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Introduction

Multi-goal problems are a specific class of mathematical problems designed to find
an efficient or optimal sequence of satisfying multiple goals given predefined conditions
and constraints. These constraints may often conflict, requiring the search for compromise
solutions. Multi-goal problems are commonly encountered in areas such as bioinformatics,
finance, planning, logistics, and robotics. However, as the number of objectives increases,
the computational complexity of these problems increases exponentially, and finding an
optimal solution becomes computationally and time-consuming.

At the Czech Institute of Informatics, Robotics and Cybernetics (CIIRC), these prob-
lems are mainly addressed in the context of robotics - for example, in space search or
optimizing the transport of objects from one place to another. These problems directly
apply to the commercial sphere, where efficient solutions save time, costs, and other re-
sources. For this reason, CIIRC focuses on developing and evaluating the most efficient
optimization solvers.

Hexaly Optimizer is a newly developed type of optimization solver developed by
Hexaly, a company specializing in mathematical optimization. According to the authors,
this solver is faster and more scalable than traditional solvers [1]. This thesis focuses on
an experimental comparison of the performance of the Hexaly Optimizer with selected
existing methods, namely Ms-GVNS, GILS-RVND [2], and GLNS [3]. The comparison
of the quality and speed of the solutions found will be performed on different types of
combinatorial problems, specifically:

o Traveling deliveryman problem (TDP)

o Graph search problem (GSP)

o Generalized Traveling salesman problem (GTSP)
o Generalized Graph search problem (GGSP)

We use these problems to assess whether the Hexaly Optimizer offers higher performance
and solution quality than established approaches.

The objective and contributions

The main objective of this thesis is to compare the efficiency of the Hexaly Optimizer
against other solvers. Partial tasks of this thesis are:

e Acquaint with Hexaly Optimizer and choose a suitable programming language.

e Acquaint with selected multi-goal problems, and the state-of-the-art solvers of these
problems.

e Model problems with Hexaly Optimizer to solve them.

e Study the quality of solutions found by Hexaly Optimizer and compare them with
solutions found by state-of-the-art solvers.



Chapter 1 focuses on the technical background. Chapter 2 addresses the TDP, Chap-
ter 3 the GSP, Chapter 4 the GTSP, and Chapter 5 the GGSP. Each chapter contains a
definition of the problem, a description of its modeling in Hexaly Optimizer, a compari-
son with other advanced solvers, and a presentation and evaluation of the experimental
results. Finally, it summarizes the results obtained, evaluates the performance of Hexaly
Optimizer, and suggests possibilities for further development.



Chapter 1

Technical background

1.1 Hexaly Optimizer description

According to [1], HO is a new type of solver. It is implemented in C++ and supports
Windows, Linux, and MacOS operating systems. HO can be imported as a library in C++,
Python, C#, or Java programs. Also, it can be a standalone executable program coded in
Hexaly Modeler (HM). HO binaries are self-contained, so there is no need to install any
third-party library to run HO.

To solve a problem using HO, a mathematical model of the problem must be defined.
Writing the model as mathematically as possible rather than programmatically is better.
If the model is unnecessarily complicated, or if the model uses, for example, a modulo
operation for indexing, then the computation time may be increased, or HO may not
recognize that it has already found the optimal solution.

1.2 Hexaly Modeler description

According to [1], Hexaly Modeler (HM) is a modeling and programming language.
HM offers operators like minimize, maximize, and constraint to define and parametrize
the model. It also provides a set of functionalities for programming, for example, loops,
conditions, and variables. HM has two modes: main mode and default (classic) mode.
In the main mode, HM behaves like an ordinary programming language by declaring the
function main(), and in the default mode, the program is structured around five predefined
functions. These functions are input(), model(), param(), display(), output() and are
executed in this order. The functions are described in [1]:

e input: for declaring your data or reading them from files.

e model: for declaring your optimization model.

e param: for parameterizing the local-search solver before running.

o display: for displaying some info in console or in some files during the resolution.
e output: for writing results in console or in some files, once the resolution is finished.

Both modes have their built-in variables and functions to help define solving parameters.

1.3 Used hardware and software

We have decided to use the latest version of Hexaly 13.5, which can run on a personal
computer. We chose a variant designed for the Linux operating system. To ensure the
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smooth running of the application, it is necessary to meet the relevant system requirements

[1]:
¢ Architecture: x64, arm64

o Operating systems: Linux with libc 2.28 (or superior) and libstdc++ 6.0.25 (or
superior)

e The system should have at least 4 physical cores for nominal performance

We installed this version on a personal computer with the following hardware and system
specifications:

o Intel® Core™ i7-8750H CPU (2.20 GHz)
o Kingston 256 GB M.2 SATA SSD

+ 16 GB of RAM

e Ubuntu 24.04 LTS

This configuration exceeds the minimum requirements needed for the flawless operation
of the Hexaly 13.5.

1.4 Description of programs with Hexaly Optimizer

All programs with HO are implemented in HM in the default mode. Modeling a prob-
lem in HM seemed more straightforward than in other supported programming languages.
All programs have a similar set of input parameters. The essential ones are:

o inFileName - determines the path to the input instance
o hxTimeLimit - defines the time limit for finding the optimal solution
e solFileName - specifies the path to the file where the output data is stored

An example of executing the program can look like:

hexaly tdp.hxm inFileName=st70.tsp hxTimeLimit=10
solFileName=sol . txt

hexaly is an executable tool and tdp.hxm is an executable script. The order of the input
arguments does not matter. Values are assigned directly to specific variables at execution
time based on their names, not their order. Only the presence of all required parameters
is required for proper functionality. To create a new variable or to change the value of a
predefined variable, you can submit these variables as additional input arguments along
with their values to the program before execution.



Chapter 2

The Traveling deliveryman
problem

2.1 Definition

The Traveling deliveryman problem (TDP) is a problem where a deliveryman leaves
the depot to deliver packages to customers so that everyone is waiting for the shortest
possible time. In this problem, it is assumed that the deliveryman carries one package
for each customer, so he visits each customer just once and does not need to return to
the depot after deliveries. The solution to this problem is a sequence of the orders of
customers to minimize the sum of the waiting times of each customer. This is similar to
the Traveling salesman problem (TSP), which minimizes the total travel time between all
customers. The difference between the ideas of these problems is that TSP, by minimizing
travel time, actually seeks the sequence at which the cost to the carrier is the lowest. TDP
seeks the sequence at which it satisfies customers regardless of cost by minimizing their
waiting time [2]. Both problems solve the same path-finding problem, just with different
approaches. The problems are labeled NP-hard for general metric spaces [4] and have
various applications in other industries.

According to [2], the formal definition of the problem is described by a complete
undirected graph with N vertices described by G = (V, E), where V = {vy,...,un} are
the vertices. The vertices are connected by unique edges, defined as e; ; = (v;,v;) € E,
v; # vj. The edge cost d(e;j) = d(vi,v;) is non-negative, d(E) € RJ. Let us have a
Hamiltonian path in G given by a sequence of vertices x = (xq, ..., Z,), where xyg = s is
the starting point (depot) and n = N — 1 is the number of customers. The cost of a path
to the k-th vertex 67 via x is cumulative and is given by:

k

0 = > d(zi1,mi) (2.1)

i=1
The cost of the whole path through x is then given as:
n n
COSt(X) = Z 5;{( = Z d(])i,l,ﬂfi) (22)
k=1 k=1i=1
The solution to TDP is then to find the optimal path x* that minimizes the cost:

x* = argmin (cost(x)) (2.3)
x€EH(m)

H is the set of all Hamiltonian paths across m = (G, d, s), 7 is an instance that defines the
graph of G, costs d, and the starting vertex s.



2.2 Solution approach

2.2.1 Hexaly Optimizer

The program with HO solves the problem for instances of TSPLIB [5]. The format
of TSPLIB is shown in Figure 2.1. From the format, the program loads only the lines
DIMENSION, EDGE_WEIGHT_TYPE, and the NODE_COORD_SECTION section, which specify the
number of vertices, the method of calculating the edge cost between vertices, and the
coordinates of each vertex. The NODE_COORD_SECTION contains one line per vertex, where
the first number is the index of the vertex followed by its coordinates. In function input,
the program obtains, from the instances, a distance matrix expressing the cost d of indi-
vidual transitions between vertices, and nbC'ities = N determines the number of vertices.
The notations of the distance matrix in the instances are different, so we created a mod-
ule matrix_ modul.hxm for HM programs that contains functions to obtain distance
matrices from any instance in TSPLIB. The module is imported into the program using
the command use matrix_modul as mm, where mm serves as an alias to facilitate calling
functions from the module.

NAME: st3

TYPE: TSP

COMMENT: 3-city problem
DIMENSION: 3
EDGE_WEIGHT TYPE : EUC_2D
NODE_COORD_SECTION

1 64 96

2 80 39

3 69 23

EOF

Figure 2.1: Example of TSPLIB instance format

To make the path cost minimization more efficient, we modified the formula (2.2) as
follows:

Cost

k
Zd Tj— 17x2 =

k=11=1

= (d(wo, 1)) + (d(xo, 21) + d(w1,22)) + - -

(d(zo,z1) + -+ + d(zp—1,22)) =

cd(wo,m1) + (n— 1) - d(w1,22) + -+ 1 d(wn-1,70) =

M:

+

i
L

(n—1) - d(zi, 1) =

= 11

@
I
=

(N =) - d(wi—1, ) (2.4)

The resulting cost(x) is the same, but the formula is simpler and faster to process.

The main part of the code, function model, is shown in Figure 2.2. The figure shows
variable cities, a modeling array that determines the vertices indices, and the conditions
needed to define the problem, such as how many vertices to visit and specifying the index
of the starting vertex (depot). The minimized objective function obj is defined using the

6



formula (2.4). The sum function creates an integer variable 7 that takes values from 1 to
nbCities — 1. The vertex indices in cities change order during minimization.

function model {
// A list variable: cities[i] is the index of the tth city in the
— tour
cities <- list(nbCities);

// All cities must be wvisited
constraint count(cities) == nbCities;

//start point == index
local start_id = 0;
constraint cities[0] == start_id;

// Minimize the total distance
obj <- sum(l...nbCities, i => (nbCities - i) *

— distanceMatrix[cities[i - 1]][cities[il]);

minimize obj;

Figure 2.2: TDP, function model code

To modify the solution search, we can change the seed of the pseudo-random generator
by adjusting the predefined variable hzSeed. The default value of the hxSeed is 0. The
solution search process can be modified by setting hxSeed to a different value, which is
provided as an input argument. Furthermore, we want the program to sample how the
cost of the optimal path changes depending on the duration of the program run. In the
default mode, it is not possible to explicitly program such a thing, but we can bypass
it. The predefined integer variable hxTimeBetweenDisplays specifies the period after how
many seconds the search info is displayed, and the function display is called. The default
value of hxTimeBetweenDisplays is 1. If it is necessary to change hxTimeBetweenDisplays
or the value of another predefined variable, the variable and the new value can be entered
as another input argument when the program is executed. So, in the function display, the
current path cost is read and stored in an array. For a proper sampling of the path cost,
the variables count_t and obj v _ar were defined in the param function, where count_t is
initialized with the value 0, and obj v _ar represents an empty array. The display function
is shown in Figure 2.3. The second line of the function checks whether the solver has already
found a path by checking whether the variable cities contains vertex indices. The third
line then checks the validity of the solution found; if the path is marked as FEASIBLE or
OPTIMAL, the total cost of the path is stored in the obj v ar field. Otherwise, a value of
—1 is stored. After adding the current sample, the value of count t is incremented.

The sampled data are then saved to a text file in the format shown in Figure 2.4. The
line measure length indicates how many samples of the cost have been measured, and
below it are the individual samples. Next, below the line cities order are the indices of
the path from the depot to the last customer. This format is sufficient if we assume that
the sampling period is known and the same for all runs.

7



function display(){
if (cities.value.count() > 0){
if (hxSolution.status == "FEASIBLE" || hxSolution.status ==
< "OPTIMAL")
obj_v_ar[count_t]
else

obj.value;

obj_v_ar[count_t] -1;

count_t += 1;

Figure 2.3: function display code

measure length: 5
219078 217225 216985 216979 216898

cities order:
116 13 12 14 7 6 5 158 4 2 3 10 9 11

Figure 2.4: TDP, hexaly output text file example

2.2.2 Ms-GVNS and GILS-RVND

Multi-Start General Variable Neighborhood Search (Ms-GVNS) [2] and Greedy Iter-
ative Local Search - Reactive Variable Neighborhood Descent (GILS-RVND) [6] are two
approaches to solve the TDP. Ms-GVNS is a multi-search metaheuristic that uses different
initial solutions to increase the probability of finding a good result. In each run, the algo-
rithm systematically alternates between various types of local solution modifications, thus
expanding the coverage of the space of possible solutions and overcoming stagnation in
unfavorable regions by using random perturbation. In contrast, the GILS-RVND approach
combines the construction of an initial solution using greedy randomized heuristics with
subsequent refinement via iterated local search, where a set of transformation operators
is randomly selected from the set of transformation operators in each iteration. With re-
peated restarts and built-in randomness, the algorithm efficiently explores the solution
space and reduces the risk of getting stuck in the local optimum.

We have taken a program of solvers, written in C++, that uses these approaches
from [2]. We made modifications so that the program, with a preset period, samples the
cost of the path and the times when the sample was made. Furthermore, when the search
for the optimal path is finished, all samples and the resulting path are saved in a text file
in the format shown in Figure 2.5.




Mode: gils-rvnd

lowest weight: 216898

compute time [s]: 5

219078 217225 216985 216979 216898

Times:
1.00001 2.00002 3.00003 4.00005 5

Cities:
116 13 12 14 76 5158 4 2 3 10 9 11

Figure 2.5: TDP, other solvers output text file example

The assumption for this format is the same as for the Hexaly format in Figure 2.4.
The period is known and the same for all runs.

2.3 Computational evaluation

To compare the accuracy and speed of the solvers to find optimal paths, we let all
solvers run 20 times for each instance for 120 seconds with a sampling period of 1 sec-
ond. The sampling period determines after how many seconds of solving the path cost is
recorded. We did all the runs for HO twice. Once we set haxSeed = 0. The second time, we
set hxSeed # 0, where each run had set a different hxSeed. We executed the programs with
bash scripts, so for a variety of haxSeed settings for each run, we used the bash function
shuf in the format:

min seed=1
max_ seed=2147483647
SEED=$ (shuf —i $min_seed—$max_seed —m 1)

The shuf function in this configuration generates pseudo-random numbers ranging from
min__seed to max__seed. The seed cannot be negative or greater than the value of maxz__seed.
The SEED value is loaded into the hzSeed variable as an input argument using $. Execution
of the program in a bash script might look like:

hexaly tdp.hxm inFileName=st70.tsp hxSeed=$SEED hxTimeLimit
=10 solFileName=sol.txt

An output text file with sampled path costs is created at the end of each solver run. From
these files, for each solver and instance, we then determine the variables:

e Inst - instance name

e Cpest - Reference best cost

e ¢4 - Mean of best-found costs

o mGpest - Mean percentage gap of best-found costs from cpes

e t - Mean time of finding the best cost

The values cpest are taken from [2]. The Mean percentage gap from cpesr (mG(t)) represents
the time waveform defined over the entire length of the measurement, using the average
value Mean(t) at each time point ¢. The formula determines the value of mG(t):

M t) — es
mG(t) = 100 - MeA0E) = Chest

(2.5)

Chest



The value mGpest uses the same formula (2.5), but it is a scalar value defining the Mean
percentage gap of best-found costs, where the average value of Mean(t) is substituted
by €.

All result variables for each solver are shown in Table 2.1. The table shows that HO
found the same or worse cost than other solvers. Also, in almost all cases, other solvers
found their lowest cost faster than HO. Only for pr107 did HO find the exact solution
before Ms-GVNS; the graphs for this instance are shown in Figure 2.8. In some figures,
the graphs are zoomed in for a better display of details and do not show the entire time
interval of 120 seconds. The figure shows the semi-transparent regions around the graphs,
which are approximately 95 % confidence intervals defined as: Mean 4+ 2 - SE, where SE
is the standard error of the mG. The graphs differ from the values in the table because
the table shows the mean of the best values from each run, and the graphs show the mean
values at a specific time. Therefore, it takes almost 20 seconds for Ms-GVNS to find the
optimal solution, as shown in Figure 2.8, while it is 7.150 seconds in the table. Figure 2.6
shows how different the HO and HO seed waveforms can be. The mean waveform of the
HO seed is slower and looks like a decreasing exponential function, while the HO has a
more steeply changing waveform. Other graphs are in Figures 2.7 and 2.9, where HO seed
has a lower end cost than HO. Neither figure is the HO or HO seed better than the other
solvers, but it shows that the proper choice of seed is also essential in finding a solution.

Furthermore, we tried to give solvers instances with many vertices. The program with
Ms-GVNS and GILS-RVND solvers had a problem already with an instance containing
about 1300 vertices; the program shut down because it ran out of memory. Therefore, we
used instances with a range close to 1000 vertices. The program could already process
such instances, but it could not sample every second, so we modified the program to start
sampling at time zero so that the first value always exists. During data processing, we
then filled the empty samples with the value of the previous known sample. The program
with HO had neither of those problems.

The results of the runs are shown in Table 2.2, but since we do not have a reference
cost for these instances, we replaced the variable ¢y in the table with the best-found cost
from all runs cs. The table shows that HO found further solutions from the best than for
smaller instances. On average, the best-found values were only found in the last 2 seconds
before the end of the run, which means that HO may have found a better solution if we
had set the run times longer. When we look at the average time to find the best solution,
we see that the difference between HO and the other solvers is considerably smaller than
in smaller instances. Figures 2.10 and 2.11 show that Ms-GVNS has the best initial cost,
HO and HO seed consistently decrease, and GILS-RVND takes longer to approach the
optimum. If we executed runs on shorter timescales, HO might find a better solution than
GILS-RVND.
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HO HO seed MS-GVNS GILS-RVND

Inst Chest @ meest % @ meest % E meest % @ meest E

(7] [s] (%] [s] (%] [s] [7%] [s]

st70 19710 19710 0.000 5.000 19710 0.000 8.450 19710 0.000 1.000 19710 0.000 1.000

rat99 56573 56573 0.000  109.900 56646 0.129 57.600 56573 0.000 4.400 56573 0.000 1.750

rat195 216154 216906 0.348  100.500 216584 0.199 64.800 216164 0.005 29.250 216186 0.015 42.650

lin318 5569520 5745346 3.157  103.000 5725181 2.795 70.100 5572910 0.061 68.900 5576420 0.124 64.000

pr226 7101223 7101223 0.000 88.950 7102052 0.012 62.150 7101223 0.000 5.200 7101223 0.000 3.600

lin105 586751 586751 0.000 1.150 586751 0.000 12.750 586751 0.000 1.000 586751 0.000 1.000

pr439 17724562 18141665 2.353 98.350 18100071 2.119 92.000 17748090 0.133 61.850 17783436 0.332  62.300

kroD100 951609 952022 0.043 38.250 952002 0.041 36.100 951609 0.000 1.000 951609 0.000 1.050

atth32 17449404 17821565 2.133 88.300 17923137 2.715 103.400 17536596 0.500 102.550 17582132 0.761  80.950

prl07 1981991 1981991 0.000 3.100 1981991 0.000 8.000 1981991 0.000 7.150 1981991 0.000 1.200

Table 2.1: Comparison of TDP solvers for TSPLIB instances
HO HO seed MS-GVNS GILS-RVND
Inst Chf a meest E @ meest E @ meest i @ meest i
(%] [s] K [s] (7] [s] (7] [s]
pr1002 116810740 122707941 5.049 119.100 122153364 4.574 118.350 117964676 0.988 110.900 119272735 2.108 116.050
pcb1173 31464475 32763248 4.128  118.350 32825408 4.325 119.600 31705893 0.767  109.250 32176797 2.264 114.300
ul060 103551726 106447799 2.797  120.000 107757785 4.062 119.250 104852944 1.257 114.550 105964040 2.330 116.350
dsj1000 7799821597 8251460113 5.790 119.150 8115769296 4.0561 117.650 7897908070 1.258  110.400 7916169161 1.492  114.600
Table 2.2: Comparison of TDP solvers for larger TSPLIB instances



Chapter 3

The Graph search problem

3.1 Definition

The Graph search problem (GSP) was introduced in [7]. The problem is formulated
as TDP, with each vertex having an assigned probability of finding the object. This formu-
lation is more suitable for searching an unknown space. We interpret this formulation to
imply that each vertex is assigned a priority value. Informally, the problem is described as
the deliveryman minimizing the time to deliver packages to customers, as in TDP, except
that some customers have priority over others. Delivery time should still be as low as pos-
sible for everyone. The deliveryman determines the order of customers from the product
of the priority value and the total travel time to the customer.

The formal definition of GSP is almost the same as the definition of TDP in Sec-
tion 2.1, a complete undirected graph with N vertices described by G = (V, E). V =
{v1,...,un} are different vertices, each vertex v; has a non-negative weight w;. The ver-
tices are connected by unique edges, defined as e;; = (v;,v;) € E, v; # vj. The edge
cost d(e; j) = d(v;,v;) is non-negative, d(E) € Ry . Let us have a Hamiltonian path in the
graph G given by a sequence of vertices x = (xg,...,%,), where xyp = s is the starting
point (depot) and n = N — 1 is the number of customers. The cost of a path to the k-th
vertex 0y via x is cumulative and is given by formula (2.1). The cost of the path through
x is then given as:

n k

cost(x) = Z wily = Z W Z d(xi—1, ;) (3.1)
k=1

k=1 =1

The optimal path is then given by formula (2.3).

3.2 Solution approach

3.2.1 Hexaly Optimizer

The program with HO is used to solve the problem for TSPLIB instances and getting
the distance matrix the same way as the program for TDP described in Subsection 2.2.1.
To solve GSP, we still need to get the vertex weights. The program reads these from a
text file, where a random integer is generated on each line.

The function model is shown in Figure 3.1. We can see that the codes are not
significantly different if we compare Figures 2.2 and 3.1. The most significant differences
are in using the priority_ar array, which contains the vertex weights, and in the notation
of the minimization formula. Formula (3.1) can not be simplified, as did formula (2.2). In
the minimized objective function obj, two sums with different index range notations exist.
The first uses the notation 1...nbC'ities, which denotes the range from 1 to nbCities — 1;
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the upper bound is not included. The second uses the notation 1..k, which implies the
range from 1 to k inclusive; the upper bound is included. The difference between these
notations is in the inclusion or non-inclusion of the upper bound of the index.

function model {
// A list variable: cities[i] is the index of the ith city in the
- tour
cities <- list(nbCities);

// All cities must be visited
constraint count(cities) == nbCities;

//start point == index
local start_id = 0;
constraint cities[0] == start_id;

// Minimize the total distance
obj <- sum(l...nbCities, k => priority_ar[cities[k]] * sum(l..k, i =>

«» distanceMatrix[cities[i - 1]][cities[i]]));

minimize obj;

Figure 3.1: GSP, function model code

Since the program is written in HM in the default mode, it handles saving data to
a text file and setting the predefined variable hzSeed like the TDP program described in
Subsection 2.2.1. The output text file has the same format as shown in Figure 2.4, with
the same assumptions.

3.2.2 Ms-GVNS

The program described in [2] contains the Ms-GVNS solver, which can solve TDP
and GSP problems. To run Ms-GVNS as a GSP solver, it is necessary not to set an
argument specifying the unit vertex weights. Since this is the same program we used to
solve TDP, the modifications described in subsection 2.2.2 are made. These modifications
are used subsequently to solve GSP. Thus, the output text file has the same format as in
Figure 2.5.

3.3 Computational evaluation

For solver comparison, we again chose a setting of 20 runs for each instance for 120
seconds with a sampling period of 1 second. The resulting data is shown in Table 3.1. In
the table, we see that HO found a solution that was very far from c,s for some of the
smaller instances. The graphs for these instances are shown in Figures 3.2 and 3.5. It is a
problem where HO could not find a valid solution in time before sampling, so the program
saves the value —1 to the output file as an indication of a non-valid result, and these
values are not plotted in the graph. Therefore, the graph looks like HO started looking
for a solution with a delay. For the HO seed, the boundary when a valid cost is found is
ambiguous because different seeds found solutions at various times. Figure 3.3 shows the
cost values of all runs for the att532 instance. We can see that each run finds a different
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first valid value at a different time. That is why the waveform looks like the function is
gradually increasing and then decreasing. Since the deviation of the HO costs from the
cpy cost remained very high at the end of the measurement, we executed an extended run
of the HO for the att532 instance, taking one hour, to verify its convergence behavior.
The progress of this run is shown in Figure 3.4. The black vertical dashed line indicates
the time limit of 120 seconds at which the runs usually ended. The graph shows that the
algorithm indeed converges but very slowly. It is not directly apparent from the graph,
but a mG value was approximately 13 % at the end of the run.

To see for how large instances this problem occurs, we plotted the graphs for instances
lin318, pr226, and rat195 in Figures 3.6, 3.7, and 3.8. Figures 3.6 and 3.7 show that there
is still a problem of not finding a solution before sampling. When we look at the graphs
in Figure 3.8, we can see that the waveforms look better, and there is no sign of invalid
samples. However, when we look at the beginning of each HO run in Figure 3.9, we can
see that sometimes the first sample is invalid, and a run is delayed. Since it is only one
sample, the rest of the run is not affected as much as the previous instances. From this,
we can see that for instances that have less than 200 vertices, HO can find a solution with
little or no influence from invalid costs.

Next, we tried to see how the data and waveforms would look for larger instances. We
can see from the table that all values are far from c; s, and in one case, HO could not find
a solution. The graphs of the instances dsj1000 and pcb1173 are shown in Figures 3.10
and 3.11. In Figure 3.10, we can see the same problem; only the valid solution is found
later than in previous instances, and in Figure 3.11, we can see the case when HO was not
even able to find a valid solution during the runs.

According to the results of solving GSP and TDP, we assume that the problem of
invalid values occurs due to the large number of vertices and the complexity of formula
(3.1). For each Multi-Goal problem, there will be some number of vertices when HO can no
longer find a solution within 1 second before sampling begins. Regarding the complexity
of the formula, if we compare formulas (3.1) and (2.2), we can see that (3.1) has a more
complex notation, and we assume that the solver takes longer to process the formula. The
weights of the vertices in formula (3.1) shouldn’t affect the complexity much because when
we were creating the program to solve GSP using HO, we accidentally wrote it with the
formula cost(x) = >"1"; w; - (N — i) - d(zj—1,x;). With this formula, the program solved
even larger cases than those shown in the table without any delay. Therefore, we believe
that finding a solution also depends on the complexity of the minimized formula.
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Figure 3.2: Comparison of GSP solvers on the Figure 3.3: GSP, HO seed separated runs of
atth32 instance the att532 instance
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HO HO seed MS-GVNS
Inst Cof cg MGpest t cy MGpest t g MmGhest t
[%] [s] (%] [s] (%] [s]
st70 102473 102553 0.078 61.950 103218 0.727 59.100 102473 0.000 1.000
rat99 269138 269301 0.061 39.450 274474 1.983 77.650 269138 0.000 1.000
rat195 1107983 1263779 14.061 119.750 1203406 8.612 118.350 1108368 0.035 55.750
lin318 30647368 84036495 174.205 120.000 69746888 127.579  119.700 30704324 0.186 74.900
pr226 39644390 45965619 15.945 119.450 57786614 45.762  119.550 39651579 0.018 53.150
lin105 3323092 3339524 0.494 103.650 3359310 1.090 80.150 3323092 0.000 3.350
prd39 98853941 552629006 459.036  120.000 525081240 431.169  119.950 99162323 0.312 76.700
kroD100 4794046 4837983 0.916 114.950 4872780 1.642 87.800 4794046 0.000 1.000
atth32 92834887 727192155 683.318  119.800 642826152 592.440 119.900 93241920 0.438 109.800
prl07 10038865 10072487 0.335 89.550 10077896 0.389 77.350 10038865 0.000 1.000
pr1002 622963153 6988958438  1021.890 119.650 9016005418  1347.277 119.550 629515052 1.052 113.900
pcb1173 162810159 — — — 1747544459 973.363  110.000 164526072 1.054 111.300
ul060 563381902 9262798412  1544.142 119.850 8167241404 1349.681 113.278 567490790 0.729 113.900
dsj1000 42160373602 689760265379 1536.039  119.550 609630525248 1345.980 118.944 42579949421 0.995 112.200

Table 3.1: Comparison of GSP solversfor TSPLIB instances



Chapter 4

The Generalized TSP

4.1 Definition

The Generalized TSP (GTSP) [3] is an extension of TSP. TSP Searches for the
shortest path in which a traveling salesman has to visit all customers just once and return
to the starting point. Meanwhile, in GTSP, customers are divided into non-overlapping
groups (sets), and the shortest path is searched, in which the traveling salesperson visits
just one customer from each set once and forms a closed loop. How a GTSP solution could
look like is shown in Figure 4.1.

The formal definition of the GTSP is described by a complete undirected graph with
N vertices described by G = (V, E). V. = {vy,...,vn} are different vertices, they are
distributed in m sets S = {S1,...,n}, Si # 0, S;NS; = 0,7 # j and U2, S; = V.
The vertices of the set S; are denoted as {si,...,s%, } [8]. The vertices are connected by
unique edges, defined as e; ; = (v;,v;) € E, v; # vj. The edge cost d(e; ;) = d(v;,v;) is
non-negative, d(E) € R{. The shortest path is determined by the formula:

m—1
argmin L = <Z d(s%, s”"“)) + d(s7™, s71)
i=1

o€eX
subject to: (4.1)
o=(01,...,0m) €X,1<0;<m,o; #0j,i #j
s7 € Sos S0y ={s7", ... 571, 1,90 €

o is a permutation of the indices of sets S, o; is a i-th index of the sets S in the path, X
is the set of all permutations, S, is the o;-th set, and s?* is a vertex from the S, set.

Figure 4.1: Illustration of the GTSP solution [8]
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4.2 Solution approach

4.2.1 Hexaly Optimizer

The program with HO solves GTSP for instances from the GTSP-LIB and LARGE-
LIB libraries. GTSP-LIB was found on [9] and LARGE-LIB on [10]. Both libraries are
based on TSPLIB, but the instances additionally contain sections where vertices are di-
vided into sets. The format of the instance is shown in Figure 4.2. The figure shows that
compared to the TSPLIB format, only the GTSP_SETS line and the GTSP_SET_SECTION
section, which specify the number of sets and the distribution of vertex indices into in-
dividual sets, are extra. In the GTSP_SET_SECTION section, the first number indicates the
index of the set, followed by the individual vertex indices belonging to that set, and a value
of —1 indicates the end of the set. The program in function input extracts the distance
matrix, nbCities = N, nbSets = m and the sets ar array, which contains the indices of
vertices in each set.

NAME: st3

TYPE: GTSP

COMMENT: 3-city problem
DIMENSION: 3

GTSP_SETS: 2
EDGE_WEIGHT_TYPE : EUC_2D
NODE_COORD_SECTION

1 64 96

2 80 39

3 69 23
GTSP_SET_SECTION:
123-1

21-1

EOF

Figure 4.2: Example of GTSP-LIB and LARGE-LIB instance format

The function model is shown in Figure 4.3. The for loop with sets ar creates condi-
tions that declare that the program can only visit one vertex from each set. The following
condition specifies that the program can visit only as many vertices as there are sets. A
formula for the variable L from (4.1) was used for the solution search. The formula was
modified to use the indices ¢ — 1 and ¢ instead of the indices ¢ and ¢ 4+ 1. The program
handles writing to a text file in the same way as the program in subsection 2.2.1, and the
format of the output text file is shown in Figure 2.4.

4.2.2 GLNS

Generalized large neighborhood search (GLNS) is the method for solving GTSP de-
scribed in [3]. GLNS uses the Adaptive Large Neighborhood Search (ALNS) framework.
The algorithm iteratively modifies the current solution using destruction and construction
heuristics, the selection of which is adaptively guided by their past success, thus enabling
efficient solution space exploration even for difficult instances.

The original GLNS code is written in Julia. We decided to use a modified version from
[11], which is written in C++. The code is implemented only as a submodule, so we had to
write a new program that uses this submodule. We created functions for the program to
process data from the instance file by rebuilding functions from the matrix_ modul.hxm
module into C++. The GLNS module contains a pseudo-random number generator, and we
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function model {
// A list variable: cities[i] is the index of the tth city in the
— tour
cities <- list(nbCities);

// visit only ome city from each set
for [s in sets_arl]
constraint sum[i in s] (contains(cities, 1)) == 1;

// Visit only as many cities as there are sets
constraint count(cities) == nbSets;

// Minimize the total distance
obj <- sum(l...nbSets, i => distanceMatrix[cities[i - 1]][cities[i]l])

+ distanceMatrix[cities[nbSets - 1]][cities[0]];

minimize obj;

Figure 4.3: GTSP, function model code

have modified it so that the generator’s seed is set according to the current time each time
the program is executed. We get more variability in the results of the runs with this setting.
We also modified the GLNS module to produce an output text file in the format shown
in Figure 2.5 when the path search is finished, with one difference. The GLNS module
has only one solver but three modes: Fast, Middle, and Slow. Modes set the optimization
intensity in the GLNS through parameters specifying the number of iterations, trials, the
size of solution interventions, and local optimizations. Thus, the user can choose between
a faster run with lower accuracy (Fast) and a more computationally intensive but higher
quality solution (Slow). So, in the Mode: line, instead of the solver used, the settings used
will be written.

4.3 Computational evaluation

For solver comparison, we again chose a setting of 20 runs for each instance for
120 seconds with a sampling period of 1 second. The resulting data is shown in Table 4.1.
The values cpest are taken from [3], and there are instances of GTSP-LIB and LARGE-LIB.
GLNS was executed in two modes. Each mode, like HO, was run 20 times for each instance.
The first time for GLNS was in Slow mode, and the second time was in Fast mode, so
we could compare the difference between solutions that should be the most accurate and
fastest.

In the table, we can see that for instances from GTSP-LIB, both solvers found costs
close to the optimal cost. We can even see cases where the solvers found a better solution
than the reference. This may be because most of these instances are in GEO format, for
which we computed the distance matrices using the function from [1], which is different
from the pseudo-code described in TSPLIB documentation [12], which we used to make
functions for almost all types of instances. Both codes create a matrix for the same type of
instances, so the distance matrices should be practically the same; the difference may be
due to the use of different earth radii. However, the 45tsp225 instance is of type EUC_2D,
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and both solvers found better costs than the reference, which we do not know how to
explain because we followed the documentation [12] for such instances and other instances
of type EUC_2D, like 46pr226 or 641in318, we got the reference cost at best. The graphs of the
45tsp225 instance are shown in Figure 4.4. The figure shows that all the solvers found costs
lower than the reference very early on. GLNS has some termination conditions because
the figure shows how the GLNS fast run ended after less than 10 seconds of running.

More graphs are shown in Figures 4.5, 4.6, and 4.7. Figure 4.5 shows the case where
all solvers found the reference cost in the first second, and these are valid values for all
solvers. Figure 4.6 shows the graphs of instance 35si175, which has a similar number of
sets and vertices as instance 32ul59, but here, the solvers took longer to find the reference
cost, and the HO took considerably longer. This is most likely due to how the vertices
are distributed in the sets. Figure 4.7 shows the graphs of instance 89rbg443, which is the
instance where all the solvers found the solution furthest from the reference cost, but both
HO and HO seed found a better solution and faster than GLNS slow and GLNS fast.

Furthermore, we tested how HO and GLNS manage large instances. The program with
GLNS does not have memory problems like the program with Ms-GVNS and GILS-RVND
so that it can manage much larger instances. For large instances, we can better see the
dependency between the number of vertices and the size of the sets. The dependency can
be seen in the table for the 31C3k and 10C10k instances. Their final cost and time of
finding a solution differ from the rest of the LARGE-LIB instances. The instances have
many vertices but few sets, so finding a solution for them is easier. The differences in the
time of finding a solution can be seen in Figures 4.8 and 4.9; for 10C1k, it took at most 2
seconds, and for GLNS fast, it took less than a second. From Figure 4.9, we can see that
for large instances with a large number of sets, GLNS is not as fast as HO and that GLNS
has a delayed first sample. This means GLNS can not sample on time. In addition, we
can see that the program with GLNS exceeded the set limit of 120 seconds, which means
that the current program does not expect to process such large instances. For runs with
large instances, we have noticed that programs take longer to load and process data from
instances before they start looking for a solution. This preparation time is not included in
tables or graphs and is most noticeable for large instances. Therefore, we measured how
long it takes a program with HO and a program with GLNS to process instance 2370r111849
before the programs are ready to record the first sample. Both programs started to resolve
the GTSP approximately 40 seconds after execution. Hence, these delays may not be
considered when comparing solvers, as they are similar.

1.00

Solvers Solvers
0.75 — HO 0.04 — HO
—— HO seed —— HO seed
0.50 —— GLNS slow —— GLNS slow
: —— GLNS fast 0.02 —— GLNS fast
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0.00

-0.25 -0.02
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\ -0.04

-0.75
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Figure 4.4: Comparison of GTSP solvers on the Figure 4.5: Comparison of GTSP solvers on the
45tsp225 instance 32ul59 instance
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Figure 4.6: Comparison of GTSP solvers on the Figure 4.7: Comparison of GTSP solvers on the
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Figure 4.8: Comparison of GTSP solvers on the Figure 4.9: Comparison of GTSP solvers on the
10C1k instance 2370r111849 instance

4.3.1 Solver quality by instance type

The complexity of finding a GTSP solution is determined by the number of vertices
and the number of sets and vertices in each set. Therefore, we decided to analyze the
instances from Table 4.1 and compare the efficiency of the HO and GLNS solvers in terms
of the difficulty of these instances. The asymptotic complexity of GTSP is given by the
formula:

0 <m! : ﬁ ys,w) (4.2)

m is the number of sets and |S;| is the number of vertices of the set S;. The asymptotic
complexity of the problem would take very high values in a direct calculation, making it
difficult to interpret and compare. To obtain more straightforward results, we decided to
logarithm the complexity and get the formula:

0 <1og (m! 11 \sz-r)) = 0[S log() + 3. log(15:) (43)

We created 3D scatter plots based on the number of vertices, the number of sets, and the
logarithmic asymptotic time complexity, showing which solver is more efficient for each
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instance. The plots are shown in Figures 4.10 and 4.11. In these plots, we compare which
solver found the better solution; if both solvers achieved the same result, the decision was
based on the time to find the solution. Figure 4.10 shows that for GTSP-LIB instances,
the GLNS slow almost always achieves better results than HO. However, we can also
observe that HO can find a better solution for very small or, on the contrary, larger
instances. Figure 4.11 shows the instances from LARGE-LIB, where we can see that when
the number of vertices is large, and the number of sets is small, GLNS fast performs better.
However, when the number of sets increases, HO seed becomes more efficient.

From this, we could say that GLNS fast is better for instances with fewer sets but more
vertices. GLNS slow seems more efficient for instances with more sets, but the number of
vertices is not that large. HO is then good for instances with larger sets and vertices, and
with the right seed setting, HO seed can be even better than HO.
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qc

HO HO seed GLNS slow GLNS fast
Inst Chest @ meest i a meest E @ meest E @ meest E
K [s] (%] [s] (%] [s] (7] [s]
39rat195 854 854 0.000 5.600 854 0.000 8.900 854 0.000 1.000 854 0.000 1.050
40d198 10557 10557 0.000 8.350 10557 0.000 28.750 10557 0.000 1.000 10557 0.000 1.950
41gr202 23301 23256 -0.193 4.150 23256 -0.193 7.250 23256 -0.193 1.000 23256 -0.193 1.350
35si175 5564 5564 0.000 75.850 5564 0.000 11.300 5564 0.000 1.250 5564 0.002 2.450
89pch442 21657 21698 0.189 57.200 21749 0.426 67.050 21687 0.139 51.400 21745 0.407  37.450
46gr229 71972 71870 -0.142 23.600 71870 -0.142 8.750 71870 -0.142 1.050 71870 -0.142 2.050
53gil262 1013 1013 0.000 54.600 1014 0.123 45.350 1013 0.000 1.250 1013 0.000 3.200
45tsp225 1612 1601 -0.682 13.050 1601 -0.682 17.350 1600 -0.744 1.150 1600 -0.729 2.300
32ulb9 22664 22664 0.000 1.000 22664 0.000 1.000 22664 0.000 1.000 22664 0.000 1.000
88prd39 60099 60099 0.000 40.150 60141 0.069 57.150 60099 0.000 23.700 60102 0.005 38.150
80rd400 6361 6453 1.446 94.250 6381 0.311 52.200 6361 0.000 11.400 6362 0.017  21.000
89rbg443 632 644 1.899 12.200 645 1.986 56.400 651 3.030 93.150 664 5.071  53.250
72rbg358 693 693 0.000 2.100 693 0.022 26.600 693 0.036 60.650 697 0.519 21.350
60pr299 22615 22635 0.088 57.150 22623 0.036 39.000 22615 0.000 4.050 22620 0.021  10.650
64lin318 20765 20765 0.000 113.200 20787 0.104 35.600 20765 0.000 2.350 20765 0.000 9.150
53pr264 29549 29549 0.000 8.000 29549 0.000 3.200 29549 0.000 1.000 29549 0.001 4.200
36brgl80 4420 4420 0.000 1.000 4420 0.000 1.000 4420 0.000 1.050 4420 0.000 1.200
87grd31 101946 101797 -0.146 45.200 102036 0.088 69.450 101780 -0.163 24.050 101823 -0.121  36.500
40kroA200 13406 13406 0.000 4.000 13406 0.000 6.700 13406 0.000 1.000 13408 0.018 2.400
8411417 9651 9651 0.000 8.100 9651 0.000 10.250 9651 0.000 1.200 9654 0.031  32.500
45ts225 68340 68340 0.000 34.800 68349 0.013 27.100 68340 0.000 1.950 68352 0.018 3.500
40kroB200 13111 13117 0.046 16.250 13112 0.011 49.450 13111 0.000 1.000 13111 0.000 2.400
31prlb2 51576 51576 0.000 4.050 51576 0.000 5.350 51576 0.000 1.000 51576 0.000 1.050
35ftv170 1205 1205 0.000 1.000 1205 0.000 2.550 1205 0.000 1.000 1205 0.000 1.050
46pr226 64007 64007 0.000 1.000 64007 0.000 1.000 64007 0.000 1.000 64007 0.000 1.050
81rbg403 1170 1170 0.000 12.400 1170 0.000 18.400 1170 0.000 1.200 1170 0.000 12.750
562280 1079 1079 0.000 38.650 1079 0.009 38.950 1079 0.000 2.400 1079 0.000 3.650
65rbg323 471 477 1.274 52.650 473 0.467 54.050 472 0.127 61.250 476 0.977 14.350
1183r15915 309243 331158 7.087 49.700 331004 7.037 104.950 338001 9.299 78.800 348490 12.691  55.850
23701111849 427996 465720 8.814  119.800 464703 8.577 119.800 484028 13.092  110.450 498926 16.573  51.000
10C1k 2522585 2522585 0.000 1.050 2522585 0.000 1.250 2522580 -0.000 1.150 2522580 -0.000 0.200
100C10k 6158999 6454877 4.804 109.450 6338535 2.915 66.400 6466194 4.988  112.550 6217627 0.952  81.200
31C3k 3553142 3553142 0.000 12.950 3553142 0.000 21.800 3558437 0.149 48.500 3553552 0.012 9.400

Table 4.1: Comparison of GTSP solvers for GTSP-LIB and LARGE-LIB instances
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Chapter 5

The Generalized Graph search
problem

5.1 Definition

The Generalized Graph search problem (GGSP) is an extension of GSP. In this prob-
lem, the goal of the deliveryman is to find a path that minimizes total delivery time and
considers customers’ priorities, as in GSP. However, customers are divided into disjoint
sets, and the deliveryman visits just one customer from each set, corresponding to the
GTSP principle.

The formal definition of GGSP is a combination of definitions from Sections 3.1 and
4.1, a complete undirected graph with N vertices described by G = (V, E). V.={vy,...,on}
are different vertices, each vertex v; has a non-negative weight w;, and they are distributed
in M sets S = {So,...,Su-1}, Si #0, S;NS; =0, i # j and Uf\ialSi = V. The set
So contains the starting point (depot), and the number of customer sets to be visited
is m = M — 1. The vertices of the set S; are denoted as {s{,...,sk, }. The vertices
are connected by unique edges, defined as e;; = (v;,vj) € E, v; # v;. The edge cost
d(e; j) = d(vi,vj) is non-negative, d(E) € R{. The shortest path is determined by the
formula:

m m k
argmin L = Z w0y = Z W, Z d(s7=1, s7%)

oER k=1 k=1 =1
subject to: (5.1)
o= (00,...,0m) €X,1<0; <m,o; #0j,i #j
7 € Sy, 85, = {sgi,...,sfgai},S@ es

o is a permutation of the indices of sets S, o; is a i-th index of the sets S in the path, X is
the set of all permutations, Sy, is the o;-th set, and s7 is a vertex from the Sy, set. For
the set Sy, s7° is always the vertex, which is the depot.

5.2 Solution approach

5.2.1 Hexaly Optimizer

The program with HO solves GGSP for instances similar to GTSP-LIB. The difference
is that there is a section with weights for all points in the instance under the list of sets. To
process these instances, we slightly modified the function input so that the vertex weights
are read from the instance, not the adjacent text file. These instances are specially created
for this program.
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The function model is shown in Figure 5.1. We see that there are the same conditions
as for GTSP. We used the L formula from (5.1) for the search, which we modified to use
the indices ¢ — 1 and ¢ instead of ¢ and 7 + 1.

function model {
// A list variable: cities[i] is the index of the ith city in the
— tour
cities <- list(nbCities);

// Visit only ome city from each set
for [s in sets_ar]
constraint sum[i in s](contains(cities, i)) == 1;

// Visit only as many cities as there are sets
constraint count(cities) == nbSets;

//start point == index
local start_id = 0;
constraint cities[0] == start_id;

// Minimize the total distance
obj <- sum(l...nbSets, k => priority_ar[cities[k]] * sum(1l..k, i =>

— weight_matrix[cities[i - 1]][cities[il]));

minimize obj;

Figure 5.1: GGSP, function model code

The program creates an output text file like the program in subsection 2.2.1, and the
format of the output text file is shown in Figure 2.4.

5.2.2 GLNS_GGSP

GLNS for GGSP (GLNS_ GGSP) is a solver developed in [13]. The solver is a modified
version of the GLNS algorithm, adapted to solve the GGSP problem and possibly its
variants with dynamic weights. This solver, like the GLNS described in subsection 4.2.2,
allows execution in Fast, Medium, and Slow modes. Based on an agreement, the author
provided randomly generated input instances with fixed weights and, subsequently, the
results of the runs. The instances provided are those stored in ggsp__instances.zip. The
results were delivered as CSV files, which we converted into a format shown in Figure 2.5
for further processing.

5.3 Computational evaluation

For solver comparison, we chose a setting of 10 runs of 120 seconds with a sampling
period of 1 second. We only got 10 runs per instance, executed in the Medium mode,
from the author of GLNS_ GGSP, and we adapted our analysis accordingly. Next, the
GLNS__GGSP runs did not have a fixed sampling time, so we then converted the results
to a per-second sampling format by filling the empty samples with the previously known
value, as in section 2.3, when the program could not sample every second.
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The results of the runs are shown in Table 5.1. The found costs are real numbers
because the weights used are also real numbers. From the table, we see that HO found
lower costs for instances with fewer points and sets. However, as the number of vertices
and sets increases, the GLNS__ GGSP produces better results. Graphs for smaller instances
are shown in Figures 5.2 and 5.3. We can see that HO found the best solution in less than
10 seconds; HO seed is a bit slower but has a better initial cost. Figures 5.4, 5.5, and 5.6
show that as the number of sets and vertices increases, the HO and HO seed can not find
the best solution within the time limit anymore. In some cases, the HO seed found a valid
solution after a delay, leading to an increase in the average cost value in the graph, as in
Section 3.3. From the graphs, it may look like the GLNS_ GGSP waveforms are constant.
It is indeed the case for smaller instances, as most samples were sampled during the first
second of the run, and the cost was already constant for the rest of the run. From these
quickly recorded samples, only the lowest value was selected for our format. The cost
decrease was recorded for the larger instances, but the HO is often started with a much
larger initial value. Therefore, the decrease is not visible in the graph.

Since the speed of finding a solution in this case depends on multiple parameters,
we create the same 3D scatter plot for the instances as for GTSP in Subsection 4.3.1,
using the formula (4.3). The plot is shown in Figure 5.7. In the figure, we can see that the
instances are divided into three groups, and only in the one with the lowest difficulty did
HO find better results than the GLNS__GGSP. Due to the limited range of instances, we
cannot be certain if the HO method would achieve better results with larger instances as
it did for the GTSP problem, but based on the graphs for GGSP, we would conclude that
with larger instances, the delay due to invalid samples would be more pronounced, similar
to the GSP case. The minimization formula for GGSP is practically the same as for GSP,
so with a sufficiently large number of sets, we expect the problem of invalid samples to
recur.

Solvers
3.0 — HO 0.150
—— HO seed
25 —— GLNS_GGSP 0125
=20 . 0.100 Solvers
Fal 2 — Ho
g 15 © 0075 — HO seed
—— GLNS_GGSP
1.0 0.050
0.5 0.025 :\_\
0.0 == 0.000
0 2 4 6 3 10 0 10 20 30 40 50
Time [s] Time [s]

Figure 5.2: Comparison of GGSP solvers on Figure 5.3: Comparison of GGSP solvers on
the 19x81 instance the 24x104 instance
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1€

HO HO seed GLNS GGSP
Inst Chf Cg  MGhest t Cg  MGhest t Cg  MGhest t
(%] [s] (%] [s] (%] [s]
19x81 8022.933 8022.933 0.000 3.200 8022.933 0.000 2.800 8035.240 0.153 0.000
19x84 8029.302 8029.302 0.000 1.000 8029.302 0.000 2.000 8039.880 0.132 0.000
20x81 9061.211 9061.211 0.000 1.000 9061.211 0.000 4.000 9072.120 0.120 0.000
20x89 8061.127 8061.127 0.000 1.000 8061.127 0.000 2.200 8076.100 0.186 0.000
24x104 10851.308 10851.308 0.000 5.000 10851.308 0.000 13.100 10869.300 0.166 0.000
59x256  15815.850 16051.428 1.490 70.800 16063.512 1.566 63.000 15861.400 0.288 0.300
60x252 16150.130 16298.810 0.921 84.500 16590.827 2.729 52.300 16170.300 0.125 1.100
61x249 18782.100 19241.898 2.448 70.300 19242.331 2.450 52.600 18782.100 0.000 1.000
60x262 15414.000 16796.730 8.971 50.100 16091.295 4.394 59.800 15414.000 0.000 0.900
63x278 18045.800 19191.292 6.348 68.800 18637.170 3.277 69.000 18045.800 0.000 1.100
54x329  24794.900 25410.334 2.482 42.600 25874.405 4.354 73.300 24794.900 0.000 1.200
57x361  26020.347 26799.862 2.996  108.800 26734.410 2.744 59.200 26047.500 0.104 1.200
60x354  28559.104  29200.949 2.247 28.800 29969.204 4.937 70.900 28568.700 0.034 1.300
60x362  29904.000 31483.898 5.283 28.600 31141.710 4.139 45.600 29904.000 0.000 2.100
60x368  28099.000 28987.619 3.162 96.600 29328.510 4.376 45.500 28099.000 0.000 2.600
135x786  49098.000 52927.410 7.800 68.300 54573.676 11.153 98.200 49138.040 0.082 38.800
137x790 48761.400 55595.547 14.015 114.000 54357.393 11.476 89.400 48776.400 0.031  48.900
140x795 50645.900 54556.797 7.722 118.300 55657.009 9.894  108.900 50814.780 0.333  40.100
142x816  50195.800 55827.285 11.219 90.200 56358.471 12.277  106.800 50447.760 0.502 35.800
143x841 53404.100 60049.154 12.443  108.700 60092.544 12.524  115.700 53519.470 0.216  48.000

Table 5.1: Comparison of GGSP solvers






Conclusion

In this thesis, we experimentally evaluate the performance of the Hexaly Optimizer
(HO) solver in solving multi-goal problems, namely TDP, GSP, GTSP, and GGSP. The
objective was to compare the quality and speed of the solutions found by HO with the
outputs of advanced existing solvers such as Ms-GVNS, GILS-RVND, and GLNS.

The results show that HO can find quality solutions, especially for smaller instances.
In the case of GTSP, it achieved better results than the reference solver for both small
and large instances, especially when the random seed of the pseudo-random number gen-
erator is set appropriately. For GGSP, it succeeded for the smallest instances tested. The
modeling of the problems in the Hexaly Modeler was intuitive, and individual programs
could be easily adapted to different problems. The HO programs also reliably handled the
loading of large instances and always met the specified time limit for finding a solution.

On the other hand, although HO has provided competitive solutions, it has rarely
achieved optimal results. In most cases, finding an optimal or near-optimal solution took
significantly longer than other solvers. Also, selecting an unsuitable random seed could
decrease the quality or speed of the found solution compared to the default setting. For
problems with more complex minimization formulas (such as nested sums), like GSP and
GGSP, the limitations of HO became more pronounced - the computation slowed down
with increasing instance size and, in some cases, failed to find a valid solution within the
time limit. These difficulties generally show up sooner for problems with more challenging
optimization formulas.

Overall, HO can be described as a flexible optimization tool that offers an alternative
to classical heuristic solvers. Its main advantages include intuitive modeling using the
Hexaly Modeler language, good scalability, and versatility when applied to optimization
problems. Although, in many cases, it does not achieve the best results in terms of solution
quality or computation speed, it has proven to be a robust and reliable solver. Given that
it is a commercially developing product, further development can be expected, and it may
surpass some of the referee solvers in terms of performance in the future. Due to these
features, HO can become a valuable tool for solving combinatorial optimization problems.

Further research could focus on using the HO in other supported programming lan-
guages, such as C++ or Python, and try to implement it in existing programs. It could
also be beneficial to investigate whether it is possible to implement formulas with variable
weights into HO and evaluate its effectiveness in solving multi-goal problems.
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Appendix

matrix_ modul.hxm - Hexaly module for creating distance matrices for all types of
TSPLIB instances.

GGSP__instances.zip - GGSP instances for Hexaly program
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