigues & Roubellat, 2000; Roux, 1998) and the event-list rep-
resentation of Paraskevopoulos et al. (2012). Nevertheless, the 
classical activity list representation is still among the most used 
approaches according to the survey of Pellerin et al. (2020).

• While the basic operators in early metaheuristics relied on ran-
dom decisions, more intelligent operators were designed to ex-
ploit problem-specific knowledge. An example is the peak
crossover of Valls et al. (2008) that aims at inheriting blocks 
of activity lists that represent parts of schedules with high re-
source utilization. This idea was further extended by Debels and 
Vanhoucke (2007) who used the total resource utilization (TRU) 
to define crossovers in a decomposition-based genetic algorithm 
with two populations.

• The concept of self-adaptation was first applied to the RCPSP 
by Hartmann (2002). He included both SGS into a genetic algo-
rithm and added a gene to the activity list representation that 
decides which of the two SGS is used for scheduling the related 
activity list. This way, the evolution will automatically prefer 
the SGS that is better suited for the given project instance and 
more successful during the current phase of the search. As noted 
by Pellerin et al. (2020), self-adaptation has been applied to 
various other parameters of metaheuristics in recent years.

• A particularly successful idea was to improve schedules by shift-
ing activities to the right within the schedule and then to the 
left. This procedure, often referred to as forward–backward im-
provement (FBI) or justification, is very effective at reducing the 
makespan of a schedule. It was applied by Tormos and Lova 
(2001) within a sampling heuristic and tested by Valls et al. 
(2005) within several priority rule methods and metaheuristics 
and has become a very popular add-on to many recent heuristics.

• Many different metaheuristic paradigms have been applied to the 
RCPSP. Pellerin et al. (2020) mention more than 25 metaheuristic 
strategies which can be found in recent papers, and the list is still 
getting longer: Further metaheuristic principles are continuously 
added. A recent example is the chemical reaction optimization 
(CRO) framework studied by Shuvo et al. (2023).

• Many researchers suggested hybrid procedures that combine sev-
eral metaheuristic concepts, or even exact and heuristic compo-
nents, such as in the large neighborhood search method (Palpant 
et al., 2004). When MILP and/or branch and bound are the 
main components, such methods are called matheuristics (see 
Section 6). In fact, hybridization has been a major trend in recent 
years, and it is a successful one as it allows for a very effective 
search (e.g., with diversification and intensification phases). In a 
recent study, Vanhoucke and Coelho (2024) showed that imple-
menting a matheuristic for the RCPSP involves numerous choices, 
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making it a challenging endeavor. In their survey, Pellerin et al. 
(2020) provide a classification of hybridization strategies and 
report excellent results. This is in line with the findings of Van 
Peteghem and Vanhoucke (2014) who compare metaheuristics 
for the multi-mode extension of the RCPSP (cf.  Section 9). They 
conclude as well that hybrid methods often yield better results 
than simple metaheuristics.

Machine learning. It can be argued that metaheuristics make use of 
machine learning principles because their decisions are based on learn-
ing strategies that are applied during the search process. In fact, the 
concepts behind metaheuristics are often categorized as reinforcement 
learning, due to the feedback induced by the objective function. Nev-
ertheless, in recent years, researchers have developed new heuristic 
approaches for the RCPSP based on machine learning.

One approach is to apply machine learning to identify promising 
heuristic strategies for a given project instance, as already mentioned 
in Section 6. Guo et al. (2021) collected a training set consisting of 
projects with indicators reflecting the characteristics of each project 
(see Section 3) along with the results of various priority rules for 
each project. They used supervised learning to predict the best priority 
rules for projects with certain properties. The approach with the most 
promising results makes use of multi-label classification and decision 
trees. Guo et al. (2021) mention that their methodology is not restricted 
to the standard RCPSP or priority rules and can be extended to other 
problems and heuristics.  Zhao et al. (2022) use deep reinforcement 
learning and more precisely the proximal policy approximation algo-
rithm to train a graph neural network representing the parallel schedule 
generation scheme to design an efficient priority rule. Despite the good 
performance of these studies, it is important to note that such machine 
learning algorithms do not construct resource-feasible schedules from 
scratch, but rather select from existing scheduling methods to maximize 
the likelihood of building an optimal schedule.

There has already been a substantial amount written about the 
potential of machine learning in project management and control, 
but most studies remain limited to project time/cost/quality manage-
ment (Uddin et al., 2023), time forecasting (Wauters & Vanhoucke, 
2014, 2016) or cost forecasting (Narbaev et al., 2024; Unsal-Altuncan 
& Vanhoucke, 2024), but rarely if ever extending to the construction 
of an optimal resource-feasible project schedule for the RCPSP. Hence, 
to the best of our knowledge, there are almost no studies using a 
machine learning methodology to directly solve the RCPSP by con-
structing a schedule themselves, although it is expected that this may 
change with recent developments. As a notable exception, Teichteil-
Königsbuch et al. (2023) used a training set of project instances along 
with the optimal schedules obtained with a solver. They applied su-
pervised learning to find a schedule for a given project instance. This 
was achieved by a specific graph representation of the instances (in 
which also the resources are included). A graph neural network which 
can handle input with such a graph structure was used. The schedules 
constructed by the graph neural network contained violations of the 
precedence and resource constraints. Therefore, the order of the activ-
ities was extracted from the infeasible schedules, and the serial SGS 
was used to determine feasible schedules from the activity list. The 
previously mentioned study by Luo et al. (2022) also relied on existing 
data and solutions for the RCPSP to train a genetic programming 
algorithm in an attempt to schedule new instances for the RCPSP.  Du-
mic and Jakobovic (2021) followed a similar approach and integrated 
further machine learning techniques like bagging and boosting into the 
genetic programming framework. However, the quality of the resulting 
schedules is likely to remain relatively low because these studies rely 
on priority rules.
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Table 2
Results of selected heuristics for PSPLIB set with 120 activities (Average deviations in % from critical path lower bound).
 Heuristic Paper max. #schedules
 1000 5000 50,000 
 Hybrid GA+local search, non-standard repr. Proon and Jin (2011) 33.45 31.51 30.45  
 Hybrid scatter+local search, event list, s-SGS Paraskevopoulos et al. (2012) 33.32 32.12 30.78  
 Hybrid GA+decomposition, FBI, TRU Debels and Vanhoucke (2007) 34.19 32.34 30.82  
 Hybrid CRO+GA, AL, both SGS Shuvo et al. (2023) 33.85 32.42 30.95  
 Hybrid GA+FBI, AL, s-SGS, peak crossover Valls et al. (2008) 34.07 32.54 31.24  
 Hybrid scatter search+electromagn.+FBI Debels et al. (2006) 35.22 33.10 31.57  
 Hybrid GA+FBI, AL, s-SGS Valls et al. (2005) 35.39 33.24 31.58  
 GA, AL, both SGS, self-adapting Hartmann (2002) 37.19 35.39 33.21  
 GA, AL, s-SGS Hartmann (1998) 39.37 36.74 34.03  
 sampling, LFT, both SGS, FBI Tormos and Lova (2001) 36.49 35.81 35.01  
 sampling, LFT, p-SGS Kolisch (1996) 39.60 38.75 37.74  
 sampling, LFT, s-SGS Kolisch (1996) 42.84 41.84 40.63  
Performance. The evaluation of the performance of heuristics was ar-
guably facilitated by two developments in the mid to late 1990s. First, 
the PSPLIB dataset of Kolisch and Sprecher (1997) described in Sec-
tion 3 provided challenging project instances for computational studies. 
Second, Hartmann and Kolisch (2000) proposed an easy-to-use criterion 
as a basis for comparisons. Of course, a comparison of heuristic results 
is only fair if the computational effort to achieve the results is more or 
less the same in all heuristics to be compared. However, measuring the 
computational effort by CPU time would be misleading if the results 
are obtained with different programming languages and programming 
skills and, most importantly, on different computers. Thus, Hartmann 
and Kolisch (2000) suggested to use the number of schedules that 
were calculated for an instance as a measure of the computational 
effort. This idea is based on the assumption that building one schedule 
within any heuristic involves the calculation of a start time for each 
activity as done in one pass through an SGS. Therefore, the number of 
schedules calculated for a project reflects the computational effort—
not perfectly, but in a pragmatic way. The first approach was to 
report the results of a heuristic after 1000 and 5000 schedules were 
constructed for a project instance, respectively. Increasing computer 
power allowed for the computation of more schedules in reasonable 
time, which motivated Kolisch and Hartmann (2006) to add a limit of 
50,000 schedules. Overall, this allowed all researchers to compare the 
results of their heuristics very easily to results from the literature. Of 
course, researchers are responsible for applying the stopping criteria 
correctly when testing their heuristics.

The most recent study comparing the performance of a large number 
of heuristics proposed in the literature is that of Pellerin et al. (2020). 
They show that the performance of today’s advanced metaheuristics is 
far above that of the first metaheuristics for the RCPSP that appeared 
in the late 1990s. Overall, an impressive number of heuristics have 
been developed to this day, and the computational results have steadily 
improved. However, the study of Pellerin et al. (2020) also shows that 
the solution quality did not improve that much anymore during the last 
decade.

To give an impression of the development regarding the perfor-
mance of heuristics, Table  2 provides the computational results of 
several heuristics for the PSPLIB dataset with 120 activities. To keep 
the table short, it is restricted to those heuristics cited in this section 
for which results were available, and it adds the hybrid metaheuristic 
of Proon and Jin (2011) which is the best performing heuristic for 
this dataset in the study of Pellerin et al. (2020). Since many optimal 
solutions are unknown, results are given as percentage deviations from 
the critical path based lower bound (which is not a tight bound but 
easy to use and thus widely accepted). The purpose of the table is to 
sketch out the progress achieved in the last decades. Of course, there 
are many other successful heuristics. A comprehensive comparison can 
be found in Pellerin et al. (2020).

We believe that further research on the topics listed above is worth-
while and will probably lead to even better results in the future. Our 
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impression is that problem-specific ideas for the representation and 
the operators as well as smart hybridization and machine learning 
approaches may be more promising directions for research than the 
metaheuristic paradigms themselves. It would also be interesting to 
obtain more optimal solutions or tighter lower bounds to judge the 
current solution gaps.

Overall, recent developments have led to extremely powerful but 
also considerably complex heuristics. However, as Pellerin et al. (2020) 
mention, simplicity should also be valued because simpler heuristics 
may be more attractive for practitioners. Moreover, heuristics for the 
standard RCPSP are often used as starting points when developing 
heuristics for extended project scheduling problems. In this regard, 
simpler heuristics might be more straightforward starting points.

As sketched out above, the availability of challenging datasets and 
easy-to-use criteria for comparison have led to a very competitive 
environment for research on heuristics for the RCPSP (e.g. Coelho 
& Vanhoucke, 2023 proposed the so-called sD dataset especially for 
testing new metaheuristic procedures). Of course, this has contributed 
to the excellent results. We would like to add that the race for even 
better heuristic results should not necessarily be the only goal. Fun-
damentally new ideas are also valuable even if they do not outperform 
most other heuristics right away. Also, gaining deeper insight into what 
makes a component of a heuristic successful and why (and possibly for 
what kinds of project instances) would be an important goal for future 
research. We think that experiments that analyze the impact of the 
components of heuristics on the performance deserve more attention.

8. Lower bounds

Lower bounds are of multiple interests for an NP-hard optimization 
problem like the RCPSP. First, as stated in Section 6, lower bounds are 
used to prune nodes in branch-and-bound trees. For this usage, fast 
lower bounds are needed since they are computed thousands of times. 
Second, Section 7 revealed the vast amount of research that has been 
carried out on heuristic and metaheuristic approaches due to both the 
practical interest of the problem and its intractability. To evaluate the 
quality of various heuristics, a comparison with the exact solution value 
can only be made on small instances. Having strong lower bounds is a 
means to have a tight estimation of the optimality gap of the compared 
heuristics. In this case, more time can be spent for obtaining them. A 
last usage is to use the solution of the relaxed problem to guide the 
search towards a feasible solution. As well explained in Klein and Scholl 
(1999), there are two ways of obtaining a lower bound on the optimal 
makespan of the RCPSP. The constructive way solves a relaxation of 
the RCPSP makespan minimization problem whose optimal value gives 
a lower bound. The destructive way solves a relaxation of the decisional 
RCPSP for a given makespan 𝑇 . In case of proven infeasibility a lower 
bound of value 𝑇 + 1 is obtained.

The LP relaxation of all the (mixed-)integer linear programs pre-
sented in Section 4 can be used as constructive lower bounds. A 
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destructive lower bound can also be obtained by fixing the makespan 
to the threshold value and solving the LP relaxation or, for even better 
bounds, the MILP formulation to tentatively prove infeasibility in a 
destructive approach. Similarly, all the consistency tests presented in 
Section 5 work on a relaxation of the decisional RCPSP and can (and 
have been) used to compute destructive lower bounds.

In various papers, the makespan obtained by the compared heuris-
tics is given as a percentage of the critical path lower bound (see 
also Section 7). However, much better lower bounds can be obtained 
by using constructive or destructive LP and CP-based lower bounds 
or other dedicated lower bounds. Many of them were used to prove 
the optimality of solutions found by heuristics in benchmark instances 
from the literature. Surveys on lower bounds for the RCPSP can be 
found in Demassey (2013), Demeulemeester and Herroelen (2006), 
Knust (2015), Néron (2008), Neron et al. (2006). We list below different 
lower bounding approaches either based on above-described LP and CP 
models or on other relaxations.

In the early years, some proposed lower bounds were based on the 
constraint propagation principle before this concept was even defined. 
For example, this is the case for the basic resource bound, giving the 
maximum ratio (rounded to the upper integer) of the total resource 
requirement on a resource divided by its availability, which can also 
be obtained destructively by the cumulative overload check on interval 
[0, 𝑇 ] where 𝑇  is the time horizon. This is also the case for the lower 
bounds by Stinson et al. (1978), Zaloom (1971) that both improve 
the critical path lower bound by energetic reasoning considerations. 
The first bound considers the cumulated requirement on a resource 
𝑘 over time of either the earliest or the latest start schedule given 
an upper bound. A valid lower bound is then the smallest value 𝐿𝐵
such that at each time 𝑡, the cumulated requirement stays below 𝐵𝑘𝑡. 
Hence, we have a sort of premises of energetic reasoning by proving 
infeasibility of right shifts or left shifts in a sliding interval. Second, 
the critical sequence bound considers the resource profile associated 
with the activities on a critical path of length 𝐿. If an activity 𝑖
can be scheduled in parallel with the critical path due to resource 
requirement during interval of maximal length [𝑎, 𝑏] where [𝑎, 𝑏] is 
included in the activity time window [𝐸𝑆𝑖, 𝐿𝐶𝑖] then 𝐿+𝑏−𝑎 is a valid 
lower bound. Demeulemeester and Herroelen (1992) extend this bound 
to a path of non-critical activities via dynamic programming. A fast 
bound, the weighted node packing bound, was proposed by Mingozzi 
et al. (1998) issued from the dual of a preemptive relaxation of the 
feasible set MILP formulation (see Section 4). The dual correspond to 
a weighted node packing problem, an NP-hard problem but any upper 
bound for the dual gives a feasible lower bound for the primal, which 
allows to obtain a fast lower bound of reasonable quality.

Constructive variants of the consistency tests based on relaxations 
of the cumulative constraint (see Section 5) can be used to obtain 
fast lower bounds. The due dates 𝑑𝑖 of activities in the cumulative 
constraints are replaced by tails 𝑞𝑖 where the tail can be initialized 
to the length of the longest path from the activity to the dummy end 
node. We obtain the optimization variant of the cumulative constraint, 
called the cumulative scheduling problem (CuSP) minmax𝑖∈ 𝑆𝑖 + 𝑝𝑖 +
𝑞𝑖 subject to release date and resource constraints. Parallel machine 
relaxations of the CuSP can the be obtained by techniques detailed 
in Carlier and Latapie (1991). Then, given a parallel machine problem 
with release dates and tails, the most common lower bound is the subset 
bound (Perregaard, 1995; Vandevelde et al., 2005) which search for 
the subset 𝐼 ∈  such that maximizes 1∕𝑚(𝑟𝑖1 + ⋯ + 𝑟𝑖𝑚 +

∑

𝑖∈𝐼 𝑝𝑖 +
𝑞𝑗1 + ⋯ + 𝑞𝑗𝑚 ), where 𝑖1,… , 𝑖𝑚 are the 𝑚 smallest release dates of 
activities in 𝐼 and 𝑗1,… , 𝑗𝑚 are the 𝑚 smallest tails in 𝐼 . The bound 
can be computed in 𝑂(||

2). The pseudo-preemptive relaxation of the 
CuSP can be solved in 𝑂(||

2) by the Jackson’s pseudo-preemptive 
scheduling algorithm (Carlier & Pinson, 2004). In Carlier et al. (2023) 
the authors propose fast constructive variant of energetic reasoning 
with 𝑂(|| log ||) and 𝑂(||

2) time complexity. The above-described 
bounds have the advantage of being fastly computable enough for being 
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integrated in a branch-and-bound method such as in Demeulemeester 
and Herroelen (1992, 1997a) for the critical sequence bound and the 
weighted node packing bound and in Carlier and Latapie (1991) for 
the subset bound. However, when many bounds are used, the earlier 
discussed credit system (see Section 6) used in the branch-and-bound 
method of Coelho and Vanhoucke (2018) assures that not too much 
time is spent in calculating their values.

When the objective is rather to obtain a near-optimal lower bound 
disregarding the computation times, exact CP (Section 5) and MILP 
(Section 4) also produce tight lower bounds. Two representatives of 
this category are the lazy clause generation CP/SAT method by Schutt 
et al. (2011) and the branch and cut method by Araujo et al. (2020) 
that both were able to find new lower bounds on hard instances from 
the PSPLIB. Exact MILP solving of NP-hard relaxations is also a way 
to obtain good lower bounds, such as in Moukrim et al. (2015) where 
the preemptive RCPSP is solved by branch and cut with a formulation 
close to the Mingozzi et al. (1998) formulation, and the RCPSP with 
aggregated resource constraint (Morin et al., 2022) solved by MILP 
formulations. Carlier and Néron (2000) present the multiple elastic re-
laxation of the CuSP where at each time period, the amount of resource 
allocated to an activity is a multiple of its resource requirement. The 
relaxation can be solved by a linear program based on the enumeration 
of feasible configurations given the resource capacity 𝐵𝑘. The LP can 
be solved fastly up to 𝐵𝑘 = 11 by a parametric approach. Haouari 
et al. (2014) extend the method proposed by Carlier and Néron (2003) 
to obtain destructive lower bounds by solving a relaxation of the 
preemptive RCPSP including pseudo precedence constraints by linear 
programming. Haouari et al. (2014) include new valid inequalities. The 
approach proved to be competitive with the lower bounds obtained 
by Schutt et al. (2011), Vilím (2011). With the objective to obtain 
tight lower bounds faster than the above strong but time-consuming 
approaches, Arkhipov et al. (2019) proposed a pseudo-polynomial algo-
rithm to compute lower bounds on the consecutive evaluation of pairs 
of resources and their cumulated workload.

Using relaxations to guide the search towards promising solutions 
has been hardly explored in the RCPSP literature. Möhring et al. (2003) 
use a Lagrangian relaxation of the resource constraints on the 𝑃−𝐷𝐷𝑇
formulation (see Section 4) to solve the LP relaxation via minimum cut 
computations and obtain good heuristic solutions by using the relaxed 
solution inside a priority-rule based heuristic.

Joining the forces of MILP and CP to obtain tight destructive lower 
bounds have been successful, either by exploiting the time-indexed and 
continuous time sequencing formulation using cutting planes issued 
from CP (Demassey et al., 2005) or by alternating column generation 
on the Mingozzi et al. (1998) formulation and constraint propagation 
as in Baptiste and Demassey (2004), Brucker and Knust (2000a, 2003), 
Demassey et al. (2004). Under the light of the recent breakthrough in 
MILP and CP lower bounds, this research area deserves to be further 
explored towards CP/MILP/SAT approaches.

9. RCPSP variants

The standard RCPSP is a very lean and minimalist problem, but 
despite its simple structure, it is very hard to solve. One may argue that 
this has contributed to its success: A clearly defined, simple problem 
that is challenging from a computational point of view provides an at-
tractive playground for developing exact and heuristic algorithms. Nev-
ertheless, from a more application-oriented point of view, the RCPSP 
assumptions are too strict to capture properties and requirements of 
many real-world projects. Therefore, more detailed problem settings 
are needed for scheduling projects in practice.

Many more complex project scheduling problems have been dis-
cussed in the scientific literature, and the RCPSP has often been used as 
a starting point by varying and extending its assumptions, restrictions, 
and objective function. An overview of extended models has been given 
in Hartmann and Briskorn (2010), and an update to cover the next 
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decade followed in Hartmann and Briskorn (2022). In this section, we 
summarize the most important variants and extensions. We proceed 
by looking at generalizations of the activity, resource, and precedence 
constraints first and then continue with a look at alternative objectives 
and models for multiple projects. We also briefly mention studies that 
considers uncertainty in a stochastic and/or robust setting.
Activities. In the basic RCPSP, an activity is related to a fixed non-
preemptable duration and constant amounts of one or more resource 
types that are required during the duration. The concept of multiple 
modes dates back to Elmaghraby (1977) and allows for more flexibility 
by introducing several ways to accomplish an activity: Each mode is 
defined by a duration and requests for resources, which permits, for 
example, to choose between alternative resources for an activity and 
to shorten its duration by using more resource units per period. For 
each activity, not only a start time but also a mode has to be selected. 
If nonrenewable resources are added (see below), we obtain the multi-
mode RCPSP (MRCPSP) which has become a popular standard problem 
in its own right. If more than one nonrenewable resource is given, the 
feasibility problem is NP-complete (Kolisch & Drexl, 1997). A computa-
tional comparison of branch-and-bound methods is given by Hartmann 
and Drexl (1998) while Van Peteghem and Vanhoucke (2014) compare 
heuristics. An in-depth literature review of the MRCPSP and related 
problems is given in Weglarz et al. (2011).

A second way to extend the structure of activities is to drop the 
assumption that resource usage is constant during the duration. This 
can be achieved by allowing for time dependent resource requests 𝑏𝑖𝑘𝑡. 
This reflects the demand of activity 𝑖 for resource 𝑘 in the 𝑡th period 
of its duration. Hartmann (2013) shows that this can be useful in 
medical research projects. A different approach is to consider a fixed 
workload of an activity but to leave it to the scheduling process to 
decide how many units of a resource are allocated to the activity in 
each period. Often, further requirements such as a minimum and a 
maximum per-period request are added. This approach is often referred 
to as flexible resource profile (Naber & Kolisch, 2014), and the idea has 
been included into several otherwise different problem settings (Bianco 
& Caramia, 2011; Fündeling & Trautmann, 2010).

Another generalization of the activity concept of the RCPSP is to 
relax the constraint that an activity may not be interrupted once it 
has started. Interruptions are often only allowed at integer points in 
time. This leads to the so-called preemptive RCPSP. Several researchers 
have added further constraints to limit the interruptions. For example, 
in Quintanilla et al. (2015), each activity is associated with a limit 
on the number of interruptions, and each resulting part of an activity 
must have a minimum duration. Finally, setup times between two 
activities have been considered by several researchers. Vanhoucke and 
Coelho (2019) consider setup times that are taken into account when 
an interrupted activity is continued. Closely related to setup times are 
transfer times which occur if a resource has to be transported from the 
location of one activity to that of another activity (Krüger & Scholl, 
2010).

Temporal constraints and network. Next, we focus on the temporal 
conditions induced by the precedence relations of the RCPSP and how 
they can be generalized. In the basic RCPSP, an activity is only allowed 
to start when its predecessors have finished. This corresponds to finish–
start constraints. Analogously, start–start, start–finish, and finish–finish 
constraints could be defined, but as shown by Bartusch et al. (1988), 
these types can be transformed into finish–start relations (this holds 
for the classical RCPSP but not for some extensions like the MRCPSP). 
Also, time-lags can be introduced, indicating the minimal and maximal 
time that is allowed to pass between two activities. Adding these time 
lags to the RCPSP leads to an extended model that is often referred 
to as RCPSP/max. Obviously, the standard RCPSP contains minimal 
time lags of 0. Bartusch et al. (1988) have shown that the general 
time lags include release dates and deadlines for activities and even 
time-dependent resource requests of the activities as special cases. They 
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have also proven that the feasibility problem of the RCPSP/max is NP-
complete.  Dorndorf et al. (2000c) have proposed a branch-and-bound 
method for the RCPSP/max.

The temporal constraints can also be extended by allowing activities 
to overlap, that is, to be processed in parallel for some time. One idea 
is to allow an activity to start when its predecessor has completed a 
certain percentage of its workload. There are further variants such as, 
for example, allowing an activity to finish when its predecessor has 
completed a certain percentage of its workload. These so-called feeding 
precedence constraints have been employed by several researchers 
(e.g., Bianco & Caramia, 2011), often together with a concept similar 
to the flexible resource profiles mentioned above. A different approach 
to overlapping was proposed by Hartmann (2013) where it can be 
specified that two activities do not start at the same time, do not finish 
at the same time, or do not overlap at all. These temporal constraints 
differ from the usual precedence relations in that they do not impose 
an order of the activities. Vanhoucke and Coelho (2016) further add 
a so-called changeover time that must pass between two activities that 
may not overlap (but for which no order is prescribed). They also add a 
new type of precedence constraint according to which an activity may 
already start when at least one predecessor has finished.

In usual precedence networks, all activities must be carried out. 
Several researchers extended the concept of networks by incorporating 
the decision which activities will actually be executed and which will 
not, which leads to a flexible project structure. In the RCPSP, each 
activity can be viewed as a logical ‘‘AND’’ node, meaning that all its 
successors must be carried out. In an extended network, an activity can 
also be an ‘‘XOR’’ or an ‘‘OR’’ node, which implies that exactly one or at 
least one immediate successor must be executed. The models suggested 
in the literature differ in their assumptions, and there is no standard 
yet. An example is the approach of Servranckx and Vanhoucke (2019) 
who include so-called principal activities that represent ‘‘XOR’’ nodes 
and trigger the selection of exactly one subgraph of activities. A similar 
concept is suggested in der Beek et al. (2024).
Resources. Let us now take a brief look at variants of the resource 
concept. The first one is to replace the constant resource capacities of 
the basic RCPSP with time-dependent ones. Hartmann (2013) combines 
these time-varying capacities with time-varying resource requests (see 
above) and shows that the serial SGS loses its property to always 
include an optimal schedule in the search space when applied to this 
extended setting.

In addition to renewable resources, various other resource cate-
gories have been proposed. A classic category is that of nonrenewable 
resources (Slowinski, 1980, 1981) which are limited for the entire 
project, unlike the renewable resources which have a limited per-period 
supply. Nonrenewable resources are usually considered when multiple 
modes are given (see above). Partially renewable resources are limited 
for individual sets of time periods, which makes them a very general 
category as they include both renewable and nonrenewable resources 
as special cases. A recent study that employs partially renewable re-
sources (and maximal time lags) was presented by Watermeyer and 
Zimmermann (2023).

Storage resources8 (Neumann & Schwindt, 2002) are used by some 
activities and produced by others. Throughout the project, the inven-
tory level of a storage resource must usually be between a lower and 
an upper limit. Recently, der Beek et al. (2024) used storage resources 
in an RCPSP with a flexible project structure. A related category often 
called material reflects resources that are consumed by activities and 
have to be ordered from external suppliers, with the timing and quanti-
ties of the orders being part of the schedule to be determined (e.g., Fu, 
2014).

8 sometimes also called cumulative resources, see our disambiguation note 
page 1.
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Finally, resources with multiple skills have become a popular ingre-
dient in project scheduling problems. In the multi-skill RCPSP (MSR-
CPSP) that has become a widely accepted standard, a number of skills 
is given, and for each (usually human) resource, it is known whether 
it masters a skill or not. Each activity requires resources with certain 
skills. This setting has been extended by various researchers. For exam-
ple, some models include levels to express how well a resource masters 
a skill, and activities now require resources with skills at or above a 
certain level. Snauwaert and Vanhoucke (2023) give an overview of 
the MSRCPSP and its variants and extensions.
Objectives. Many different objectives have been considered for resource
constrained project scheduling. In what follows, we discuss the most 
popular types of objectives. The objective of the standard RCPSP, the 
minimization of the makespan, belongs to the category of time-based 
objectives. Another popular time-based objective is to minimize the 
weighted sum of earliness and tardiness with regard to given due dates 
for the activities (Vanhoucke et al., 2001a). Of course, it includes the 
also frequently considered weighted tardiness objective as a special 
case.

Projects do not always proceed as planned. For example, activities 
may take longer than expected or resources may become temporarily 
unavailable. In this context, time-based objectives play an important 
role as well. If deviations from the original schedule have occurred 
while the project is in progress, the project may have to be rescheduled 
based on the updated data. If the new schedule should stick as closely 
as possible to the original one, the original activity finish times can be 
used as due dates, and the objective to minimize weighted earliness and 
tardiness can be used for rescheduling (of course, the start times of ac-
tivities already finished or in progress cannot be changed). In addition 
to this reactive approach, a proactive strategy is to include slack times 
into the schedule to make the latter more robust  without considering 
explicitly stochastic models nor uncertainty scenarios. Possible delays 
of activities can then be at least partially absorbed by the slack times, 
which reduces the risk of a delayed completion of the project. Several 
slack-related objectives have been proposed, usually within a model 
with a deadline to fix the project duration. Kobylanski and Kuchta 
(2007) suggest to maximize the smallest free slack, either as an absolute 
value or in relation to the activity duration. Chtourou and Haouari 
(2008) compare several  surrogate robustness measures, including total 
slack of the activities and maximum number of activities with slack. 
Also, both measures are extended by weights for the activities.

Next, we look at resource-based objectives. In models with resource-
related objectives, the makespan is often bounded by a deadline con-
straint. Among the most popular objectives in this category is the 
minimization of the weighted resource capacities (the weights can 
reflect unit availability costs of the resources). The RCPSP with this 
objective and with a deadline constraint is often referred to as resource 
availability cost problem or resource investment problem. It has been 
tackled my many researchers, see, e.g., Van Peteghem and Vanhoucke 
(2015). Closely related are resource leveling objectives which seek to 
minimize changes in the resource profile. Several different resource 
leveling objectives have been proposed, including the weighted ab-
solute or squared period-to-period changes in the resource profile as 
well as the weighted squared per-period requests (see, e.g., Ponz-Tienda 
et al., 2017). Another related objective is the minimization of the total 
resource overload, that is, the minimization of the weighted utilization 
of the resources that is above a given threshold (e.g., Rieck et al., 2012).

Taking into account cash flows during a project’s execution leads to 
another type of objective. The execution of activities and utilization of 
resources result in cash outflows, whereas cash inflows occur upon the 
completion of project milestones. In projects with a longer horizon, pay-
ments are discounted using an interest rate. The resulting objective is to 
maximize the net present value (NPV) of the project (e.g., Vanhoucke 
et al., 2001b and Leyman & Vanhoucke, 2017). Again, a deadline is 
added to limit the duration of the project. The standard RCPSP with 
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discounted cash flows can be further extended. For example, Leyman 
and Vanhoucke (2017) add a constraint that the capital cannot be 
negative in any period, and they allow for different timings of payments 
during the execution of the activities. Yet another approach is followed 
by Khoshjahan et al. (2013) who maximize the NPV in a model with 
due dates where cash flows are caused by earliness-tardiness penalties, 
while Nikoofal Sahl Abadi et al. (2018) discount costs caused by 
changes in the resource profile over time.

In some situations, it may be too limiting to consider only a single 
objective, which leads to a multi-objective approach (Slowinski et al., 
1994). There are two main ways to handle multiple optimization 
criteria. A straightforward approach is to combine the criteria within 
one objective function using weights for the criteria, which essen-
tially reduces to a single-objective approach. An example is the model 
of Van Peteghem and Vanhoucke (2015) who combine a resource-
based and a time-based objective by minimizing the sum of resource 
availability costs and tardiness costs. Another way to deal with multiple 
objectives is to determine a set of Pareto-efficient schedules with regard 
to the objectives. An example for this case is Nikoofal Sahl Abadi 
et al. (2018) who consider both the makespan objective and a resource 
leveling objective. Ballestín and Blanco (2015) discuss fundamental 
aspects of multi-objective project scheduling.
Multiple projects. While all models discussed so far are designed for 
scheduling single projects, it is easy to adapt them such that multiple 
projects can be scheduled within one integrated model. In fact, this 
makes sense if different projects utilize the same set of resources. The 
activity networks of the individual project can simply be combined 
into one ‘‘super network’’. Together with the usual constraints of the 
standard RCPSP and possibly release dates for the projects, we ob-
tain the basic resource-constrained multi-project scheduling problem 
(RCMPSP). Common objectives of the RCMPSP are, for example, the 
minimization of the total portfolio makespan (i.e., the duration until 
all activities of all projects are finished), the minimization of the 
average project makespan (which takes the makespans of the individual 
projects into account), and the minimization of the average project 
delay (i.e., the average tardiness of the projects with regard to their 
due dates), see Bredael and Vanhoucke (2023).

The basic RCMPSP as described above is the core of most multi-
project scheduling approaches. Many variations and extensions have 
been employed, including some that are used in single-project models 
as well. Local and global resources are of particular relevance in 
the context of multi-project scheduling. Whereas local resources are 
available only for a specific project, global resources are shared among 
projects. Local and global resources are considered by, e.g., Adhau 
et al. (2013) who further extend this concept by adding transfer times 
that apply when a global resource is moved from the location of one 
project to that of another. Another important feature of some multi-
project problems is the decision which of the projects should be selected 
to be executed. This setting has been tackled by, e.g., Shariatmadari 
et al. (2017). For an in-depth review of variants of the RCMPSP, we 
refer to Gómez Sánchez et al. (2023). Studies of priority rule based 
heuristics and metaheuristics for the basic RCMPSP can be found 
in Browning and Yassine (2010) and Bredael and Vanhoucke (2023), 
respectively. Just as was the case for the single-project RCPSP (cf. 
Section 3), datasets for the multi-project problem have been proposed 
by Homberger (2007), Vázquez et al. (2015), Browning and Yassine 
(2010), Van Eynde and Vanhoucke (2020, 2022a).
Uncertainty. So far we limited ourselves to deterministic settings. But 
real life projects are subject to various sources of uncertainty that affect 
activities (presence, duration, resource requirements, ..) and resources 
(availability, speed...). A large amount of research has been devoted 
since decades to the management of uncertainty in the RCPSP and its 
variants and reviewing this research is beyond the scope of this survey. 
They can be roughly divided in proactive approaches where a baseline 
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schedule is built to hedge against some apriori knowledge on uncer-
tainty and reactive approaches where a reactive policy is designed to 
build or repair the schedule when unexpected events occur. Stochastic 
programming with recourse, chance-constrained programming, Markov 
decision processes, fuzzy optimization and robust discrete optimization 
are the most widely encountered techniques to design such proactive-
reactive methods. For the interested reader we refer to state-of-the-art 
surveys (Demeulemeester & Heerroelen, 2002, 2013; Demeulemeester 
et al., 2010; Herroelen & Leus, 2005; Schwindt et al., 2015; Ulusoy & 
Hazır, 2021).

Naturally, the above summary of extensions and variants of the 
RCPSP is far from complete. Researchers are proposing an ever-inc
reasing number of new features which cannot be presented in more 
detail on a few pages. Nevertheless, we tried to point to some important 
developments. The survey papers cited throughout this section provide 
links to hundreds of papers that are worth exploring. Several RCPSP 
variants have become established standards in their own right. This 
includes the multi-mode RCPSP, the RCPSP with minimal and maximal 
time-lags, the multi-skill RCPSP, the resource availability cost problem, 
the RCPSP with discounted cash flows, and the basic multi-project 
RCPSP. Often, a competitive environment developed, with researchers 
comparing their results for a standardized problem. On the other hand, 
the design of new assumptions, constraints, and objectives beyond 
standard models is an important part of the project scheduling evo-
lution as well. It helps to create features and models which are of 
high practical relevance. In fact, motivating new concepts by actual 
real-world applications is valuable for the scientific community, and, 
therefore, deserves more research attention.

10. Conclusion

This article has provided a unique, but incomplete, overview of the 
research on the challenging problem of resource-constrained project 
scheduling. It was shown that the problem has many theoretical chal-
lenges, but is also interesting for further research from a computational 
point of view. Many mixed integer programming models, branch-and-
bound procedures and recently a growing number of meta-heuristic 
methods have been developed, and therefore much progress has been 
made. Presenting project data in the academic literature was a good 
help to test (and compare) the different algorithms, which ultimately 
led to powerful procedures that can solve projects to near-optimality. 
We also presented software packages dedicated to the RCPSP issued 
from the mentioned research on local search or constraint programming 
but we omitted the integration of the RCPSP algorithms in project 
management software. The production of such software is rapidly 
increasing and reviewing them is out of the scope of this paper. More or 
less recent studies reveal that mainly simple heuristics are included in 
such software (Albayati & Aminbakhsh, 2023; Baumann & Trautmann, 
2015, 2016; Trautmann & Baumann, 2009) illustrating the gap between 
research and practice in project management and scheduling that has 
yet to be closed (Scales, 2020).

Promising avenues of research can be highlighted from this state 
of the art review. About complexity and approximation analyses of 
the RCPSP, further research on parameterized complexity and in par-
ticular on fixed-parameter tractability appears as particularly appeal-
ing as underlined by Ganian et al. (2020). About exact solution ap-
proaches, tremendous progress has been achieved independently by 
mixed-integer linear programming through extended formulations and 
strong valid inequalities on one side and constraint programming/boolea
satisfiability via conflict-directed search, global constraint explanations 
and clause learning on the other side. Reaching a new breakthrough in 
exact approaches potentially needs to join and unify the research on 
MILP, CP, SAT and SMT approaches to design hybrid exact methods, 
e.g. by deriving SAT clauses from strong valid inequalities or vice versa. 
We also underline the importance of empirical project data calibration 
with the rise of data-driven and machine learning approaches. The 
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effective use of machine learning in the RCPCP is still in its infancy 
despite the reported progress, especially in the design of heuristics. 
Beyond the standard deterministic RCPSP, data-driven and machine 
learning approaches will more certainly be of primordial help to deal 
with complex variants and uncertainty.

Yet, despite this impressive progress, the problem is still challeng-
ing for further research. First and foremost, there is the observation 
that large projects still cannot be scheduled very well. Despite strong 
advances in computing power, there are still artificial project instances 
with only 60 activities for which no optimal solution has been found. 
Moreover, as researchers we still do not fully understand why one 
project instance can be solved (to optimality) while another cannot, 
and more research in the search for drivers of the problem complexity 
is certainly welcome. In addition, there is also the observation that 
the RCPSP has many possible extensions. Not only is minimizing the 
makespan a strong simplification (and can be extended to other objec-
tive functions), but the problem can also be made much more realistic 
by adding a variety of other features to the basic formulation of the 
problem (for which several have been mentioned in the article).

Finally, the problem also has many applications outside the domain 
of project management, where the RCPSP can form a basis for solving 
very different problems. Although a project is typically viewed as 
a temporary endeavor, more and more project scheduling concepts 
are being applied to repetitive environments, ranging from scheduling 
patient appointments in hospitals (Riise et al., 2016) and assigning 
aircrafts to gates at airports (Dorndorf et al., 2007) to handling arrivals 
of ships at ports (Hill et al., 2019) and the planning of table tennis com-
petitions (Knust, 2010). This once again underlines the relevance of the 
RCPSP (and variants) and shows that the problem is so multi-faceted 
that the end of the research is not even close.

CRediT authorship contribution statement

Christian Artigues: Writing – original draft, Writing – review & 
editing. Sönke Hartmann: Writing – original draft, Writing – review & 
editing. Mario Vanhoucke: Writing – original draft, Writing – review 
& editing.

Acknowledgments

This work was partially funded by ANITI IA Cluster, Université 
de Toulouse. The authors warmly thank Roger Kameugne for having 
corrected the constraint programming section, as well as Alessandro 
Agnetis, Jean-Charles Billaut and Dvir Shabtay for their advices and 
corrections on complexity analysis and approximation.

References

Adhau, S., Mittal, M., & Mittal, A. (2013). A multi-agent system for decentralized 
multi-project scheduling with resource transfers. International Journal of Production 
Economics, 146(2), 646–661.

Aggoun, A., & Beldiceanu, N. (1993). Extending CHIP in order to solve complex 
scheduling and placement problems. Mathematical and Computer Modelling, 17(7), 
57–73.

Albayati, N. H. F., & Aminbakhsh, S. (2023). Resource allocation capabilities of 
commercial project management software packages for resource leveling and 
resource constrained project scheduling problems: a comparative study. Journal of 
Construction Engineering, Management & Innovation, 6(2), 104–123.

Alvarez-Valdes, R., & Tamarit, J. (1993). The project scheduling polyhedron: Dimen-
sion, facets and lifting theorems. European Journal of Operational Research, 67(2), 
204–220.

Ansótegui, C., Bofill, M., Palahı, M., Suy, J., & Villaret, M. (2011). Satisfiability modulo 
theories: An efficient approach for the resource-constrained project scheduling 
problem. In Proceedings of the 9th symposium on abstraction, reformulation and 
approximation (SARA 2011) (pp. 2–9).

Applegate, D., & Cook, W. (1991). A computational study of the job-shop scheduling 
problem. ORSA Journal on Computing, 3(2), 149–156.

Araujo, J. A., Santos, H. G., Gendron, B., Jena, S. D., Brito, S. S., & Souza, D. S. 
(2020). Strong bounds for resource constrained project scheduling: Preprocessing 
and cutting planes. Computers & Operations Research, 113, Article 104782.

http://refhub.elsevier.com/S0377-2217(25)00221-8/sb1
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb1
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb1
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb1
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb1
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb2
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb2
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb2
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb2
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb2
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb3
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb3
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb3
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb3
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb3
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb3
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb3
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb4
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb4
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb4
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb4
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb4
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb5
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb5
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb5
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb5
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb5
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb5
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb5
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb6
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb6
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb6
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb7
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb7
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb7
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb7
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb7


C. Artigues et al. European Journal of Operational Research xxx (xxxx) xxx 
Arkhipov, D., Battaïa, O., & Lazarev, A. (2019). An efficient pseudo-polynomial 
algorithm for finding a lower bound on the makespan for the resource constrained 
project scheduling problem. European Journal of Operational Research, 275(1), 
35–44.

Artigues, C. (2008). The resource-constrained project scheduling problem00. Resource-
Constrained Project Scheduling: Models, Algorithms, Extensions and Applications, 
21–35.

Artigues, C. (2017). On the strength of time-indexed formulations for the resource-
constrained project scheduling problem. Operations Research Letters, 45(2), 
154–159.

Artigues, C., Demassey, S., & Neron, E. (2013). Resource-constrained project scheduling: 
models, algorithms, extensions and applications. John Wiley & Sons.

Artigues, C., Koné, O., Lopez, P., & Mongeau, M. (2015). Mixed-integer linear program-
ming formulations. In C. Schwindt, J. Zimmermann, & et al. (Eds.), Handbook on 
project management and scheduling vol. 1 (pp. 17–41). Springer, 

Artigues, C., Michelon, P., & Reusser, S. (2003). Insertion techniques for static and 
dynamic resource-constrained project scheduling. European Journal of Operational 
Research, 149(2), 249–267.

Artigues, C., & Roubellat, F. (2000). A polynomial activity insertion algorithm in a 
multi-resource schedule with cumulative constraints and multiple modes. European 
Journal of Operational Research, 127(2), 297–316.

Balas, E. (1969). Machine sequencing via disjunctive graphs: an implicit enumeration 
algorithm. Operations Research, 17(6), 941–957.

Ballestín, F., & Blanco, R. (2015). Theoretical and practical fundamentals. In 
C. Schwindt, & J. Zimmermann (Eds.), Handbook on project management and 
scheduling vol. 1 (pp. 411–427). Springer.

Baptiste, P., & Bonifas, N. (2018). Redundant cumulative constraints to compute 
preemptive bounds. Discrete Applied Mathematics, 234, 168–177.

Baptiste, P., & Demassey, S. (2004). Tight LP bounds for resource constrained project 
scheduling. Or Spectrum, 26, 251–262.

Baptiste, P., Le Pape, C., & Nuijten, W. (1999). Satisfiability tests and time-bound 
adjustmentsfor cumulative scheduling problems. Annals of Operations Research, 92, 
305–333.

Baptiste, P., Le Pape, C., & Nuijten, W. (2001). vol. 39, Constraint-based scheduling: 
applying constraint programming to scheduling problems. Springer Science & Business 
Media.

Baptiste, P., & Pape, C. L. (2000). Constraint propagation and decomposition tech-
niques for highly disjunctive and highly cumulative project scheduling problems. 
Constraints, 5(1–2), 119–139.

Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks 
with resource constraints and time windows. Annals of Operations Research, 16, 
201–240.

Batselier, J., & Vanhoucke, M. (2015). Construction and evaluation framework for a 
real-life project database. International Journal of Project Management, 33, 697–710.

Baumann, P., & Trautmann, N. (2015). Resource-constrained project scheduling with 
project management information systems. Handbook on Project Management and 
Scheduling Vol. 2, 1385–1400.

Baumann, P., & Trautmann, N. (2016). A note on the selection of priority rules 
in software packages for project management. Flexible Services and Manufacturing 
Journal, 28, 694–702.

der Beek, T. V., Souravlias, D., van Essen, J., Pruyn, J., & Aardal, K. (2024). Hybrid 
differential evolution algorithm for the resource constrained project scheduling 
problem with a flexible project structure and consumption and production of 
resources. European Journal of Operational Research, 313(1), 92–111.

Beldiceanu, N., Bourreau, E., Rivreau, D., & Simonis, H. (1996). Solving resource-
constrained project scheduling problems with CHIP. In Fifth international workshop 
on project management and scheduling, poznan, Poland.

Bell, C. E., & Park, K. (1990). Solving resource-constrained project scheduling problems 
by a* search. Naval Research Logistics, 37(1), 61–84.

Berthold, T., Heinz, S., Lübbecke, M. E., Möhring, R. H., & Schulz, J. (2010). A con-
straint integer programming approach for resource-constrained project scheduling. 
In Integration of AI and OR techniques in constraint programming for combinatorial 
optimization problems: 7th international conference, cPAIOR 2010, bologna, Italy, June 
14-18, 2010. proceedings 7 (pp. 313–317). Springer.

Bianco, L., & Caramia, M. (2011). Minimizing the completion time of a project under 
resource constraints and feeding precedence relations: a Lagrangian relaxation 
based lower bound. 4OR. A Quarterly Journal of Operations Research, 9(4), 371–389.

Blaise, L., Artigues, C., & Benoist, T. (2020). Solution repair by inequality network 
propagation in LocalSolver. In Parallel problem solving from nature–PPSN XVI: 16th 
international conference, PPSN 2020, leiden, the netherlands, September 5-9, 2020, 
proceedings, part i 16 (pp. 332–345). Springer.

Blazewicz, J., & Ecker, K. (1983). A linear time algorithm for restricted bin packing 
and scheduling problems. Operations Research Letters, 2(2), 80–83.

Blazewicz, J., & Kubiak, W. (1989). Scheduling independent fixed-type tasks. In 
R. Slowinski, & J. Weglarz (Eds.), Advances in project scheduling (pp. 225–236). 
Elsevier.

Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource 
constraints: classification and complexity. Discrete Applied Mathematics, 5(1), 11–24.

Boctor, F. F. (1996). An adaptation of the simulated annealing algorithm for solving 
resource-constrained project scheduling problems. International Journal of Production 
Research, 34, 2335–2351.
19 
Bofill, M., Coll, J., Suy, J., & Villaret, M. (2020). SMT encodings for resource-
constrained project scheduling problems. Computers & Industrial Engineering, 149, 
Article 106777.

Bonifas, N. (2017). Geometric and dual approaches to cumulative scheduling (Ph.D. thesis), 
Université Paris-Saclay.

Boussemart, F., Hemery, F., Lecoutre, C., & Sais, L. (2004). Boosting systematic search 
by weighting constraints. 16, In ECAI (p. 146).

Bredael, D., & Vanhoucke, M. (2023). Multi-project scheduling: A benchmark analysis of 
metaheuristic algorithms on various optimisation criteria and due dates. European 
Journal of Operational Research, 308(1), 54–75.

Browning, T. R., & Yassine, A. A. (2010). Resource-constrained multi-project scheduling: 
Priority rule performance revisited. International Journal of Production Economics, 
126(2), 212–228.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-
constrained project scheduling: Notation, classification, models, and methods. 
European Journal of Operational Research, 112(1), 3–41.

Brucker, P., & Knust, S. (2000a). A linear programming and constraint propagation-
based lower bound for the RCPSP. European Journal of Operational Research, 127(2), 
355–362.

Brucker, P., & Knust, S. (2000b). Resource-constrained project scheduling and 
timetabling. In International conference on the practice and theory of automated 
timetabling (pp. 277–293). Springer.

Brucker, P., & Knust, S. (2003). Lower bounds for resource-constrained project 
scheduling problems. European Journal of Operational Research, 149(2), 302–313.

Brucker, P., & Knust, S. (2012). Complex scheduling. Springer Verlag.
Brucker, P., Knust, S., Schoo, A., & Thiele, O. (1998a). A branch and bound algorithm 

for the resource-constrained project scheduling problem. European Journal of 
Operational Research, 107(2), 272–288.

Brucker, P., Knust, S., Schoo, A., & Thiele, O. (1998b). A branch and bound algorithm 
for the resource-constrained project scheduling problem. European Journal of 
Operational Research, 107, 272–288.

Brucker, P., & Krämer, A. (1996). Polynomial algorithms for resource-constrained and 
multiprocessor task scheduling problems. European Journal of Operational Research, 
90(2), 214–226.

Carlier, J., Jouglet, A., & Sahli, A. (2023). Algorithms to compute the energetic lower 
bounds of the cumulative scheduling problem. Annals of Operations Research, 1–31.

Carlier, J., & Latapie, B. (1991). Une méthode arborescente pour résoudre les problèmes 
cumulatifs. RAIRO-Operations Research, 25(3), 311–340.

Carlier, J., & Néron, E. (2000). A new LP-based lower bound for the cumulative 
scheduling problem. European Journal of Operational Research, 127(2), 363–382.

Carlier, J., & Néron, E. (2003). On linear lower bounds for the resource constrained 
project scheduling problem. European Journal of Operational Research, 149(2), 
314–324.

Carlier, J., & Néron, E. (2007). Computing redundant resources for the resource 
constrained project scheduling problem. European Journal of Operational Research, 
176(3), 1452–1463.

Carlier, J., & Pinson, É. (1989). An algorithm for solving the job-shop problem. 
Management Science, 35(2), 164–176.

Carlier, J., & Pinson, E. (2004). Jackson’s pseudo-preemptive schedule and cumulative 
scheduling problems. Discrete Applied Mathematics, 145(1), 80–94.

Carlier, J., Pinson, E., Sahli, A., & Jouglet, A. (2020). An 𝑂(𝑛2) algorithm for time-bound 
adjustments for the cumulative scheduling problem. European Journal of Operational 
Research, 286(2), 468–476.

Carlier, J., Sahli, A., Jouglet, A., & Pinson, E. (2022). A faster checker of the energetic 
reasoning for the cumulative scheduling problem. International Journal of Production 
Research, 60(11), 3419–3434.

Caseau, Y., & Laburthe, F. (1996). Cumulative scheduling with task intervals. 96, In 
JICSLP (pp. 369–383). Citeseer.

Cavalcante, C., de Souza, C. C., Savelsbergh, M., Wang, Y., & Wolsey, L. (2001). 
Scheduling projects with labor constraints. Discrete Applied Mathematics, 112(1–3), 
27–52.

Christofides, N., Alvarez-Valdés, R., & Tamarit, J. M. (1987). Project scheduling with 
resource constraints: A branch and bound approach. European Journal of Operational 
Research, 29(3), 262–273.

Chtourou, H., & Haouari, M. (2008). A two-stage-priority-rule-based algorithm for 
robust resource-constrained project scheduling. Computers & Industrial Engineering, 
55(1), 183–194.

Chu, G., Stuckey, P. J., Schutt, A., Ehlers, T., Gange, G., & Francis, K. (2018). Chuffed, 
a lazy clause generation solver. https://github.com/chuffed/chuffed.

Coelho, J., & Vanhoucke, M. (2018). An exact composite lower bound strategy for 
the resource-constrained project scheduling problem. Computers and Operations 
Research, 93, 135–150.

Coelho, J., & Vanhoucke, M. (2020). Going to the core of hard resource-constrained 
project scheduling instances. Computers and Operations Research, 121, Article 
104976.

Coelho, J., & Vanhoucke, M. (2023). New resource-constrained project scheduling in-
stances for testing (meta-)heuristic scheduling algorithms. Computers and Operations 
Research, 153, Article 106165.

Coffman, E. G., Csirik, J., Galambos, G., Martello, S., Vigo, D., et al. (2013). Bin packing 
approximation algorithms: Survey and classification. In Handbook of combinatorial 
optimization (pp. 455–531). Springer.

http://refhub.elsevier.com/S0377-2217(25)00221-8/sb8
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb8
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb8
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb8
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb8
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb8
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb8
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb9
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb9
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb9
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb9
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb9
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb10
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb10
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb10
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb10
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb10
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb11
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb11
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb11
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb12
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb12
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb12
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb12
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb12
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb13
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb13
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb13
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb13
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb13
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb14
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb14
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb14
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb14
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb14
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb15
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb15
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb15
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb16
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb16
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb16
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb16
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb16
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb17
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb17
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb17
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb18
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb18
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb18
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb19
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb19
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb19
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb19
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb19
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb20
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb20
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb20
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb20
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb20
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb21
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb21
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb21
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb21
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb21
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb22
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb22
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb22
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb22
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb22
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb23
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb23
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb23
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb24
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb24
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb24
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb24
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb24
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb25
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb25
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb25
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb25
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb25
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb26
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb26
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb26
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb26
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb26
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb26
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb26
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb27
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb27
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb27
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb27
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb27
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb28
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb28
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb28
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb29
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb29
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb29
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb29
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb29
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb29
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb29
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb29
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb29
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb30
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb30
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb30
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb30
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb30
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb31
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb31
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb31
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb31
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb31
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb31
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb31
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb32
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb32
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb32
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb33
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb33
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb33
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb33
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb33
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb34
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb34
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb34
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb35
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb35
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb35
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb35
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb35
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb36
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb36
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb36
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb36
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb36
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb37
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb37
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb37
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb38
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb38
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb38
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb39
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb39
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb39
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb39
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb39
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb40
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb40
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb40
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb40
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb40
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb41
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb41
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb41
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb41
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb41
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb42
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb42
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb42
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb42
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb42
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb43
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb43
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb43
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb43
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb43
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb44
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb44
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb44
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb45
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb46
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb46
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb46
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb46
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb46
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb47
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb47
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb47
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb47
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb47
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb48
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb48
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb48
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb48
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb48
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb49
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb49
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb49
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb50
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb50
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb50
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb51
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb51
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb51
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb52
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb52
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb52
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb52
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb52
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb53
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb53
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb53
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb53
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb53
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb54
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb54
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb54
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb55
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb55
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb55
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb56
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb56
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb56
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb56
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb56
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb57
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb57
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb57
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb57
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb57
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb58
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb58
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb58
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb59
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb59
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb59
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb59
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb59
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb60
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb60
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb60
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb60
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb60
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb61
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb61
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb61
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb61
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb61
https://github.com/chuffed/chuffed
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb63
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb63
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb63
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb63
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb63
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb64
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb64
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb64
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb64
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb64
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb65
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb65
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb65
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb65
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb65
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb66
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb66
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb66
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb66
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb66


C. Artigues et al. European Journal of Operational Research xxx (xxxx) xxx 
Colin, J., & Vanhoucke, M. (2016). Empirical perspective on activity durations for 
project management simulation studies. Journal of Construction Engineering and 
Management, 142(1), Article 04015047.

Dauzère-Pérès, S., & Lasserre, J. (1995). A new mixed-integer formulation of the flow-
shop sequencing problem. In 2nd workshop on models and algorithms for planning 
and scheduling problems, wernigerode, allemagne.

Davis, E. W. (1966). Resource allocation in project network models-a survey. Journal 
of Industrial Engineering, 17(4), 177.

De Reyck, B., & Herroelen, W. (1995). Assembly line balancing by resource-constrained 
proect scheduling techniques: a critical approach. DTEW Research Report 09505, 
1–32.

de Souza, C., & Wolsey, L. (1997). Scheduling projects with labour constraints: Technical 
Report, (IC-97-22), UNICAMP.

Debels, D., Reyck, B. D., Leus, R., & Vanhoucke, M. (2006). A hybrid scatter search 
/ electromagnetism meta-heuristic for project scheduling. European Journal of 
Operational Research, 169(2), 638–653.

Debels, D., & Vanhoucke, M. (2007). A decomposition-based genetic algorithm for 
the resource-constrained project scheduling problems. Operations Research, 55, 
457–469.

Demassey, S. (2013). Mathematical programming formulations and lower bounds. In 
C. Artigues, S. Demassey, & E. Neron (Eds.), Resource-constrained project scheduling: 
models, algorithms, extensions and applications (pp. 49–62). John Wiley & Sons.

Demassey, S., Artigues, C., Baptiste, P., & Michelon, P. (2004). Lagrangean 
relaxation-based lower bounds for the RCPSP. In Proceedings of PMS 2004 (pp. 
76–79).

Demassey, S., Artigues, C., & Michelon, P. (2005). Constraint-propagation-based cutting 
planes: An application to the resource-constrained project scheduling problem. 
INFORMS Journal on Computing, 17(1), 52–65.

Demeulemeester, E., & Heerroelen, W. (2002). Stochastic project scheduling. In F. 
S. Hillier (Ed.), Project scheduling: a research handbook (pp. 535–591). Boston, MA: 
Springer US, http://dx.doi.org/10.1007/0-306-48142-1_9.

Demeulemeester, E., & Heerroelen, W. (2013). Proactive-reactive project scheduling. In 
C. Artigues, S. Demassey, & E. Neron (Eds.), Resource-constrained project scheduling: 
models, algorithms, extensions and applications (pp. 203–211). John Wiley & Sons.

Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound procedure for the 
multiple resource-constrained project scheduling problem. Management Science, 38, 
1803–1818.

Demeulemeester, E., & Herroelen, W. (1997a). New benchmark results for 
the resource-constrained project scheduling problem. Management Science, 43, 
1485–1492.

Demeulemeester, E. L., & Herroelen, W. S. (1997b). New benchmark results for 
the resource-constrained project scheduling problem. Management Science, 43(11), 
1485–1492.

Demeulemeester, E. L., & Herroelen, W. S. (2006). vol. 49, Project scheduling: a research 
handbook. Springer Science & Business Media.

Demeulemeester, E., Herroelen, W., et al. (2010). Robust project scheduling. Founda-
tions and Trends® in Technology, Information and Operations Management, 3(3–4), 
201–376.

Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). RanGen: A random 
network generator for activity-on-the-node networks. Journal of Scheduling, 6, 
17–38.

Derrien, A., & Petit, T. (2014). A new characterization of relevant intervals for energetic 
reasoning. In Principles and practice of constraint programming: 20th international 
conference, CP 2014, lyon, France, September 8-12, 2014. proceedings 20 (pp. 
289–297). Springer.

Dike, S. H. (1964). Project scheduling with resource constraints. IEEE Transactions on 
Engineering Management, EM-11(4), 155–157.

Dorndorf, U. (2002). Project scheduling with time windows: from theory to applications. 
Springer Science & Business Media.

Dorndorf, U., Drexl, A., Nikulin, Y., & Pesch, E. (2007). Flight gate scheduling: 
State-of-the-art and recent developments. Omega, 35(3), 326–334.

Dorndorf, U., Pesch, E., & Phan-Huy, T. (2000a). A branch-and-bound algorithm 
for the resource-constrained project scheduling problem. Mathematical Methods of 
Operations Research, 52(3), 413–439.

Dorndorf, U., Pesch, E., & Phan-Huy, T. (2000b). Constraint propagation techniques for 
the disjunctive scheduling problem. Artificial Intelligence, 122(1–2), 189–240.

Dorndorf, U., Pesch, E., & Phan-Huy, T. (2000c). A time-oriented branch-and-bound 
algorithm for resource-constrained project scheduling with generalised precedence 
constraints. Management Science, 46(10), 1365–1384.

Downey, R. G., & Fellows, M. R. (2012). Parameterized complexity. Springer Science & 
Business Media.

Dumic, M., & Jakobovic, D. (2021). Ensembles of priority rules for resource constrained 
project scheduling problem. Applied Soft Computing, 110, Article 107606.

Dürr, C. (2023). The scheduling zoo project. GitHub repository, https://github.com/
xtof-durr/schedulingzoo/wiki/The-Scheduling-Zoo-project.

Edis, E. B., Oguz, C., & Ozkarahan, I. (2013). Parallel machine scheduling with ad-
ditional resources: Notation, classification, models and solution methods. European 
Journal of Operational Research, 230(3), 449–463.

Elmaghraby, S. E. (1977). Activity networks: Project planning and control by network 
models. Wiley, New York.
20 
Elmaghraby, S., & Herroelen, W. (1980). On the measurement of complexity in activity 
networks. European Journal of Operational Research, 5, 223–234.

Erschler, J. (1976). Analyse sous contraintes et aide à la décision pour certains problèmes 
d’ordonnancement (Ph.D. thesis), (Thèse de docteur d’état) Université Paul Sabatier, 
Toulouse.

Erschler, J., Fontan, G., & Roubellat, F. (1979). Potentiels sur un graphe non conjonctif 
et analyse d’un problème d’ordonnancement à moyens limités. RAIRO-Operations 
Research, 13(4), 363–378.

Even, C., Schutt, A., & Van Hentenryck, P. (2015). A constraint programming approach 
for non-preemptive evacuation scheduling. In International conference on principles 
and practice of constraint programming (pp. 574–591). Springer.

Fahimi, H., Ouellet, Y., & Quimper, C.-G. (2018). Linear-time filtering algorithms for 
the disjunctive constraint and a quadratic filtering algorithm for the cumulative 
not-first not-last. Constraints, 23, 272–293.

Fahimi, H., & Quimper, C.-G. (2014). Linear-time filtering algorithms for the disjunctive 
constraint. 28, In Proceedings of the AAAI conference on artificial intelligence.

Feydy, T., & Stuckey, P. J. (2009). Lazy clause generation reengineered. In International 
conference on principles and practice of constraint programming (pp. 352–366). 
Springer.

Fortemps, P., & Hapke, M. (1997). On the disjunctive graph for project scheduling. 
Foundations of Computing and Decision Sciences, 22, 195–209.

Fu, F. (2014). Integrated scheduling and batch ordering for construction project. Applied 
Mathematical Modelling, 38(2), 784–797.

Fündeling, C.-U., & Trautmann, N. (2010). A priority-rule method for project scheduling 
with work-content constraints. European Journal of Operational Research, 203(3), 
568–574.

Gafarov, E. R., Lazarev, A. A., & Werner, F. (2014). Approximability results for the 
resource-constrained project scheduling problem with a single type of resources. 
Annals of Operations Research, 213(1), 115–130.

Ganian, R., Hamm, T., & Mescoff, G. (2020). The complexity landscape of resource-
constrained scheduling. In C. Bessiere (Ed.), Proceedings of the twenty-ninth 
international joint conference on artificial intelligence, IJCAI-20 (pp. 1741–1747).

Garey, M. R., & Graham, R. L. (1975). Bounds for multiprocessor scheduling with 
resource constraints. SIAM Journal on Computing, 4(2), 187–200.

Garey, M. R., & Johnson, D. S. (1975). Complexity results for multiprocessor scheduling 
under resource constraints. SIAM Journal on Computing, 4(4), 397–411.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory 
of NP-completeness. Freeman.

Gay, S., Hartert, R., & Schaus, P. (2015). Simple and scalable time-table filtering 
for the cumulative constraint. In Principles and practice of constraint programming: 
21st international conference, CP 2015, cork, Ireland, August 31–September 4, 2015, 
proceedings 21 (pp. 149–157). Springer.

Gingras, V., & Quimper, C.-G. (2016). Generalizing the edge-finder rule for the 
cumulative constraint. In IJCAI (pp. 3103–3109).

Goldratt, E. M. (2017). Critical chain: A business novel. Routledge.
Gómez Sánchez, M., Lalla-Ruiz, E., Gil, A. F., Castro, C., & Voß, S. (2023). Resource-

constrained multi-project scheduling problem: A survey. European Journal of 
Operational Research, 309(3), 958–976.

Goyal, D. (1976). Scheduling equal execution time tasks under unit resource restriction 
(Ph.D. thesis), Washington State University.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. (1979). Optimization 
and approximation in deterministic sequencing and scheduling: a survey. vol. 5, In 
Annals of discrete mathematics (pp. 287–326). Elsevier.

Grimes, D., & Hebrard, E. (2015). Solving variants of the job shop scheduling problem 
through conflict-directed search. INFORMS Journal on Computing, 27(2), 268–284.

Guo, W., Vanhoucke, M., & Coelho, J. (2023). A prediction model for ranking branch-
and-bound procedures for the resource-constrained project scheduling problem. 
European Journal of Operational Research, 306, 579–595.

Guo, W., Vanhoucke, M., Coelho, J., & Luo, J. (2021). Automatic detection of the best 
performing priority rule for the resource-constrained project scheduling problem. 
Expert Systems with Applications, 167, Article 114116.

Haouari, M., Koolu, A., Néron, E., & Carlier, J. (2014). A preemptive bound for 
the resource constrained project scheduling problem. Journal of Scheduling, 17, 
237–248.

Hardin, J. R., Nemhauser, G. L., & Savelsbergh, M. W. (2008). Strong valid in-
equalities for the resource-constrained scheduling problem with uniform resource 
requirements. Discrete Optimization, 5(1), 19–35.

Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project 
scheduling. Naval Research Logistics, 45, 733–750.

Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling under 
resource constraints. Naval Research Logistics, 49, 433–448.

Hartmann, S. (2013). Project scheduling with resource capacities and requests varying 
with time: A case study. Flexible Services and Manufacturing Journal, 25(1), 74–93.

Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the 
resource-constrained project scheduling problem. European Journal of Operational 
Research, 207, 1–14.

Hartmann, S., & Briskorn, D. (2022). An updated survey of variants and exten-
sions of the resource-constrained project scheduling problem. European Journal of 
Operational Research, 297(1), 1–14.

http://refhub.elsevier.com/S0377-2217(25)00221-8/sb67
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb67
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb67
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb67
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb67
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb68
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb68
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb68
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb68
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb68
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb69
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb69
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb69
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb70
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb70
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb70
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb70
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb70
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb71
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb71
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb71
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb72
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb72
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb72
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb72
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb72
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb73
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb73
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb73
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb73
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb73
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb74
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb74
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb74
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb74
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb74
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb75
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb75
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb75
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb75
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb75
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb76
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb76
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb76
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb76
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb76
http://dx.doi.org/10.1007/0-306-48142-1_9
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb78
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb78
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb78
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb78
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb78
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb79
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb79
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb79
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb79
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb79
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb80
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb80
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb80
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb80
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb80
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb81
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb81
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb81
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb81
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb81
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb82
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb82
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb82
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb83
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb83
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb83
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb83
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb83
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb84
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb84
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb84
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb84
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb84
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb85
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb85
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb85
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb85
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb85
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb85
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb85
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb86
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb86
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb86
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb87
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb87
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb87
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb88
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb88
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb88
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb89
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb89
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb89
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb89
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb89
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb90
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb90
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb90
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb91
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb91
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb91
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb91
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb91
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb92
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb92
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb92
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb93
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb93
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb93
https://github.com/xtof-durr/schedulingzoo/wiki/The-Scheduling-Zoo-project
https://github.com/xtof-durr/schedulingzoo/wiki/The-Scheduling-Zoo-project
https://github.com/xtof-durr/schedulingzoo/wiki/The-Scheduling-Zoo-project
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb95
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb95
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb95
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb95
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb95
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb96
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb96
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb96
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb97
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb97
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb97
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb98
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb98
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb98
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb98
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb98
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb99
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb99
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb99
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb99
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb99
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb100
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb100
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb100
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb100
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb100
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb101
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb101
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb101
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb101
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb101
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb102
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb102
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb102
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb103
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb103
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb103
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb103
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb103
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb104
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb104
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb104
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb105
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb105
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb105
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb106
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb106
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb106
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb106
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb106
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb107
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb107
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb107
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb107
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb107
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb108
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb108
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb108
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb108
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb108
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb109
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb109
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb109
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb110
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb110
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb110
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb111
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb111
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb111
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb112
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb112
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb112
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb112
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb112
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb112
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb112
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb113
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb113
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb113
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb114
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb115
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb115
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb115
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb115
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb115
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb116
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb116
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb116
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb117
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb117
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb117
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb117
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb117
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb118
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb118
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb118
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb119
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb119
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb119
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb119
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb119
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb120
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb120
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb120
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb120
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb120
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb121
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb121
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb121
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb121
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb121
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb122
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb122
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb122
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb122
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb122
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb123
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb123
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb123
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb124
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb124
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb124
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb125
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb125
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb125
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb126
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb126
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb126
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb126
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb126
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb127
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb127
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb127
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb127
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb127


C. Artigues et al. European Journal of Operational Research xxx (xxxx) xxx 
Hartmann, S., & Drexl, A. (1998). Project scheduling with multiple modes: A 
comparison of exact algorithms. Networks, 32, 283–297.

Hartmann, S., & Kolisch, R. (2000). Experimental evaluation of state-of-the-art heuristics 
for the resource-constrained project scheduling problem. European Journal of 
Operational Research, 127(2), 394–407.

Hebrard, E. (2017). Resource constraints in scheduling. Association for Constraint 
Programming (ACP) summer school, https://homepages.laas.fr/ehebrard/papers/
lecture2017.pdf.

Heinz, V., Hanzálek, Z., & Vilím, P. (2024). Reinforcement learning for search tree size 
minimization in constraint programming: New results on scheduling benchmarks. 
Available At SSRN 4938242.

Herroelen, W. S. (1972). Resource-constrained project scheduling—the state of the art. 
Journal of the Operational Research Society, 23(3), 261–275.

Herroelen, W., & De Reyck, B. (1999). Phase transitions in project scheduling. Journal 
of the Operational Research Society, 50, 148–156.

Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-constrained 
project scheduling: A survey of recent developments. Computers & Operations 
Research, 25(4), 279–302.

Herroelen, W., Demeulemeester, E., & De Reyck, B. (1999). A classification scheme for 
project scheduling problems. In J. Weglarz (Ed.), Project scheduling - recent models, 
algorithms and applications (pp. 1–26). Dortrecht, Kluwer Academic Publishers.

Herroelen, W., Demeulemeester, E., & De Reyck, B. (2001). A note on the pa-
per ‘‘resource-constrained project scheduling: Notation, classification, models and 
methods’’ by brucker et al.. European Journal of Operational Research, 128(3), 
679–688.

Herroelen, W., & Leus, R. (2001). On the merits and pitfalls of critical chain scheduling. 
Journal of Operations Management, 19(5), 559–577.

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and 
research potentials. European Journal of Operational Research, 165(2), 289–306.

Hill, A., Lalla-Ruiz, E., Voß, S., & Goycoolea, M. (2019). A multi-mode resource-
constrained project scheduling reformulation for the waterway ship scheduling 
problem. Journal of Scheduling, 22, 173–182.

van Hoeve, W.-J., & Katriel, I. (2006). Global constraints. In F. Rossi, P. van Beek, & 
T. Walsh (Eds.), Handbook of Constraint Programming, 205.

Homberger, J. (2007). A multi-agent system for the decentralized resource-constrained 
multi-project scheduling problem. International Transactions in Operational Research, 
14(6), 565–589.

Horbach, A. (2010). A boolean satisfiability approach to the resource-constrained 
project scheduling problem. Annals of Operations Research, 181, 89–107.

Icmeli, O., Selcuk Erenguc, S., & Zappe, C. J. (1993). Project scheduling problems: a 
survey. International Journal of Operations & Production Management, 13(11), 80–91.

Kameugne, R., Betmbe, S. F., Noulamo, T., & Djamegni, C. T. (2023). Horizontally 
elastic edge finder rule for cumulative constraint based on slack and density. In 
29th international conference on principles and practice of constraint programming (CP 
2023). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Kameugne, R., Betmbe Fetgo, S., Gingras, V., Ouellet, Y., & Quimper, C.-G. (2018). 
Horizontally elastic not-first/not-last filtering algorithm for cumulative resource 
constraint. In International conference on the integration of constraint programming, 
artificial intelligence, and operations research (pp. 316–332). Springer.

Kameugne, R., Fetgo, S. B., Fotso, L. P., et al. (2013). Energetic extended edge 
finding filtering algorithm for cumulative resource constraints. American Journal 
of Operations Research, 3(06), 589.

Kameugne, R., & Fotso, L. P. (2010). A complete filtering algorithm for cumulative 
not-first/not-last rule in O (n 2| H| log n). Proceeding of CSCLP, 31–42.

Kameugne, R., & Fotso, L. P. (2013). A cumulative not-first/not-last filtering algorithm 
in O (n 2 log (n)). Indian Journal of Pure and Applied Mathematics, 44, 95–115.

Kameugne, R., Fotso, L. P., Scott, J., & Ngo-Kateu, Y. (2014). A quadratic edge-finding 
filtering algorithm for cumulative resource constraints. Constraints, 19, 243–269.

Kelley, J. (1963). The critical path method: resources planning and scheduling. In 
J. F. Muth, & G. L. Thompson (Eds.), Industrial scheduling. Englewood Cliffs: 
Prentice-Hall.

Kelley Jr, J. E., & Walker, M. R. (1959). Critical-path planning and scheduling. In Papers 
presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer conference 
(pp. 160–173).

Khoshjahan, Y., Najafi, A. A., & Afshar-Nadjafi, B. (2013). Resource constrained project 
scheduling problem with discounted earliness–tardiness penalties: Mathematical 
modeling and solving procedure. Computers & Industrial Engineering, 66(2), 293–300.

Klein, R., & Scholl, A. (1999). Computing lower bounds by destructive improvement: 
An application to resource-constrained project scheduling. European Journal of 
Operational Research, 112(2), 322–346.

Knust, S. (2010). Scheduling non-professional table-tennis leagues. European Journal of 
Operational Research, 200(2), 358–367.

Knust, S. (2015). Lower bounds on the minimum project duration. Handbook on Project 
Management and Scheduling Vol. 1, 43–55.

Kobylanski, P., & Kuchta, D. (2007). A note on the paper by M.A. Al-Fawzan and 
M. Haouari about a bi-objective problem for robust resource-constrained project 
scheduling. International Journal of Production Economics, 107, 496–501.

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling methods 
revisited: Theory and computation. European Journal of Operational Research, 90, 
320–333.
21 
Kolisch, R. (2015). Shifts, types, and generation schemes for project schedules. 
Handbook on Project Management and Scheduling Vol. 1, 3–16.

Kolisch, R., & Drexl, A. (1997). Local search for nonpreemptive multi-mode 
resource-constrained project scheduling. IIE Transactions, 29, 987–999.

Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for 
resource-constrained project scheduling: An update. European Journal of Operational 
Research, 174(1), 23–37.

Kolisch, R., & Padman, R. (2001). An integrated survey of deterministic project 
scheduling. Omega, 29(3), 249–272.

Kolisch, R., & Sprecher, A. (1996). PSPLIB - a project scheduling problem library. 
European Journal of Operational Research, 96, 205–216.

Kolisch, R., & Sprecher, A. (1997). PSPLIB – a project scheduling problem library: 
OR software – ORSEP operations research software exchange program. European 
Journal of Operational Research, 96(1), 205–216.

Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation of 
a general class of resource-constrained project scheduling problems. Management 
Science, 41, 1693–1703.

Koné, O., Artigues, C., Lopez, P., & Mongeau, M. (2011). Event-based MILP models for 
resource-constrained project scheduling problems. Computers & Operations Research, 
38(1), 3–13.

Kovalyov, M. Y., & Shafransky, Y. M. (1998). Uniform machine scheduling of unit-time 
jobs subject to resource constraints. Discrete Applied Mathematics, 84(1–3), 253–257.

Krause, K. L., Shen, V. Y., & Schwetman, H. D. (1975). Analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems. Journal 
of the ACM, 22(4), 522–550.

Krüger, D., & Scholl, A. (2010). Managing and modelling general resource transfers in 
(multi-) project scheduling. OR Spectrum, 32, 369–394.

Laborie, P. (2003). Algorithms for propagating resource constraints in AI planning 
and scheduling: Existing approaches and new results. Artificial Intelligence, 143(2), 
151–188.

Laborie, P. (2005). Complete MCS-based search: Application to resource constrained 
project scheduling. In IJCAI (pp. 181–186). Citeseer.

Laborie, P. (2023). Bornes rapides pour l’ordonnancement dans LocalSolver. In 24ème 
congrès de la Société Française de Recherche Opérationnelle et d’Aide à la Décision.

Lahrichi, A. (1982). Ordonnancements. La notion de ‘‘parties obligatoires’’ et son 
application aux problèmes cumulatifs. RAIRO-Operations Research, 16(3), 241–262.

Lasserre, J. B., & Queyranne, M. (1992). Generic scheduling polyhedra and a new 
mixed-integer formulation for single-machine scheduling. In d. G. C. E. Balas a, & 
R. Kannan (Eds.), Integer programming and combinatorial optimization – proceedings 
of the 2nd international IPCO conference (pp. 136–149).

Le Pape, C. (1994). Implementation of resource constraints in ILOG schedule: A library 
for the development of constraint-based scheduling systems. Intelligent Systems 
Engineering, 3(2), 55–66.

Le Pape, C. (1995). Three mechanisms for managing resource constraints in a library 
for constraint-based scheduling. 1, In Proceedings 1995 INRIA/IEEE symposium on 
emerging technologies and factory automation. eTFA’95 (pp. 281–289). IEEE.

Le Pape, C., Couronne, P., Vergamini, D., & Gosselin, V. (1994). Time-versus-capacity 
compromises in projectscheduling. In Proceedings of the thirteenth workshop of the 
U.k. planning special interest group.

Lenstra, J. K., & Rinnooy Kan, A. (1978). Complexity of scheduling under precedence 
constraints. Operations Research, 26(1), 22–35.

Letort, A., Beldiceanu, N., & Carlsson, M. (2012). A scalable sweep algorithm for 
the cumulative constraint. In International conference on principles and practice of 
constraint programming (pp. 439–454). Springer.

Leyman, P., & Vanhoucke, M. (2017). Capital- and resource-constrained project schedul-
ing with net present value optimization. European Journal of Operational Research, 
256(3), 757–776.

Liess, O., & Michelon, P. (2008). A constraint programming approach for the resource-
constrained project scheduling problem. Annals of Operations Research, 157(1), 
25–36.

Lopez, P. (1991). Approche énergétique pour l’ordonnancement de tâches sous contraintes 
de temps et de ressources (Ph.D. thesis), Université Paul Sabatier - Toulouse III.

Lozano, R. C., & Schulte, C. (2019). Survey on combinatorial register allocation and 
instruction scheduling. ACM Computing Surveys, 52(3), 1–50.

Luo, J., Vanhoucke, M., Coelho, J., & Guo, W. (2022). An efficient genetic programming 
approach to design priority rules for resource-constrained project scheduling 
problem. Expert Systems with Applications, 198, Article 116753.

Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar, W. (1959). Application of a 
technique for research and development program evaluation. Operations Research, 
7(5), 646–669.

Mastor, A. (1970). An experimental and comparative evaluation of production line 
balancing techniques. Management Science, 16, 728–746.

Mercier, L., & Van Hentenryck, P. (2008). Edge finding for cumulative scheduling. 
INFORMS Journal on Computing, 20(1), 143–153.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An exact algorithm for 
the resource constrained project scheduling problem based on a new mathematical 
formulation. Management Science, 44, 714–729.

Möhring, R. H., Schulz, A. S., Stork, F., & Uetz, M. (2003). Solving project scheduling 
problems by minimum cut computations. Management Science, 49(3), 330–350.

http://refhub.elsevier.com/S0377-2217(25)00221-8/sb128
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb128
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb128
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb129
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb129
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb129
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb129
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb129
https://homepages.laas.fr/ehebrard/papers/lecture2017.pdf
https://homepages.laas.fr/ehebrard/papers/lecture2017.pdf
https://homepages.laas.fr/ehebrard/papers/lecture2017.pdf
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb131
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb131
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb131
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb131
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb131
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb132
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb132
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb132
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb133
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb133
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb133
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb134
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb134
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb134
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb134
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb134
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb135
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb135
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb135
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb135
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb135
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb136
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb136
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb136
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb136
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb136
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb136
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb136
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb137
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb137
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb137
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb138
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb138
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb138
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb139
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb139
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb139
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb139
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb139
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb140
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb140
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb140
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb141
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb141
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb141
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb141
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb141
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb142
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb142
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb142
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb143
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb143
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb143
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb144
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb144
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb144
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb144
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb144
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb144
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb144
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb145
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb145
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb145
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb145
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb145
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb145
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb145
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb146
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb146
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb146
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb146
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb146
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb147
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb147
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb147
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb148
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb148
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb148
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb149
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb149
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb149
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb150
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb150
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb150
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb150
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb150
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb151
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb151
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb151
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb151
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb151
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb152
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb152
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb152
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb152
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb152
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb153
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb153
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb153
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb153
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb153
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb154
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb154
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb154
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb155
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb155
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb155
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb156
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb156
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb156
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb156
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb156
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb157
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb157
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb157
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb157
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb157
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb158
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb158
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb158
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb159
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb159
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb159
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb160
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb160
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb160
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb160
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb160
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb161
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb161
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb161
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb162
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb162
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb162
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb163
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb163
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb163
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb163
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb163
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb164
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb164
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb164
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb164
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb164
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb165
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb165
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb165
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb165
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb165
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb166
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb166
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb166
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb167
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb167
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb167
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb167
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb167
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb168
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb168
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb168
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb169
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb169
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb169
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb169
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb169
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb170
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb170
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb170
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb171
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb171
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb171
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb172
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb172
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb172
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb173
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb173
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb173
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb173
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb173
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb173
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb173
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb174
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb174
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb174
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb174
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb174
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb175
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb175
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb175
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb175
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb175
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb176
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb176
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb176
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb176
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb176
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb177
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb177
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb177
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb178
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb178
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb178
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb178
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb178
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb179
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb179
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb179
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb179
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb179
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb180
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb180
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb180
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb180
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb180
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb181
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb181
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb181
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb182
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb182
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb182
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb183
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb183
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb183
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb183
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb183
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb184
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb184
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb184
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb184
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb184
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb185
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb185
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb185
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb186
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb186
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb186
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb187
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb187
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb187
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb187
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb187
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb188
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb188
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb188


C. Artigues et al. European Journal of Operational Research xxx (xxxx) xxx 
Morin, P.-A., Artigues, C., Haït, A., Kis, T., & Spieksma, F. C. (2022). A project 
scheduling problem with periodically aggregated resource-constraints. Computers 
& Operations Research, 141, Article 105688.

Morrison, D. R., Jacobson, S. H., Sauppe, J. J., & Sewell, E. C. (2016). Branch-and-
bound algorithms: A survey of recent advances in searching, branching, and prun-
ing. Discrete Optimization, 19, 79–102. http://dx.doi.org/10.1016/j.disopt.2016.01.
005, URL https://www.sciencedirect.com/science/article/pii/S1572528616000062.

Moukrim, A., Quilliot, A., & Toussaint, H. (2015). An effective branch-and-price 
algorithm for the preemptive resource constrained project scheduling problem 
based on minimal interval order enumeration. European Journal of Operational 
Research, 244(2), 360–368.

Naber, A., & Kolisch, R. (2014). MIP models for resource-constrained project scheduling 
with flexible resource profiles. European Journal of Operational Research, 239(2), 
335–348.

Narbaev, T., Hazir, Ö., Khamitova, B., & Talgat, S. (2024). A machine learning study to 
improve the reliability of project cost estimates. International Journal of Production 
Research, 62, 4372–4388.

Nazareth, T., Verma, S., Bhattacharya, S., & Bagchi, A. (1999). The multiple resource 
constrained project scheduling problem: A breadth-first approach. European Journal 
of Operational Research, 112(2), 347–366.

Néron, E. (2008). Resource and precedence constraint relaxation. Resource-Constrained 
Project Scheduling: Models, Algorithms, Extensions and Applications, 37–48.

Neron, E., Artigues, C., Baptiste, P., Carlier, J., Damay, J., Demassey, S., & Laborie, P. 
(2006). Lower bounds for resource constrained project scheduling problem: Recent 
advances. Perspectives in Modern Project Scheduling, 167–204.

Neumann, K., Nübel, H., & Schwindt, C. (2000). Active and stable project scheduling. 
Mathematical Methods of Operations Research, 52, 441–465.

Neumann, K., & Schwindt, C. (2002). Project scheduling with inventory constraints. 
Mathematical Methods of Operations Research, 56, 513–533.

Neumann, K., Schwindt, C., & Zimmermann, J. (2002). vol. 508, Project scheduling with 
time windows and scarce resources: temporal and resource-constrained project scheduling 
with regular and nonregular objective functions. Springer.

Nikoofal Sahl Abadi, N., Bagheri, M., & Assadi, M. (2018). Multiobjective model 
for solving resource-leveling problem with discounted cash flows. International 
Transactions in Operational Research, 25(6), 2009–2030.

Nuijten, W. P. M. (1994). Time and resource constrained scheduling: a constraint 
satisfaction approach (Ph.D. thesis), Eindhoven University of Technology.

Ohrimenko, O., Stuckey, P. J., & Codish, M. (2009). Propagation via lazy clause 
generation. Constraints, 14, 357–391.

Ouellet, P., & Quimper, C.-G. (2013). Time-table extended-edge-finding for the cumula-
tive constraint. In Principles and practice of constraint programming: 19th international 
conference, CP 2013, uppsala, Sweden, September 16-20, 2013. proceedings 19 (pp. 
562–577). Springer.

Ouellet, Y., & Quimper, C.-G. (2018). A 𝑂(𝑛 log2 𝑛) checker and 𝑂(𝑛2 log 𝑛) filtering 
algorithm for the energetic reasoning. In International conference on the integration 
of constraint programming, artificial intelligence, and operations research (pp. 477–494). 
Springer.

Özdamar, L., & Ulusoy, G. (1995). A survey on the resource-constrained project 
scheduling problem. IIE Transactions, 27(5), 574–586.

Palpant, M., Artigues, C., & Michelon, P. (2004). LSSPER: Solving the resource-
constrained project scheduling problem with large neighbourhood search. Annals 
of Operations Research, 131, 237–257.

Paraskevopoulos, D., Tarantilis, C., & Ioannou, G. (2012). Solving project scheduling 
problems with resource constraints via an event list-based evolutionary algorithm. 
Expert Systems with Applications, 39(4), 3983–3994.

Pascoe, T. (1966). Allocation of resources - CPM. Revue FranÇaise de Recherche 
Opérationnelle, 38, 31–38.

Patterson, J. (1976). Project scheduling: The effects of problem structure on heuristic 
scheduling. Naval Research Logistics, 23, 95–123.

Patterson, J. (1984). A comparison of exact approaches for solving the multiple 
constrained resource project scheduling problem. Management Science, 30, 854–867.

Patterson, W. (1974). A horizon-varying, zero-one approach to project scheduling. 
Management Science, 20, 990–998.

Pellerin, R., Perrier, N., & Berthaut, F. (2020). A survey of hybrid metaheuristics for the 
resource-constrained project scheduling problem. European Journal of Operational 
Research, 280(2), 395–416.

Perregaard, M. (1995). Branch and bound methods for the multi-processor job-shop 
and flow-shop scheduling problems. Master’s Thesis, Datalogisk Institute Kubenhavns 
Universitet.

Perron, L., & Didier, F. (2023). CP-SAT. https://developers.google.com/optimization/
cp/cp_solver/, Google.

Polo-Mejía, O., Artigues, C., Lopez, P., Mönch, L., & Basini, V. (2023). Heuristic and 
metaheuristic methods for the multi-skill project scheduling problem with partial 
preemption. International Transactions in Operational Research, 30(2), 858–891.

Ponz-Tienda, J., Salcedo-Bernal, A., Pellicer, E., & Benlloch-Marco, J. (2017). Improved 
adaptive harmony search algorithm for the resource leveling problem with minimal 
lags. Automation in Construction, 77, 82–92.

Pritsker, A., & Watters, L. (1968). A zero-one programming approach to schedul- ing with 
limited resources: Technical Report, (RM-5561-P), The RAND Corporation.
22 
Proon, S., & Jin, M. (2011). A genetic algorithm with neighborhood search for the 
resource-constrained project scheduling problem. Naval Research Logistics, 58(2), 
73–82.

Prud’homme, C., & Fages, J.-G. (2022). Choco-solver. Journal of Open Source Software, 
7(78), 4708.

Queyranne, M., & Schulz, A. S. (1994). Polyhedral approaches to machine scheduling. 
Citeseer.

Quintanilla, S., Lino, P., Pérez, Á., Ballestín, F., & Valls, V. (2015). Integer preemption 
problems. In C. Schwindt, & J. Zimmermann (Eds.), Handbook on project management 
and scheduling vol. 1 (pp. 231–250). Springer.

Rieck, J., Zimmermann, J., & Gather, T. (2012). Mixed-integer linear programming 
for resource leveling problems. European Journal of Operational Research, 221(1), 
27–37.

Riise, A., Mannino, C., & Lamorgese, L. (2016). Recursive logic-based benders’ de-
composition for multi-mode outpatient scheduling. European Journal of Operational 
Research, 255(3), 719–728.

Rossi, F., Van Beek, P., & Walsh, T. (2006). Handbook of constraint programming. 
Elsevier.

Roux, W. (1998). Multi-resource shop scheduling with resource flexibility. European 
Journal of Operational Research, 107(2), 289–305.

Roy, B., & Dibon, M. (1966). L’ordonnancement par la méthode des potentiels–le 
programme concord. Automatisme, 2, 1–11.

Sankaran, J. K., Bricker, D. L., & Juang, S.-H. (1999). A strong fractional cutting-
plane algorithm for resource-constrained project scheduling. International Journal 
of Industrial Engineering, 6, 99–111.

Scales, J. (2020). A design science research approach to closing the gap between the 
research and practice of project scheduling. Systems Research and Behavioral Science, 
37(5), 804–812.

Schäffter, M. W. (1997). Scheduling with forbidden sets. Discrete Applied Mathematics, 
72(1–2), 155–166.

Schutt, A., Feydy, T., & Stuckey, P. J. (2013). Explaining time-table-edge-finding 
propagation for the cumulative resource constraint. In Integration of AI and OR 
techniques in constraint programming for combinatorial optimization problems: 10th 
international conference, cPAIOR 2013, yorktown heights, NY, USA, May 18-22, 2013. 
proceedings 10 (pp. 234–250). Springer.

Schutt, A., Feydy, T., Stuckey, P. J., & Wallace, M. G. (2009). Why cumulative 
decomposition is not as bad as it sounds. In Principles and practice of constraint 
programming-CP 2009: 15th international conference, CP 2009 lisbon, Portugal, 
September 20-24, 2009 proceedings 15 (pp. 746–761). Springer.

Schutt, A., Feydy, T., Stuckey, P. J., & Wallace, M. G. (2011). Explaining the cumulative 
propagator. Constraints, 16, 250–282.

Schutt, A., Feydy, T., Stuckey, P. J., & Wallace, M. G. (2015). A satisfiability solving 
approach. In C. Schwindt, & J. Zimmermann (Eds.), Handbook on project management 
and scheduling vol. 1 (pp. 135–160). Springer.

Schutt, A., Wolf, A., & Schrader, G. (2005). Not-first and not-last detection for 
cumulative scheduling in. In International conference on applications of declarative 
programming and knowledge management (pp. 66–80). Springer.

Schwindt, C. (1995). A new problem generator for different resource-constrained project 
scheduling problems with minimal and maximal time lags. WIOR-Report-449. Institut 
Für Wirtschaftstheorie Und Operations Research, University of Karlsruhe.

Schwindt, C. (1998). Verfahren zur lösung des ressourcenbeschränkten projektdauermin-
imierungsproblems mit planungsabhängigen zeitfenstern (Ph.D. thesis), Fakultät für 
wirtschaftswissenschaften der Universität Fridericiana zu Karlsruhe.

Schwindt, C., & Trautmann, N. (2000). Batch scheduling in process industries: an 
application of resource–constrained project scheduling. OR-Spektrum, 22, 501–524.

Schwindt, C., Zimmermann, J., et al. (2015). Handbook on project management and 
scheduling vol. 1. Springer.

Servranckx, T., & Vanhoucke, M. (2019). A tabu search procedure for the resource-
constrained project scheduling problem with alternative subgraphs. European 
Journal of Operational Research, 273(3), 841–860.

Shariatmadari, M., Nahavandi, N., Zegordi, S. H., & Sobhiyah, M. H. (2017). Integrated 
resource management for simultaneous project selection and scheduling. Computers 
& Industrial Engineering, 109, 39–47.

Shuvo, O., Golder, S., & Islam, M. R. (2023). A hybrid metaheuristic method for solving 
resource constrained project scheduling problem. Evolutionary Intelligence, 16(2), 
519–537.

Simonin, G., Artigues, C., Hebrard, E., & Lopez, P. (2015). Scheduling scientific 
experiments for comet exploration. Constraints, 20, 77–99.

Sittel, P., Kumm, M., Oppermann, J., Möller, K., Zipf, P., & Koch, A. (2018). ILP-based 
modulo scheduling and binding for register minimization. In 2018 28th international 
conference on field programmable logic and applications (pp. 265–2656). IEEE.

Slowinski, R. (1980). Two approaches to problems of resource allocation among project 
activities – a comparative study. Journal of Operational Research Society, 8, 711–723.

Slowinski, R. (1981). Multiobjective network scheduling with efficient use of renewable 
and nonrenewable resources. European Journal of Operational Research, 7, 265–273.

Slowinski, R., Soniewicki, B., & Weglarz, J. (1994). DSS for multiobjective project 
scheduling. European Journal of Operational Research, 79(2), 220–229.

Snauwaert, J., & Vanhoucke, M. (2023). A classification and new benchmark instances 
for the multi-skilled resource-constrained project scheduling problem. European 
Journal of Operational Research, 307(1), 1–19.

http://refhub.elsevier.com/S0377-2217(25)00221-8/sb189
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb189
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb189
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb189
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb189
http://dx.doi.org/10.1016/j.disopt.2016.01.005
http://dx.doi.org/10.1016/j.disopt.2016.01.005
http://dx.doi.org/10.1016/j.disopt.2016.01.005
https://www.sciencedirect.com/science/article/pii/S1572528616000062
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb191
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb191
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb191
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb191
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb191
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb191
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb191
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb192
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb192
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb192
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb192
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb192
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb193
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb193
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb193
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb193
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb193
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb194
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb194
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb194
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb194
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb194
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb195
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb195
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb195
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb196
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb196
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb196
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb196
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb196
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb197
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb197
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb197
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb198
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb198
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb198
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb199
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb199
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb199
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb199
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb199
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb200
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb200
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb200
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb200
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb200
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb201
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb201
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb201
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb202
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb202
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb202
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb203
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb203
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb203
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb203
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb203
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb203
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb203
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb204
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb204
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb204
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb204
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb204
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb204
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb204
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb205
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb205
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb205
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb206
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb206
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb206
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb206
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb206
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb207
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb207
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb207
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb207
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb207
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb208
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb208
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb208
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb209
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb209
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb209
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb210
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb210
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb210
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb211
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb211
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb211
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb212
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb212
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb212
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb212
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb212
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb213
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb213
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb213
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb213
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb213
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb215
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb215
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb215
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb215
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb215
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb216
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb216
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb216
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb216
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb216
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb217
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb217
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb217
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb218
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb218
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb218
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb218
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb218
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb219
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb219
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb219
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb220
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb220
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb220
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb221
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb221
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb221
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb221
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb221
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb222
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb222
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb222
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb222
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb222
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb223
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb223
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb223
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb223
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb223
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb224
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb224
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb224
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb225
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb225
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb225
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb226
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb226
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb226
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb227
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb227
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb227
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb227
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb227
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb228
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb228
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb228
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb228
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb228
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb229
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb229
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb229
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb230
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb230
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb230
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb230
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb230
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb230
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb230
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb230
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb230
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb231
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb231
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb231
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb231
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb231
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb231
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb231
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb232
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb232
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb232
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb233
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb233
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb233
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb233
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb233
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb234
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb234
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb234
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb234
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb234
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb235
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb235
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb235
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb235
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb235
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb236
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb236
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb236
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb236
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb236
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb237
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb237
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb237
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb238
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb238
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb238
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb239
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb239
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb239
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb239
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb239
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb240
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb240
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb240
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb240
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb240
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb241
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb241
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb241
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb241
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb241
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb242
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb242
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb242
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb243
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb243
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb243
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb243
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb243
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb244
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb244
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb244
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb245
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb245
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb245
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb246
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb246
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb246
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb247
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb247
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb247
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb247
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb247


C. Artigues et al. European Journal of Operational Research xxx (xxxx) xxx 
Sousa, J. (1989). Time indexed formulations of non-preemptive single-machine scheduling 
problems (Ph.D. thesis), Université Catholique de Louvain.

Sprecher, A. (2000). Scheduling resource-constrained projects competitively at modest 
memory requirements. Management Science, 46, 710–723.

Sprecher, A., Kolisch, R., & Drexl, A. (1995). Semi-active, active, and non-delay 
schedules for the resource-constrained project scheduling problem. European Journal 
of Operational Research, 80(1), 94–102.

Stinson, J., Davis, E., & Khumawala, B. (1978). Multiple resource-constrained 
scheduling using branch-and-bound. IIE Transactions, 10, 252–259.

Talbot, F., & Patterson, J. (1978). An efficient integer programming algorithm with 
network cuts for solving resource-constrained scheduling problems. Management 
Science, 24, 1163–1174.

Tavares, L. (1999). Advanced models for project management. Kluwer Academic 
Publishers, Dordrecht, 1999.

Teichteil-Königsbuch, F., Povéda, G., Gonzélez de Garibay Barba, G., Luchterhand, T., 
& Thiébaux, S. (2023). Fast and robust resource-constrained scheduling with graph 
neural networks. In Proceedings of the 33rd international conference on automated 
planning and scheduling, ICAPS ’23 (pp. 623–633). AAAI Press.

Tesch, A. (2016). A nearly exact propagation algorithm for energetic reasoning in. 
In International conference on principles and practice of constraint programming (pp. 
493–519). Springer.

Tesch, A. (2018). Improving energetic propagations for cumulative scheduling. In 
International conference on principles and practice of constraint programming (pp. 
629–645). Springer.

Tesch, A. (2020). A polyhedral study of event-based models for the resource-constrained 
project scheduling problem. Journal of Scheduling, 23(2), 233–251.

Tormos, P., & Lova, A. (2001). A competitive heuristic solution technique for 
resource-constrained project scheduling. Annals of Operations Research, 102, 65–81.

Trautmann, N., & Baumann, P. (2009). Resource-allocation capabilities of commercial 
project management software: an experimental analysis. In 2009 international 
conference on computers & industrial engineering (pp. 1143–1148). IEEE.

Trietsch, D., Mazmanyan, L., Govergyan, L., & Baker, K. R. (2012). Modeling activity 
times by the parkinson distribution with a lognormal core: Theory and validation. 
European Journal of Operational Research, 216, 386–396.

Uddin, S., Ong, S., Lu, H., & Matous, P. (2023). Integrating machine learning and 
network analytics to model project cost, time and quality performance. Production 
Planning and Control, To Appear.

Uetz, M. (2001). Algorithms for deterministic and stochastic scheduling (Ph.D. thesis), 
Technical University Berlin.

Ulusoy, G., & Hazır, Ö. (2021). Project scheduling under uncertainty. In An introduction 
to project modeling and planning (pp. 357–379). Cham: Springer International 
Publishing, http://dx.doi.org/10.1007/978-3-030-61423-2_12.

Unsal-Altuncan, I., & Vanhoucke, M. (2024). A hybrid forecasting model to predict 
the duration and cost performance of projects with Bayesian networks. European 
Journal of Operational Research, 315, 511–527.

Valls, V., Ballestin, F., & Quintanilla, M. S. (2005). Justification and RCPSP: A technique 
that pays. European Journal of Operational Research, 165, 375–386.

Valls, V., Ballestin, F., & Quintanilla, S. (2008). A hybrid genetic algorithm for the 
resource-constrained project scheduling problem. European Journal of Operational 
Research, 185(2), 495–508.

Van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., & Woeg-
inger, G. J. (2016). Precedence-constrained scheduling problems parameterized by 
partial order width. In International conference on discrete optimization and operations 
research (pp. 105–120). Springer.

Van Eynde, R., & Vanhoucke, M. (2020). Resource-constrained multi-project scheduling: 
Benchmark datasets and decoupled scheduling. Journal of Scheduling, 23, 301–325.

Van Eynde, R., & Vanhoucke, M. (2022a). New summary measures and datasets for the 
multi-project scheduling. European Journal of Operational Research, 299, 853–868.

Van Eynde, R., & Vanhoucke, M. (2022b). A theoretical framework for instance 
complexity of the resource-constrained project scheduling problem. Mathematics of 
Operations Research, 47, 3156–3183.

Van Eynde, R., Vanhoucke, M., & Coelho, J. (2024). On the summary measures for 
the resource-constrained project scheduling problem. Annals of Operations Research, 
337, 593–625.

Van Peteghem, V., & Vanhoucke, M. (2014). An experimental investigation of meta-
heuristics for the multi-mode resource-constrained project scheduling problem on 
new dataset instances. European Journal of Operational Research, 235(1), 62–72.

Van Peteghem, V., & Vanhoucke, M. (2015). Heuristic methods for the resource 
availability cost problem. In C. Schwindt, & J. Zimmermann (Eds.), Handbook on 
project management and scheduling vol. 1 (pp. 339–359). Springer.

Vandevelde, A., Hoogeveen, H., Hurkens, C., & Lenstra, J. K. (2005). Lower bounds 
for the head-body-tail problem on parallel machines: a computational study of the 
multiprocessor flow shop. INFORMS Journal on Computing, 17(3), 305–320.

Vanhoucke, M. (2012). XVIII, Project Management with Dynamic Scheduling: Baseline 
Scheduling, Risk Analysis and Project Control. Springer.

Vanhoucke, M. (2013). Project baseline scheduling: An overview of past experiences. 
Journal of Modern Project Management, 1(2), 18–27.

Vanhoucke, M. (2023). The illusion of control: Project data, computer algorithms and human 
intuition for project management and control. Springer.
23 
Vanhoucke, M. (2024). A quest for projects with scarce resources: Seeking schedule 
intelligence through project data discovery. In Business guides on the go, Springer, 
http://dx.doi.org/10.1007/978-3-031-71507-5.

Vanhoucke, M., & Batselier, J. (2019a). Fitting activity distributions using human 
partitioning and statistical calibration. Computers & Industrial Engineering, 129, 
126–135.

Vanhoucke, M., & Batselier, J. (2019b). A statistical method for estimating activity 
uncertainty parameters to improve project forecasting. Entropy, 21, 952.

Vanhoucke, M., & Coelho, J. (2016). An approach using SAT solvers for the RCPSP with 
logical constraints. European Journal of Operational Research, 249(2), 577–591.

Vanhoucke, M., & Coelho, J. (2018). A tool to test and validate algorithms for the 
resource-constrained project scheduling problem. Computers & Industrial Engineering, 
118, 251–265.

Vanhoucke, M., & Coelho, J. (2019). Resource-constrained project scheduling with 
activity splitting and setup times. Computers & Operations Research, 109, 230–249.

Vanhoucke, M., & Coelho, J. (2021). An analysis of network and resource indicators 
for resource-constrained project scheduling problem instances. Computers and 
Operations Research, 132, Article 105260.

Vanhoucke, M., & Coelho, J. (2024). A matheuristic for the resource- constrained 
project scheduling problem. European Journal of Operational Research, 319, 
711–725.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., & Tavares, L. (2008). An 
evaluation of the adequacy of project network generators with systematically 
sampled networks. European Journal of Operational Research, 187, 511–524.

Vanhoucke, M., Demeulemeester, E. L., & Herroelen, W. S. (2001a). An exact proce-
dure for the resource-constrained weighted earliness-tardiness project scheduling 
problem. Annals of Operations Research, 102, 179–196.

Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2001b). On maximizing the 
net present value of a project under renewable resource constraints. Management 
Science, 47, 1113–1121.

Vázquez, E. P., Calvo, M. P., & Ordóñez, P. M. (2015). Learning process on priority 
rules to solve the RCMPSP. Journal of Intelligent Manufacturing, 26(1), 123–138.

Vilím, P. (2004). O (nlog n) filtering algorithms for unary resource constraint. In 
Integration of AI and OR techniques in constraint programming for combinatorial 
optimization problems: first international conference, cPAIOR 2004, nice, France, April 
20-22, 2004. proceedings 1 (pp. 335–347). Springer.

Vilım, P. (2007). Global constraints in scheduling (Ph.D. thesis), Charles University.
Vilím, P. (2009a). Edge finding filtering algorithm for discrete cumulative resources in. 

In International conference on principles and practice of constraint programming (pp. 
802–816). Springer.

Vilím, P. (2009b). Max energy filtering algorithm for discrete cumulative resources. In 
International conference on integration of constraint programming, artificial intelligence, 
and operations research (pp. 294–308). Springer.

Vilím, P. (2011). Timetable edge finding filtering algorithm for discrete cumulative re-
sources. In International conference on AI and OR techniques in constriant programming 
for combinatorial optimization problems (pp. 230–245). Springer.

Vilím, P., Laborie, P., & Shaw, P. (2015). Failure-directed search for constraint-
based scheduling. In Integration of AI and OR techniques in constraint programming: 
12th international conference, CPAIOR 2015, Barcelona, Spain, May 18-22, 2015, 
proceedings 12 (pp. 437–453). Springer.

Wang, J., Hu, X., Demeulemeester, E., & Zhao, Y. (2021). A bi-objective robust resource 
allocation model for the RCPSP considering resource transfer costs. International 
Journal of Production Research, 59(2), 367–387.

Watermeyer, K., & Zimmermann, J. (2023). A constructive branch-and-bound algorithm 
for the project duration problem with partially renewable resources and general 
temporal constraints. Journal of Scheduling, 26(1), 95–111.

Wauters, M., & Vanhoucke, M. (2014). Support vector machine regression for project 
control forecasting. Automation in Construction, 47, 92–106.

Wauters, M., & Vanhoucke, M. (2016). A comparative study of artificial intelligence 
methods for project duration forecasting. Expert Systems with Applications, 46, 
249–261.

Weglarz, J., Jozefowska, J., Mika, M., & Waligora, G. (2011). Project scheduling with 
finite or infinite number of activity processing modes – a survey. European Journal 
of Operational Research, 208, 177–205.

Wiest, J. D. (1964). Some properties of schedules for large projects with limited 
resources. Operations Research, 12(3), 395–418.

Wolf, A., & Schrader, G. (2005). Overload checking for the cumulative constraint and 
its application. In International conference on applications of declarative programming 
and knowledge management (pp. 88–101). Springer.

Wolsey, L. A. (1997). MIP modelling of changeovers in production planning and 
scheduling problems. European Journal of Operational Research, 99(1), 154–165.

Zaloom, V. (1971). On the resource constrained project scheduling problem. AIIE 
Transactions, 3(4), 302–305.

Zhao, X., Song, W., Li, Q., Shi, H., Kang, Z., & Zhang, C. (2022). A deep reinforce-
ment learning approach for resource-constrained project scheduling. In 2022 IEEE 
symposium series on computational intelligence (pp. 1226–1234). IEEE.

http://refhub.elsevier.com/S0377-2217(25)00221-8/sb248
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb248
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb248
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb249
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb249
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb249
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb250
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb250
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb250
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb250
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb250
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb251
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb251
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb251
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb252
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb252
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb252
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb252
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb252
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb253
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb253
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb253
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb254
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb254
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb254
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb254
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb254
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb254
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb254
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb255
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb255
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb255
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb255
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb255
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb256
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb256
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb256
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb256
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb256
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb257
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb257
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb257
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb258
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb258
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb258
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb259
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb259
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb259
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb259
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb259
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb260
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb260
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb260
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb260
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb260
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb261
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb261
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb261
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb261
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb261
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb262
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb262
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb262
http://dx.doi.org/10.1007/978-3-030-61423-2_12
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb264
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb264
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb264
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb264
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb264
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb265
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb265
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb265
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb266
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb266
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb266
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb266
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb266
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb267
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb267
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb267
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb267
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb267
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb267
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb267
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb268
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb268
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb268
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb269
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb269
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb269
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb270
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb270
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb270
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb270
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb270
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb271
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb271
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb271
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb271
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb271
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb272
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb272
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb272
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb272
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb272
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb273
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb273
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb273
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb273
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb273
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb274
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb274
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb274
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb274
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb274
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb275
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb275
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb275
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb276
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb276
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb276
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb277
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb277
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb277
http://dx.doi.org/10.1007/978-3-031-71507-5
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb279
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb279
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb279
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb279
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb279
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb280
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb280
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb280
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb281
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb281
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb281
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb282
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb282
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb282
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb282
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb282
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb283
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb283
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb283
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb284
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb284
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb284
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb284
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb284
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb285
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb285
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb285
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb285
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb285
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb286
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb286
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb286
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb286
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb286
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb287
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb287
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb287
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb287
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb287
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb288
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb288
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb288
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb288
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb288
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb289
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb289
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb289
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb290
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb290
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb290
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb290
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb290
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb290
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb290
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb291
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb292
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb292
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb292
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb292
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb292
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb293
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb293
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb293
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb293
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb293
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb294
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb294
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb294
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb294
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb294
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb295
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb295
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb295
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb295
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb295
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb295
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb295
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb296
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb296
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb296
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb296
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb296
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb297
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb297
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb297
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb297
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb297
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb298
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb298
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb298
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb299
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb299
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb299
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb299
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb299
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb300
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb300
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb300
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb300
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb300
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb301
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb301
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb301
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb302
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb302
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb302
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb302
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb302
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb303
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb303
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb303
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb304
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb304
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb304
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb305
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb305
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb305
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb305
http://refhub.elsevier.com/S0377-2217(25)00221-8/sb305

	Fifty years of research on resource-constrained project scheduling explored from different perspectives
	Introduction and problem definition
	Structural properties and complexity
	Complexity analysis and approximation
	Structural properties

	Project data
	Mixed-integer linear programming approaches
	Constraint programming, SAT
	Constraint propagation and consistency checks trade-off: inference vs speed
	Consistency tests for the cumulative constraint
	More consistency tests
	Constraint programming and boolean satisfiability search methods and solvers

	Branch-and-bound methods
	Heuristics and Metaheuristics
	Lower bounds
	RCPSP variants
	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	References


