ForSide Eksamensadministratorer
Mona Maoued
mao@sam.sdu.dk
Eksamensinformation . 44565503373
B580004102 - B580004102: Bachelorprojekt, Magnus
Jarck-Thomsen Bedgmmere
Marco Chiarandini
Besvarelsen afleveres af Eksaminator
Magnus Jgrck-Thomsen marco@imada.sdu.dk
magnj22@student.sdu.dk . +4565504031
Mette Gamst
Censor
mettegamst.dk@gmail.com

Besvarelsesinformationer

Titel: Optimering af Indsamling af Farligt Affald
Titel, engelsk: Optimization of Hazardous Waste Collection
MA& besvarelsen bruges til undervisning: Nej

University of Southern Denmark, Odense Date: 19.05.2025
Department of Mathematics and Number of keystrokes: 67.366

Computer Science

Optimization of Hazardous Waste Collection

Bachelor Project

Author: Supervisor:

Magnus Jorck-Thomsen Marco Chiarandini
14032002, Mathematics-Economics Associate Professor

6. semester Department of Mathematics

and Computer Science

University of Southern Denmark May 19, 2025

Tro og loveerklaering

Det erkleeres herved pa tro og love, at undertegnede egenheendigt og selvsteendigt har udformet
denne rapport. Alle citater i teksten er markeret som sddanne, og rapporten eller dele af den

har ikke tidligere veeret fremlagt i anden bedemmelsessammenheeng.

Magnus Jerck-Thomsen

University of Southern Denmark May 19, 2025

Abstract

Roadside collection of hazardous and textile waste is a time-consuming and recurring task,
that must be completed as fast as possible, to minimize the risk of removal or opening by
unauthorized persons. The collections are currently planned and carried out manually, and
with local knowledge, by the utility company Nyborg Forsyning & Service A/S in Eastern

Funen.

In this project it is attempted to accelerate the collections by modelling the waste collection
problem as a multi-compartment capacitated vehicle routing problem. The project is focused
on delivering a solution to the utility company, that can produce efficient collection routes, by

using exsisting open-source software and solvers, to reduce the time spent on the collections.

It is shown that the solver PyVRP produces better solutions than other comparable open-source
and commercial solvers across four synthetically generated datasets based on real-life data.
A rough estimate is given showing that the company can save a half to a full day of time on
the collection of the largest dataset, if the proposed solution is used. Future research should
investigate the possibilities of implementing automatic timetabling for the collections, and

explore whether the time it takes to complete the collections can be estimated more accurately.

Resumé

Husstandsindsamling af farligt affald og tekstiler er en tidskreevende og gentagende opgave,
der skal gennemfores hurtigst muligt for at minimere risikoen for, at det fjernes eller tilgas af
uvedkommende. Indsamlingerne planleegges og udferes pa nuvaerende tidspunkt manuelt, og
pa baggrund af lokalkendskab, af forsyningsvirksomheden Nyborg Forsyning & Service A/S
pa Dstfyn.

I dette projekt forseges det at accelerere indsamlingerne ved at modellere affaldsindsamlings-
problemet som et multi-compartment capacitated vehicle routing problem. I projektet fokuseres
der pa at levere en losning, der kan producere effektive indsamlingsruter til virksomheden, ved
hjelp af eksisterende open-source software og problemlesere og herved afkorte indsamlings-
tiden.

Det vises at loseren PyVRP leverer bedre losninger end andre sammenlignelige open-source
og kommercielle losere pa fire kunstigt fremstillede dataset, der er baserede pa data fra det
virkelige liv. Der gives et overslag pa, at virksomheden kan spare mellem en halv og en
hel dag pa det storste datasaet, hvis den foresldede losning anvendes. Fremtidig forskning ber
undersoge mulighederne for at implementere automatisk planleegning af indsamlingerne, samt

at undersoge om tiden, det tager at gennemfeore indsamlingerne, kan estimeres mere preecist.

University of Southern Denmark

May 19, 2025

Contents

1 Introduction

1.1 Collection of textile and hazardous waste in Eastern Funen
1.2 Real-life data
1.3 Synthetic data

2 Literature Review

2.1 Existing vehicle routing problem models in waste collection

2.2 Solving vehicle routing problems

3 Solution Methods

3.1 A Mixed Integer Linear Programming Model

3.1.1
3.12
3.1.3
3.14
3.15

3.2 Hybrid Genetic Search
HGS-CVRP
PyVRP

Framework,

3.2.1
322
323

3.3 OR-Tools
3.4 Hexaly

Model

Implementation with Gurobi

4 Experimental Results

41 Optimization of synthetic datasets

4.2 Solution verification
4.3 Solver comparison
4.4 Collection Time

5 Conclusion

University of Southern Denmark May 19, 2025

1 Introduction

As sustainability and environmental awareness have become more prevalent in Europe and
Denmark in recent years, the management and recycling of private and commercial waste
has also become more important and structured. In 2021, affaldsbekendtgerelsen (The Act of
Waste) [1] was amended, standardizing waste management across Denmark. It was decided
that household waste must be sorted in 10 waste fractions at household level everywhere in
Denmark: residual, food, paper, cardboard, glass, metal, plastics, food and beverage cartons,
textile and hazardous waste [1]. The 10 waste fractions are now collected at the vast majority
of households in Denmark. The collection frequency of the waste fractions varies between
municipalities; however, residual and food waste is often collected weekly or bi-weekly, while
hazardous and textile waste is generally collected less often, for example every three months.
Given the recurring nature of waste collection, the associated costs and importance in society it

is essential that the collection, recycling and disposal processes are efficient and optimized.

1.1 Collection of textile and hazardous waste in Eastern Funen

The utility company Nyborg Forsyning & Service A/S (NFS), located in Nyborg, supplies
various utilities, including waste management and operates three local recycling centers. The
collection of residual, food, paper, cardboard, glass, metal, plastic and food and beverage cartons
waste is outsourced to local contractors, while the utility company handles the collection of
textile and hazardous waste itself. Hazardous waste must be handled carefully to comply with
occupational safety and health regulations. Unlike other waste fractions hazardous waste must
be transported in a closed container. Examples of hazardous waste include, but is not limited to,
small batteries, fertilizers, paint, pesticides, electronics, cosmetics, medicine, oil, acids/bases,

spraycans etc [2].

NFS is currently relying on manual planning and the drivers” experience to collect textile and
hazardous waste. At the start of the year NFS schedules four collection weeks for the entire
year where textile and hazardous waste is collected. Well in advance of the collection weeks a
textile and hazardous waste collection registration form is opened on NFS” website. Customers
register to have hazardous waste and/or textiles collected in the following collection week [2].
In 2024 the collections were carried out in week 7, 22, 39 and 47 which in total amounted to
1570 visited addresses. Each collection had a few hundred registrations. The registration form
closes five days before the upcoming collection week and the registered customers are sorted

into groups based on postcode and area.

The customers are instructed to place the container with hazardous waste and the textiles
in a closed bag at the roadside no later than monday 8 am in the collection weeks. When

the hazardous waste containers are placed at the roadside, they must be collected as soon as

Page 1 of 37

University of Southern Denmark May 19, 2025

possible to minimize the risk of removal or opening by unauthorized persons. This is because
such removal or opening could potentially lead to polution of the environment. The customer
groups are driven according to which roads the drivers are familiar with, and the unknown
roads are driven by GPS. The trucks start at the local recycling center with 37 empty containers,
corresponding to the trucks” max capacities of hazardous waste, as will be decribed in greater
detail in section 1.2. At each customer the customer’s container of hazarous waste is swapped
with an empty container, and if there is any textile waste it is also loaded onto the truck.
Whenever a truck is filled to its max capacity, the truck returns to the recycling center to unload
the waste and load 37 new empty containers. Any longer staff breaks are taken in continuation
of the unloading and loading of the truck. Once any breaks have been taken and the truck is
prepared, the truck proceeds to its next addresses. When all registered customers have been

visited, the collection is concluded.

This bachelor project investigates the possibilities of optimizing the collection of hazardous
waste (and textiles) by NFS. The main goal is to minimize the risk of harmful substances being
released into the environment by accelerating the collection process to prevent the hazardous
waste containers being opened or removed while they are at the roadside. Further, a central
aim is to reduce unnecessary ressource consumption, consequently leading to cost savings for

the company by minimizing the distance covered and routes driven.

1.2 Real-life data

Having established the importance of effective waste collection and provided an insight into
how the collection of hazardous waste and textiles is currently carried out at NFS, this section

will describe the available data before continuing to a literature review.

NEFS has kindly agreed to provide company data and summary data of last year’s collections
to use in this project. Unfortunately, it is not possible to use actual registration data from last
year’s collections because of GDPR. Therefore, synthetic address and demand data, based on

the summary data, is generated in section 1.3.

There are two heterogeneous trucks available for the collections. Each truck has got capacity
for 37 containers of hazardous waste. The maximum amount of hazardous waste allowed is
determined by safety regulations which state that a driver can transport a maximum of 300
kg of hazardous waste, without additional qualifications [3]. Each container can store at most
5,6 kg of hazardous waste; however, the utility company, in consultation with a safety advisor,
has decided that no more than 37 containers should be transported at a time. Additionally,
one truck can transport approximately 60-80 bags of textile waste in addition to the hazardous
waste, while the other truck has got a smaller capacity of 30-40 textile bags. The company
notes that they rarely transport more than 20 textile bags at a time. In the collection week one

truck currently collects daily from 8:00 to approximately 15:00, while the other truck collects

Page 2 of 37

University of Southern Denmark May 19, 2025

daily from 9-10:00 to 15-16:00 until the collection is concluded. The company estimates that
they spend roughly 2 minutes at each customer to swap the hazardous waste containers and
load the textile waste. The unloading of waste and loading of new empty containers at the
recycling center takes approximately 20 minutes when no breaks are held. Around noon, the
truck drivers take a 20-25 minute lunch break in continuation of unloading and loading the

trucks.

Table 1 presents the summary data provided by NFS for the collections carried out in February,
May, September and November in 2024. The data shows the number of registrations for
hazardous and textile waste alongside the total number of registered customers to be visited in

each collection.

Collection\Postal codes 5540 (incl. 5550) 5800 5853 5871 (incl. 5874) Total
Hazardous Waste 51 167 35 14 267

February (week 7) Textiles 16 61 14 6 97
Customers visited 55 182 38 15 290
Hazardous Waste 50 249 57 22 378

May (week 22) Textiles 18 121 37 5 181
Customers visited 58 279 66 22 425
Hazardous Waste 75 299 84 35 493

September (week 39) Textiles 33 120 35 11 199
Customers visited 83 322 94 37 536
Hazardous Waste 51 171 42 18 282

November (week 47) Textiles 14 68 18 7 107
Customers visited 56 192 51 20 319
Total 2024 252 975 249 94 1570

16,1% 62,1% 15,9% 6,0%

Table 1: Summary data provided by NFS for the collections of 2024.

While it is possible for customers to have more than one container of hazardous waste, it is
uncommon for them to have multiple containers collected as seen in Table 1. Likewise, most
customers have at most one bag of textile waste to be collected. Consequently, it is assumed
that customers have at most one container and/or bag of textile waste to be collected in the

synthetic datasets.

1.3 Synthetic data

Since actual address data from NFS cannot be used, realistic synthetic address data is generated

to test the proposed solution. The data is generated by combining the summary data of

Page 3 of 37

University of Southern Denmark May 19, 2025

Table 1 with address data from OpenStreetMap [4] and distance data from Project OSRM
[5]. Efficient filtering, random selection and demand simulation utilities are implemented in
Python to manage the data. The following is a detailed outline of the synthetic data generation

procedure.

* As a one-time procedure, a master address dataset of Eastern Funen is retrieved from
OpenStreetMap with the data mining tool Overpass turbo [6]. This master dataset contains
the fundamental address-related data such as street names, house numbers, postcodes
and cities. Moreover, the data includes coordinates for all addresses that are necessary to
determine the distance between locations with Project OSRM. The dataset also functions as
a database, to which real-life customer data is matched to ensure data accuracy and provide

coordinates.
The following steps are performed for each generated dataset:
1. The master address dataset is filtered to the postcodes of Table 1.

2. For each postcode, a specified number of addresses is selected randomly from the filtered

dataset and the depot is inserted as the first entry in the data.

3. Collection demand is synthesized by random assignment across all postcodes. Initially,
all addresses are assigned a collection demand of 0 for all waste types. Afterwards, a
specified number of addresses for each waste type is randomly selected for which the

collection demand is changed to 1.

4. A distance matrix of the fastest routes between all pairs of addresses in the synthetic
dataset is generated with a locally hosted Project OSRM instance. Project OSRM uses a
Multi-Level Dijkstra (MLD) algorithm to find the fastest routes between locations [5]. The

distance matrix will serve as a cost matrix for optimization.

For analysis four datasets mirroring the four collections summarized in Table 1 is generated as
described above. The synthetic datasets are illustrated in Figure 1, Figure 2, Figure 3 and Figure
4. In the figures customer locations are indicated by blue dots and the depot by a black triangle.

The data used to illustrate the postal district borders is obtained from Geo Fyn [7].

Page 4 of 37

University of Southern Denmark

May 19, 2025

v

Map data from OpenStreetMap
https://www.openstreetmap.org/copyright

Figure 1: Synthetic Feb. dataset, 290 customers. Locations plotted on map of Eastern Funen.

Fa

Map data from OpenStreetMap
https://www.openstreetmap.org/copyright

Figure 2: Synthetic May dataset, 425 customers. Locations plotted on map of Eastern Funen.

Page 5 of 37

University of Southern Denmark

May 19, 2025

Map data from OpenStreetMap
https://www.openstreetmap.org/copyright

Figure 3: Synthetic Sep. dataset, 536 customers. Locations plotted on map of Eastern Funen.

¥t

S e,

ap data from OpenStreetMap
https://www.openstreetmap.org/copyright

Figure 4: Synthetic Nov. dataset, 319 customers. Locations plotted on map of Eastern Funen.

Page 6 of 37

University of Southern Denmark May 19, 2025

2 Literature Review

A significant amount of literature has been published in the field of Waste Collection Problems
(WCPs), with optimization of collection routes being one of the most examined areas; However,
it seems that there has been relatively few studies focused on large-scale route optimization of
WCPs with geographically dispersed nodes. In this context large-scale refers to problems that
requires visiting more than 200-300 nodes. Recent literature on modelling and optimization
of Vehicle Routing Problems (VRPs) in the context of WCPs is reviewed in this section. The
review is conducted with a focus on how medium and large-scale WCPs are modelled, and
further what the best existing open-source solvers or algorithms are that can be applied to
solve these problems. It is interesting to investigate freely available solutions, as the field of
route optimization in practice often is dominated by commercial solutions such as Cplex [8],
Gurobi [9] and Hexaly [10]. The dominance of commercial solutions can hinder accessibility for

companies where the need is intermittent and the cost of commercial solutions is not justifiable.

2.1 Existing vehicle routing problem models in waste collection

VRPs in the context of WCPs are most often modelled in Mixed-Linear Integer Programming
(MILP) terms and come in several variations where different constraints are considered. In
[11] they implement a Capacitated Vehicle Routing Problem (CVRP) in combination with a
backtracking search algorithm and test it on instances with up to 100 nodes with good results
[11]. The CVRP is sometimes refered to as the standard VRP variant, and it was first introduced
in 1959 [12]. It is a problem in which some cost associated with the routes travelled, often travel
distance or time spent, is minimized while collecting or delivering some goods from/to a set of
customers, from a depot using a fleet of vehicles with limited capacities [12]. An elaborate VRP
with Time Windows (VRPTW) model featuring multiple disposal facilities, driver rest periods
and time windows for customers, depots and facilities is considered in [13]. Metaheuristics
based on variable neighborhood and tabu searches are implemented sucessfully for instances
up to 2092 nodes and 19 waste disposal facilities [13]. Further, the family of VRPs has also been
applied to real-world hazardous waste collection scenarios. In [14] they model the collection of
health-care waste (e.g. sharp objects and chemicals) from geographically dispersed hospitals
as a CVRP. An adapted evolutionary approach combining genetic and local search operators is

shown to outperform another heuristic method [14].

Other studies such as [15] model waste collection as Capacitated Arc Routing Problems (CARPs).
In the study by [15] real-world examples of waste collection in six danish municipalities is
examined. The collection of general household waste from instances with up to 11.640 nodes
is modelled and a constructive CARP heuristic is developed, outperforming a comparable
heuristic on speed for large-scale instances [15]; However, CARPs are generally not employed in

the context of WCPs with geographically dispersed nodes. CARPs are better suited for another

Page 7 of 37

University of Southern Denmark May 19, 2025

category of WCPs, namely the WCPs where all addresses along the arcs have got waste to be

collected [16], such as collection of general household waste as modelled in [15].

Furthermore, there is a vibrant competition scene for the development of better VRP algorithms

and solvers which is explored in the following section.

2.2 Solving vehicle routing problems

The family of VRPs was formally shown to be NP-hard in 1981 by [17]. The NP-hard nature
of VRPs necessitates the use of efficient algorithms to solve VRP models of real-life scenarios,
which often can have hundreds of locations to visit. Consequently, medium and large-scale
VRPs are predominantly solved with heuristic and metaheuristic methods, as evidenced by the
methods employed in the literature reviewed in the preceding section. [18] clarifies that the
primary challenge of exact methods is the large numbers of variables and constraints, which
requires powerful computers and a lot of time to optimize larger instances. Heuristic methods
are often able to deliver satisfactory solutions in a shorter time span [18]. The superiority of

heuristic methods is further validated by winning solvers of recent VRP competitions.

In the VeRoLog Solver Challenge of 2019 focused on a variation of the multiperiod VRP [19]
the winning solver utilized a combination of heuristic methods joining Large Neighborhood
Search (LNS) with Variable Neighboorhood Descent (VND) in an adaptable framework [20].
In the DIMACS Implementation Challenge in 2022 eight different VRP variations including
the CVRP were represented [21]. The open-source heuristic Hybrid Genetic Search (HGS)
[22, 23, 24] demonstrated a notable prevalence in the CVRP category, by being employed in
conjunction with other algorithms in six of the eight finalists” solvers [21, 25, 26, 27, 28, 29, 30].
In particular the algorithm was utilized in the winning solvers [25, 31] of both the CVRP and
VRPTW categories [21].

The HGS algorithm was initially proposed for the multidepot VRP (MDVRP), periodic VRP
(PVRP) and combinations of these in 2012 [22]. The algorithm is population-based, combining
genetic crossovers with neighborhood search techniques [22, 23]. HGS was reimplemented in
an improved version known as HGS-CVRP specialized to tackle CVRPs in 2022 [23]. It is shown
that the improved version achieves equivalent solution quality to the original implementatation
in a substantially reduced time span [23]. In addition, the improved version outperforms a
selection of other state-of-the-art algorithms across a range of different instances [23]. As noted,
the algorithm is open-source. Wrappers are available for C, Python and Julia [24]. Moreover,
the HGS-CVRP based winner in the VRPTW category Router [31] is available as an open-source
Python library that handles a selection of VRP variants [32]. The library, which is known
as PyVRP, lowers the barriers to entry even further by implementing extra functionality, and
it acts as a user-friendly interface by making the performance critical code, implemented in

C++, accessible in Python [32]. It is noteworthy that three other finalists” solvers from the

Page 8 of 37

University of Southern Denmark May 19, 2025

CVRP category of the DIMACS challenge are also open-source, albeit implemented in more
challenging programming languages: MDM-HGS in C++ [33, 26], HGSRR in Rust [34, 28] and
the AILSII solver implemented in Java [35, 36].

Outside the competitive scene there are well-known open-source solvers such as VRPSolverEasy
[37], VROOM [38], Jsprit [39], OptaPlanner [40] and Google’s OR-Tools Routing library [41].
VRPSolverEasy is a Python library for the exact solver VRPSolver. It is shown to perform very
well for instances with up to 100 customers and even being able to solve some instances with
up to 200 customers. It utilizes advanced Branch-Cut-and-Price (BCP) algorithms based on the
best existing BCP algorithms [37]. However, VRPSolverEasy appears to only be available for
academic usage. VROOM is a C++ based solver developed by the company Verso to power their
routing API. Itis able to use data from a selection of routing engines such as Project OSRM. Tested
on a range of benchmark instances for CVRPs, with sizes ranging from 15 to 1000 locations and
number of vehicles from 2 to 207, it is shown to provide solutions with [0%; 9,37%] gaps from the
best known solutions [38]. Jsprit and OptaPlanner are both metaheuristic solvers implemented
in Java. It is claimed that Jsprit and OptaPlanner are lightweight, flexible and easy-to-use;
however, it appears that there is no available benchmark information for the solvers [39, 40].
OR-Tools provides a (meta-)heuristics based VRP solver implemented in C++ with wrappers
for Python, C# and Java [41]. In the comprehensive comparison of state-of-the-art solvers by

[23] OR-Tools is generally found to be outperformed by all other solvers in the comparison.

Given the documented succes of VRP variations being used to model WCPs, the present problem
will be modelled as a CVRP variation known as a Multi-compartment CVRP (MCVRP) in MILP
terms. The MCVRP is a CVRP that features different capacities for multiple different types
of goods, in this case waste types. In light of the superiority of HGS-based solvers in the
competitive environment, HGS-CVRP will be employed through the Python library PyVRP
[32] in combination with custom code to provide a framework that can handle optimization
of WCPs in the context as described in section 1.1 and section 1.2. In addition, to provide a
first-hand impression of how the proposed framework using PyVRP compares to other solvers,
the solvers Gurobi [9], OR-Tools [41] and Hexaly [10] will also be applied to the problem.

3 Solution Methods

Having gained an overview of the situation, available data and an insight into relevant literature,
the following sections first presents the problem formally as a MCVRP model in MILP terms
and provides its implementation with Gurobi. Subsequently, the HGS-CVRP algorithm and
the solver PyVRP are examined in detail, before introducing the proposed framework and the
implementation with PyVRP. Finally, the solvers OR-Tools and Hexaly are briefly explored, and

their implementations are presented.

Page 9 of 37

University of Southern Denmark May 19, 2025

3.1 A Mixed Integer Linear Programming Model

The MCVRP model presented in this section is based on the well-known Miller-Tucker-Zemlin-
based (MTZ) CVRP formulation, which was initially presented by [42] and subsequently im-
proved and corrected by [43] in 2004. The choice to formulate a MCVRP model based on this
model is because it is relatively simple and compact (in relation to the number of constraints).
The compactness is beneficial when the model is attempted to be solved with Gurobi on a
computer with limited memory in section 4. An alternative less compact model was also tested;
however, it was not possible to load this alternative model on the computer because of its size.
The MTZ subtour constraints adds a polynomial number of constraints, whereas e.g. the well-
known Dantzig-Fulkerson-Johnson (DFJ) subtour elimination constraints adds an exponential

number of constraints [44].

3.1.1 Sets

LetV ={0,1,2,...,n} denote the set of all nodes (locations) where node 0 is the depot, n is the

number of customers in the collection and the set of customers is denoted by V'\{0}.

Let G = (V, A) be a graph where A is the set of arcs Arc(i, j) € A.

LetT ={1,2,...,H} be the set of vehicle types where H is the number of vehicle types.

Let K ={1,2,..., P} be the set of available vehicles where P is the number of available vehicles.

Let Ky = {k € K | m(k) =t} be the sets of available vehicles of type t € T where m(k) is a
function mapping vehicle k to its type t.

Let W ={1,2,..., M} be the set of waste types where M is the number of waste types.

3.1.2 Variables

cij is the distance of the fastest route from node i to node j fori,j € V.

di is the demand of customer i € V\{0} for waste type w € W to be collected.
Qtw 1s the capacity of vehicle type t € T for waste type w € W.

Uiyt denotes the label setting variables for customer i € V\{0}, vehicle type t € T and waste

typew € W.

3.1.3 Decision variables

1 if avehicle of typet € T travels over the Arc(i,j) € A
Xijt =

0 otherwise.

Page 10 of 37

University of Southern Denmark May 19, 2025

3.14 Model

min Z Z Cz'j . xi]'t (1)

i,jeV ,i#j teT
st > xon < [Kil, VEeT (2)
jEV(0)

Z injt =1, Vie V\{0} (3)

jeV,i#j teT

Doxp=) X, Vie V\{0},VteT (4)

jeV,i#j jEV ,i#j
Uijwt — Ujwt + Qtw - Xijt
+ (Qtw —diw — d]w) " Xjit < Qtw — djw/

Uit < Qtw

Vije V\{0},i#j,YteT,Yo e W (5

- (wa e\ (0 i) djw = dl’W) - Xoit Vie V\{O},Vte TVwe W (6)

- Z djwXijt,

jeV\{0},i#]

Uint > iy + Z diw - Xjit, Vie V\[QWVte TVwe W (7)
jeV\{0},i#]

xijt € {0,1}, Vi,jeV,i#jVteT (8)

Uit > 0, Vie V\{0} Ywe WNteT. (9)

The objective function (1) states that the total distance of the routes should be minimized.
Constraints (2) states that no more than the available number of vehicles of each type can leave
the depot. Constraints (3) states that each customer is visited by a single vehicle. Constraints (4)
states that all vehicles entering a node must leave the node. Constraints (5)-(7) are the subtour
elimination constraints and the constraints enforcing the capacity constraints. Constraints (8)-

(9) states that the decision variables are binary and that the label variables are positive.

3.1.5 Implementation with Gurobi

Gurobi is a commercial mathematical optimization-based solver that utilizes exact methods,
such as the simplex method, and a selection of mixed-integer programming-specific heuristic
methods [9] to solve linear programming problems. As Gurobi is based on mathematical
optimization, the implementation of the MILP model closely resembles the model itself. The
implementation of the MCVRP model with Gurobi in Python is shown in Listing 1.

m = gp.Model ("MCVRP")
valid_moves = [(i,j,t) for i in locations for j in locations if i!=j for t in vehicle_types]

X
u

m.addVars(valid_moves, vtype=GRB.BINARY, name="x")
m.addVars(customers, wastes, vehicle_types, 1b=0, vtype=GRB.CONTINUOUS, name="u")

Page 11 of 37

20

University of Southern Denmark May 19, 2025

m.setObjective(gp.quicksum(distance_matrix[iJ[jJl*x[i,j,t] for (i,j,t) in valid_moves),
— GRB.MINIMIZE)

m.addConstrs(gp.quicksum(x[0,j,t] for j in customers if (0,j,t) in x) <= num_trucks[t] for t
— in vehicle_types)

m.addConstrs(gp.quicksum(x[i,j,t] for j in locations for t in vehicle_types if (i,j,t) in x)
< == 1 for i in customers)

m.addConstrs (((gp.quicksum(x[i,j,t] for j in locations if (i,j,t) in x) ==
— gp.quicksum(x[j,i,t] for j in locations if (j,i,t) in x)) for i in customers for t in
— vehicle_types))

m.addConstrs(uli,w,t] - ulj,w,t] + capacities[t]l[wl*x[i,j,t] + (capacities[t][w] -
— demands[iJ[w] - demands[jI[wl)*x[j,i,t] <= capacities[t][w] - demands[jJ[w] for i in
< customers for j in customers for t in vehicle_types if (i,j,t) in x and (j,i,t) in x
— for w in wastes)

m.addConstrs((uli,w,t] <= capacities[t][w] - (capacities[t][w] - max([demands[jl[w] for j in
< customers if j!=i]) - demands[iJ[wl)*x[@,i,t] - gp.quicksum(demands[jJl[wl*x[i,j,t] for
< j in customers if (i,j,t) in x) for i in customers for t in vehicle_types for w in
— wastes))

m.addConstrs(uli,w,t] >= demands[iJ[w] + gp.quicksum(demands[jl[wlxx[j,i,t] for j in
— customers if (j,i,t) in x) for i in customers for w in wastes for t in vehicle_types)

m.optimize ()

Listing 1: The MILP model implemented using Gurobi in Python.

In Listing 1, line 1 initializes a model, line 2 defines the valid moves, lines 4-5 defines the
decision variables and label setting variables, line 6 defines the objective function, lines 8-12
states that only the available number of vehicles can be used, customers are visited exactly once
and that vehicles must leave the nodes they enter, lines 14-18 are the subtour elimination and

capacity constraints and finally line 20 invokes the solver to optimize the model.

3.2 Hybrid Genetic Search
3.21 HGS-CVRP

As previously mentioned, HGS-CVRP is a population-based heuristic algorithm combining
genetic crossovers with neighborhood search techniques [23]. In this section, the algorithm is
explained in a step-by-step fashion, based on the elaborate articles of the algorithm’s author [22,
23], to facilitate understanding of its inner workings. The algorithm works by first initializing
a start population of 4y random solutions. The initial solutions are improved by local search
methods (as in step 3 below) before being sorted into a feasible and infeasible subpopulation.
Each subpopulation has size in the interval [y; u + A] where u is the minimum population size
and A is the generation size. After initializing the start population the algorithm enters the

following iterative procedure to improve the solutions further [23].

1. Selecting two parent solutions

Page 12 of 37

University of Southern Denmark May 19, 2025

All solutions in the population are characterized by rank in terms of solution quality and
diversity contribution. Each of the two parent solutions are found by randomly selecting two
solutions from the population with all solutions having equal probability to be selected. The
two selected solutions are compared on their "fitness score" and the most fit solution is chosen
to be the parent. This fitness score is calculated as a weighted sum of the solution quality rank

and diversity contribution rank [23].
2. Crossing over the parent solutions to produce a new child solution

A child solution is created by crossing over the parent solutions by an Ordered Crossover (OX).
In the crossover the child solution inherits a random part of one parent solution and inherits
the missing visits from the other parent solution. This crossover operation ignores depot visits
and hence does not respect capacity constraints. In order to produce a complete CVRP solution,
an efficient algorithm known as SPLIT is employed after each crossover. The SPLIT algorithm
optimally reinserts depot visits as delimiters in the child after the crossover operation to produce
complete CVRP solutions [23].

3. Improving the child solution by local neighborhood search

The child solution is improved by a local neighborhood search. The search uses RELOCATE,
SWAP, SWAP*, 2-OPT and 2-OPT* moves to explore local neighborhoods consisting of geo-
graphically close node pairs (i, j) where i is a node and j is its neighbor. The local neighborhood
size is controlled by a granularity parameter I' which limits the set of node pairs such that j
belongs to the I closest nodes tonode i. The search is performed iteratively, and for each node all
possible move types are evaluated in random order with its local neighborhood. Any improving

move is applied immediately. The search terminates when arriving at a local minimum [23].

The move types can be outlined as follows. The RELOCATE moves relocates node i (and
possibly its successor i + 1) to behind its neighbor j. The SWAP moves swap node i (and
possibly its successor i + 1) with its neighbor j (and possibly the neighbor’s sucessor j + 1). If
node i and its neighbor j are in the same route the single 2-OPT move replaces Arc(i,i + 1)
and Arc(j, j + 1) with Arc(i, j) and Arc(i + 1, j + 1) respectively. If node i and its neighbor j are
not in the same route the 2-OPT* moves replaces Arc(i, i + 1) and Arc(j, j + 1) by Arc(i, j) and
Arc(i+1,j+ 1) orby Arc(i, j + 1) and Arc(i + 1, j) [22]. Finally, the most advanced move is the
SWAP* move. Unlike the standard SWAP move that interchanges nodes in place, SWAP* can
insert nodes anywhere in the routes. The move is useable on nodes i and j not in the same route,
i.e. node i can be inserted anywhere in the route of its neighbor j and j can similarly be inserted
anywhere in the route of node i. The computational complexity of searching all SWAP* moves is
very high and proportional to @(12%) hence the algorithm utilizes efficient search techniques and
is restricted to explore only those routes that have intersecting polar sectors from the depot. The

additional restrictions and efficient search techniques reduces the time to explore the SWAP*

Page 13 of 37

University of Southern Denmark May 19, 2025

moves to a level that is comparable to the exploration time of the other move types [23].

If the solution is infeasible after the local search procedure, the local search procedure is run
again with 50% probability, but this time with 10 times larger penalty coefficients on solution
infeasibility in an effort to recover a feasible solution. This procedure is known as the REPAIR

operation [23].
4. Inserting the resulting child solution into the solution population

The produced child solution is inserted in either the feasible or infeasible subpopulation
depending on its status. When a subpopulation reaches its maximum size p + A an elimination
procedure starts. A solutions are eliminated from the subpopulation iteratively by first removing
identical solutions and then the least fit solutions. To ensure the generation of a satisfying
number of feasible solutions at the end of the local search procedure, the penalty coefficients

that control the solution infeasibility are adjusted throughout the local search process [23].

The algorithm terminates by some stopping criteria, i.e. a maximum runtime or a maximum

number of iterations without improving [23].

322 PyVRP

The PyVRP library uses a slightly different version of the HGS-CVRP algorithm comparable to
the original HGS-CVRP implementation. PyVRP also employs a genetic algorithm, maintains
a population with feasible and infeasible subpopulations and improves its solutions through

local search methods in an iterative manner [32].

InPyVRP the parents for the crossover are by default selected through a 2-way tournament based
on fitness score as in the original algorithm. The fitness score in PyVRP closely resembles that
of the original algorithm. On the contrary, PyVRP employs a Selective Route Exchange (SREX)
crossover operator for VRPs [32, 31]. SREX is different from OX in that it combines entire routes
from the two parent solutions in the child solution. A selection of routes from the first parent
solution is replaced with similar routes from the second parent solution. Since entire routes are
combined from two parents, nodes might be present in two routes. One parentis selected to have
all duplicate nodes removed from the routes originating from it. Any missing nodes are inserted
into the routes to minimize the detour distance from existing routes. Unlike OX, SREX preserves
the depots and hence does not need to reinsert the depots [31]. In the local search PyVRP utilizes
moves that closely resembles the moves of the original algorithm; however, they have been
implemented slightly differently by collecting and combining the moves in fewer functions [32].
To manage the populations PyVRP uses the same approach as the original algorithm. When
a subpopulation grows to its maximum size, identical solutions are first eliminated and then
the least fit solutions [32]. While the original HGS-CVRP algorithm is entirely implemented in
C++ [23], only the performance-critical code in PyVRP is implemented in C++ e.g. the local

Page 14 of 37

University of Southern Denmark May 19, 2025

search, while the rest of the code is implemented in Python [32]. The PyVRP solver has been
benchmarked against the orginal HGS-CVRP algorithm and Best-Known Solutions (BKS) across
100 CVRP instances, covering a wide range of characteristics and instance sizes. The orginal
HGS-CVRP algorithm achieves a mean gap to BKS of 0,11% across the instances, and slightly
outperforms PyVRP that achives a mean gap to BKS of 0,22% [32].

3.2.3 Framework

The proposed WCP framework, which is facilitated by the extensive functionality of the PyVRP

solver, can be outlined as follows.
1. The synthetic data (described in section 1.3) is loaded and prepared to be used in the model.

2. As the PyVRP solver does not support vehicles making multiple trips and cannot auto-
matically determine the optimal number of vehicles to use, a vehicle set formation function is
utilized. The set formation function works by identifying the smallest set of vehicles needed to
collect all waste for a given VRP instance, and thus ensures the number of routes is minimized.
In practice the function works by adding copies of the unique vehicles to the set of available
vehicles K, to expand the set of available vehicles for the solvers. Each additional copy of a
vehicle reflects that the vehicle is available to take an additional route. The function works as

follows. The ratios of demand to capacity for each waste type w € W is computed by

_ Zievyioy diw
¢ ZteT Qtw : |Kt|

if maxyew (Ry) < 1 the number of available vehicles K is feasible and the framework continues

R

to the next step. If maxyew (Ry) > 1aniterative procedure is started in which the set of available
vehicles K is expanded repeatedly, with copies of the unique vehicles, until maxyew(Ry) < 1.
The vehicles are added in a sub-iterative procedure in which the waste types demanding the
largest increase in capacity are prioritized. Therefore the vehicles are copied to K in descending

order with respect to the capacities of the vehicle types T for the most prioritized waste types.

To illustrate the iterative procedure consider the following small example based on the two
vehicles available at NFS. Both vehicles can transport 37 containers of hazardous waste. Vehicle
1 can additionally transport 60 bags of textile waste, and vehicle 2 can transport 30 bags of
textile waste in addition to the hazardous waste. Assume that there is demand to have 100
containers of hazardous waste and 120 bags of textile waste collected in total. Initially, the ratios
for hazardous and textile waste are 1,35 and 1,33 respectively. Thus the vehicle set formation
function will prioritize adding a copy of the vehicle type with the greatest capacity for hazardous
waste; however, since both vehicle types have got the same capacity for hazardous waste, the
function adds a copy of the vehicle type with the largest capacity for textile waste first, namely

vehicle 1. After adding an extra copy of vehicle 1, the ratios for hazardous and textile waste

Page 15 of 37

10

11

12

University of Southern Denmark May 19, 2025

are 0,9 and 0,8 respectively, and the iterative procedure terminates. The vehicle set formation

function is summarized in Algorithm 1.

Algorithm 1: Vehicle set formation

T set of vehicle types;

K set of vehicles;

Compute Ry, for w € W;

while maxyew(Ry) > 1 do

w* = argmax,, Rqy);

L = list of vehicle types T sorted in decreasing order of
capacity forw € Wfor decreasing order of Ry, forw € W;

while R~ > 1 do

y = extract first element of L and move it to the end of L;

add y to K;
Compute Ry-;
end
end

3. A PyVRP model is created, the found set of vehicles and the customer, demand and distance
data previously prepared is added to the model. It is important to note that PyVRP converts
all numeric input values to integers [32]. Therefore, the distance data from Project OSRM is
multiplied by 10, before being loaded into the model, to ensure that no data is lost. Similarly,
the results produced by PyVRP are divided by 10. The framework handles the scaling of values

automatically.

4. The PyVRP solver is invoked to optimize the MCVRP. Two stopping criteria are set to
make sure the solver does not run for an unnecessarily long time. The solver is invoked with a
default max runtime of 900 seconds and a maximum of 100.000 iterations without improvement;
however, these criteria can easily be changed by the user. The decision to set a default maximum

runtime of 900 seconds is subjectively based on what is considered a reasonable waiting time.

The implementation of the MCVRP in the proposed framework using the PyVRP solver is based
on the CVRP example code from the PyVRP documentation [32]. The implementation with
PyVRP, excluding any other auxiliary code, is shown in Listing 2.

m = Model ()

for t in range(0,len(num_trucks)):
m.add_vehicle_type(num_trucks[t], capacity=capacities[t])

depot = m.add_depot(x=coordinates[@][0], y=coordinates[@]1[1])
clients = []

for i in range(1,len(coordinates)):
if len(demands[@0]) == 1:

Page 16 of 37

18

20
21
22
23
24
25
26
27

29

University of Southern Denmark May 19, 2025

to_deliver = int(demands[i][@])
else:
to_deliver = []
for subdemand in demands[il]:
to_deliver.append(int(subdemand))

client = m.add_client(x=int(coordinates[i][@]), y=int(coordinates[i][1]),
— delivery=to_deliver)
clients.append(client)

locations = [depot] + clients
i,j = 0,0
for frm in locations:
for to in locations:
m.add_edge(frm, to, distance=distance_matrix[iJ[jI*10)
j+=1
i+=1
j=0

res = m.solve(seed = seed, stop=MultipleCriteria([MaxRuntime(runtime),
< NoImprovement (100000)1))

Listing 2: The MCVRP implemented in the proposed framework using the PyVRP solver.

In Listing 2, line 1 initializes a model and lines 3-4 adds the vehicles to the model. The vehicles
are added to the model by specifying the number of vehicles available of each type and passing
lists of each vehicle type’s capacities. Line 6 adds the depot to the model. Lines 8-18 creates and
adds each customer to the model by specifying the customers’ coordinates and passing lists of
the customers” demands for each waste type to be collected. In lines 20-27 the edges between all
locations are added to the model by specifying the distance from each node to all other nodes.
The distances are multiplied by 10 to ensure that no information about the problem is lost,
when the distances are converted to integers. Line 29 invokes the PyVRP solver to optimize the

problem and sets the stopping criteria.

In addition to the main PyVRP-based implementation, the MILP model described in section
3.1 is implemented in the framework with the open-source Python library PuLP [45] and
Gurobi. The MILP model has been implemented in the framework to enable the possibility
of employing exact methods. However, as previously explained, this is mostly only possible
for smaller problem instances. The MILP model is implemented in a slightly more restricted
version by changing constraints (2) from inequalities to equalities. The constraints are changed
since the number of needed vehicles, to collect all the waste, is known from the set formation
function explained above. Otherwise, the implementation follows the implementation shown
in Listing 1 with Gurobi. The implementation for PuLP closely resembles the implementation
with Gurobi.

The framework is implemented to utilize Gurobi as the MILP solver if it is available. Otherwise,
the framework resorts to PuLP and open-source solvers that are less performant but available

to all users.

Page 17 of 37

® N o G

25
26
27

29
30

University of Southern Denmark May 19, 2025

3.3 OR-Tools

In the context of VRPs OR-Tools [41] employs a two-step procedure to produce its solutions. First
an initial solution is found with a first solution strategy. The first solution strategy used, in the
examples of the OR-Tools documentation, is a cheapest arc heuristic, but other strategies such as
the Savings and Christofides algorithms are available. Since the cheapest arc algorithm is used
in the examples of the documentation, it will also be employed as the first solution strategy
for the comparison in section 4. The cheapest arc algorithm starts at the depot, and then adds
the next node that creates the cheapest route segment to the route in an iterative procedure.
The iterative procedure continues until the capacity constraints for the vehicle are met. It then
proceeds to the next vehicle and so on to create a complete set of routes [41]. Subsequently,
OR-Tools applies a local search strategy to improve the initial solution until the time limit is
reached. In the documentation of OR-Tools, the recommended local search strategy is Guided
Local Search (GLS). GLS is a metaheuristic algorithm capable of escaping local minima. OR-
Tools states that GLS generally is the most efficient metaheuristic for VRPs [41], and hence it

will be applied as the local search strategy in the comparison.

The implementation of the MCVRP using OR-Tools is based on the CVRP example code from
the OR-Tools documentation [41]. The OR-Tools implementation, excluding any auxiliary code,
is shown in Listing 3.

manager = pywrapcp.RoutingIndexManager (len(data["distance_matrix"]), datal[”"num_vehicles"],
— data["depot”"])

routing = pywrapcp.RoutingModel (manager)

def distance_callback(from_index, to_index):
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode (to_index)
return data["distance_matrix"J[from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(distance_callback)
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

def demand_callback_hazardous(from_index):
from_node = manager.IndexToNode (from_index)
return datal["demands_hazardous"]J[from_node]

demand_callback_hazardous_index =

— routing.RegisterUnaryTransitCallback (demand_callback_hazardous)
routing.AddDimensionWithVehicleCapacity(

demand_callback_hazardous_index,

@, # null capacity slack

data["vehicle_capacities_hazardous”"],

True, # start cumul to zero

"Capacity")

def demand_callback_textile(from_index):
from_node = manager.IndexToNode (from_index)

return data["demands_textile”J[from_node]

demand_callback_textile_index = routing.RegisterUnaryTransitCallback(demand_callback_textile)
routing.AddDimensionWithVehicleCapacity (

Page 18 of 37

31
32
33
34
35

37
38

39

41

University of Southern Denmark May 19, 2025

demand_callback_textile_index,
@, # null capacity slack
data["vehicle_capacities_textile_waste"],

True, # start cumul to zero
"Capacity")
search_parameters = pywrapcp.DefaultRoutingSearchParameters ()

search_parameters.first_solution_strategy =

— (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
search_parameters.local_search_metaheuristic =

— (routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)

solution = routing.SolveWithParameters(search_parameters)

Listing 3: The MCVRP implemented using OR-Tools.

In Listing 3, lines 1-3 makes the data available to the model and initializes the model with
the number of customers, number of vehicles and the depot. Lines 5-11 defines a distance
callback function and instructs OR-Tools to use the distances from the distance matrix as the
arc costs. Lines 13-15 defines a demand callback function to get the amount of hazardous waste
at customers. Lines 17-23 adds the capacity constraints for hazardous waste using the demand
callback function and the vehicles’ capacities for hazardous waste. Lines 25-35 defines a demand
callback function for textile waste and similarly adds the capacity constraints for textile waste.
Lines 37-39 instructs OR-Tools to use the cheapest arc algorithm as the first solution strategy

and GLS as the local search strategy. Line 41 invokes the solver to optimize the problem.

3.4 Hexaly

Hexaly is a commercial closed-source solver, so the methods used in the solver are not publicly
known; however, Hexaly is described as a new kind of mathematical optimization solver
combining exact methods with heuristic methods such as local-search heuristics [10]. Hexaly
uses a different and more mathematical set-based modelling API compared to e.g. Gurobi.
Hexaly uses sets, lists, intervals and other mathematical concepts. Hexaly claims to excel in
speed for combinatorial problems such as routing, scheduling and packing problems [10]. The
implementation of the MCVRP using Hexaly is based on the CVRP example code from the
Hexaly documentation [10]. The Hexaly implementation, excluding any auxiliary code, is
shown in Listing 4.

with hexaly.optimizer.HexalyOptimizer () as optimizer:
model = optimizer.model

customers_sequences = [model.list(nb_customers) for _
model.constraint (model.partition(customers_sequences))

in range(nb_trucks)]

demands_haz = model.array(demands_data_haz)

demands_tex = model.array(demands_data_tex)
customer_dist_matrix = model.array(customer_to_customer)
depot_to_customers_matrix = model.array(depot_to_customers)
customers_to_depot_matrix = model.array(customers_to_depot)

dist_routes = [Nonel * nb_trucks

Page 19 of 37

27

29
30
31
32

University of Southern Denmark May 19, 2025

for k in range(nb_trucks):
sequence = customers_sequences[k]
c = model.count(sequence)

demand_lambda_haz = model.lambda_function(lambda j: demands_haz[j])
route_quantity_haz = model.sum(sequence, demand_lambda_haz)
model.constraint(route_quantity_haz <= truck_capacities_haz[k])

demand_lambda_tex = model.lambda_function(lambda j: demands_tex[j1)
route_quantity_tex = model.sum(sequence, demand_lambda_tex)
model.constraint(route_quantity_tex <= truck_capacities_tex[k])

dist_lambda = model.lambda_function(lambda i: model.at(customer_dist_matrix,
— sequencel[i - 1], sequencel[il))
dist_routes[k] = model.sum(model.range(1, c), dist_lambda) + model.iif(c > 0,
— depot_to_customers_matrix[sequence[0]] + [sequencelc - 1]]1, @)
total_distance = model.sum(dist_routes)

model .minimize(total_distance)
model.close ()
optimizer.solve ()

Listing 4: The MCVRP implemented using Hexaly.

In Listing 4, lines 1-2 initializes a model. Line 4 creates a sequence of customers that can be
visited by each truck. Line 5 adds the constraint that each customer must be visited by exactly
one truck. Lines 7-11 creates Hexaly arrays of the data. Line 13 defines an empty list of the
distances each truck traverses. Lines 14-27 form a for loop that iterates over each truck in
the model. Lines 15-16 in the for loop counts the number of customers visited in the trucks’
sequence of customers, lines 18-24 adds the capacity constraints for hazardous and textile waste
for the truck, line 26 defines a lambda function for the distance covered by the truck and line 27
updates the list of distances each truck traverses with the distance covered by the truck. Finally,
lines 29-32 states that Hexaly should minimize the total distance covered, closes the model and

invokes the solver to optimize the problem.

4 Experimental Results

In this section the proposed framework is first applied to the synthetic datasets, the resulting
solutions are verified, and the framework is compared against the solvers Gurobi, OR-Tools and
Hexaly. Finally, an estimate of how long the optimized collections will take to complete is given.
All experiments in this section are run on a computer with an AMD Ryzen 7 PRO 7840U 3.3
GHz processor with 16 GB of RAM, running Fedora 41.

4.1 Optimization of synthetic datasets

The synthetic datasets are optimized with the proposed framework utilizing PyVRP version
0.10.1. Since the PyVRP solver is non-deterministic, the datasets are each optimized three times

with different seeds using the default 900 seconds of runtime or 100.000 iterations without

Page 20 of 37

University of Southern Denmark May 19, 2025

improvement. Given that the capacities of the trucks for textile waste are varying, the lower
limits of 60 and 30 bags respectively are assumed. The median results of the three runs of each

synthetic dataset are reported in Table 2.

Collection n P Haz Tex Obj.Val. Time (s) Total runtime (s)

February 290 8 267 97 284.826,2 821 900
May 425 11 378 181 357.390,0 886 900
September 536 14 493 199 429.976,6 900 900
November 319 8 282 107 294.350,6 50 900

Table 2: Median results for each synthetic dataset. 7 is the number of customers. P is the
number of vehicles. Haz and Tex denotes the number of hazardous waste containers and bags
of textile waste to be collected respectively. Time (s) is the time spent to achieve the best objective

value.

The routes of the median results are superimposed on the plots in Figure 5, Figure 6, Figure
7 and Figure 8 for the February, May, September and November collections respectively. Note
that the superimposed routes do not reflect the roads driven but the connection between nodes.
Each color represents an individual route. Statistics detailing the optimizations of the median
results are plotted with PyVRP in Figure 9, Figure 10, Figure 11 and Figure 12. The top diversity
panels show the average diversity of the solutions in the feasible and infeasible populations. The
middle objective panels show the best and average solution quality in the given population. The

bottom iteration runtime panels show the runtime of each iteration of the entire optimization.

Interestingly, a good solution is very quickly found in the optimization of the November dataset.
This is evidenced by the objectives plot as seen in Figure 12. The spikes seen in the diversity
and objectives plots in Figure 12 occur when the genetic algorithm in the PyVRP solver restarts.
The genetic algorithm restarts after 20.000 iterations without improvement [32], which naturally

happens quickly as the solution was found early in the search.

In the optimization of the February dataset (Figure 9) the objective value improves very little
after the first 10.000 iterations. The optimizations of the larger May (Figure 10) and September
(Figure 11) datasets benefit more from running longer. as they improve noticeably right up
until the end. These findings suggest that setting a maximum runtime of 900 seconds is not
unreasonable, although it may be excessive for smaller datasets. Conversely, the findings

indicate that larger datasets might benefit from even longer runtimes, e.g. 1200 seconds.

Page 21 of 37

University of Southern Denmark May 19, 2025

Map data from OpenStreetMap
https://www.openstreetmap.org/copyright

Figure 5: Synthetic Feb. dataset, 290 customers. Routes plotted on map of Eastern Funen.

Map data from OpenStreetMap '
https://www.openstreetmap.org/copyright

Figure 6: Synthetic May dataset, 425 customers. Routes plotted on map of Eastern Funen.

Page 22 of 37

University of Southern Denmark May 19, 2025

<

Map data from OpenStreetMap -
https://www.openstreetmap.org/copyright

Figure 7: Synthetic Sep. dataset, 536 customers. Routes plotted on map of Eastern Funen.

Map data from OpenStreetMap' '
https://www.openstreetmap.org/copyright

Figure 8: Synthetic Nov. dataset, 319 customers. Routes plotted on map of Eastern Funen.

Page 23 of 37

University of Southern Denmark

May 19, 2025

°
S

°
kS

Avg. diversity

02

0.0

Diversity
—— Feas. diversity
—— Infeas. diversity
0 10000 20000 30000 40000
Iteration (#)

Objective

1e6 Objectives

—— Infeas. best

Infeas. avg.

—— Feas. best

Feas. avg.

; I T
10000 20000 30000 40000

Iteration (#)

Runtime (s)

Iteration runtimes

10000 20000

Iteration (#)

30000 40000

Figure 9: Optimization statistics of diversity, objectives and iterations runtimes for median

result of the synthetic Feb. dataset.

06

Avg. diversity

°
S

02

Diversity

—— Feas. diversity
—— Infeas. diversity

0 5000 10000 15000 20000 25000 30000 35000
Iteration (#)

Objective

1e6 Objectives

—— Infeas. best
Infeas. avg.

—— Feas. best
Feas. avg.

5000 10000 15000 20000 25000 30000 35000

Iteration (#)

Runtime (s)

Iteration runtimes

5000 10000 15000 20000 25000 30000 35000
Iteration (#)

Figure 10: Optimization statistics of diversity, objectives and iterations runtimes for median

result of the synthetic May dataset.

06

Avg. diversity

Diversity

—— Feas. diversity
— Infeas. diversity

0 5000 10000

Iteration (#)

15000 20000

Objective

1e6 Objectives

5000 10000
Iteration (#)

15000

— Infeas. best
Infeas. avg.

—— Feas. best
Feas. avg.

20000

Runtime (s)

3

0175

Iteration runtimes

°

5000 10000
Iteration (#)

15000 20000

Figure 11: Optimization statistics of diversity, objectives and iterations runtimes for median
result of the synthetic Sep. dataset.

Diversity

08

°
S

Avg. diversity

°
kS

02

0.0

—— Infeas. diversify

0 20000 40000 60000

Iteration (#)

80000 100000

Objective

1e6 Objectives

—= Infeas. best

20000 40000 60000

Iteration (#)

80000

100000

Runtime (s)

Iteration runtimes

20000 40000 60000

Iteration (#)

80000 100000

Figure 12: Optimization statistics of diversity, objectives and iterations runtimes for median

result of the synthetic Nov. dataset.

Page 24 of 37

University of Southern Denmark May 19, 2025

4.2 Solution verification

The found solutions are verified by thoroughly examining each individual route of a solution.
The routes are inspected visually and with a Python script to ensure no subtours are present,

that all capacity constraints are respected and that all nodes are visited exactly once.

The verification script works by loading the produced routes, the demand data and the set of
available vehicles. The script runs through each individual route keeping track of which nodes
have been visited and which nodes have yet to be visited. The capacities are taken into account
by summing up the demands for the nodes in each route and verifying that the total demands

of the route are less than or equal to the assigned vehicle’s capacities.

All solutions are found to be valid solutions satisfying the aforementioned requirements.

4.3 Solver comparison

In order to provide a first-hand impression of the differences in performance between various
solvers, a comparison is made between the proposed framwork using PyVRP, the MILP model
implemented with Gurobi, heuristics-based OR-Tools and the commercial solver Hexaly. Al-
tough it has previously been established that OR-Tools is generally outperformed for VRPs
by most other heuristic-based solvers [23], OR-Tools is included in the comparison as it is
a very popular and easily accessible solver, whereas most other heuristic based solvers are
more challenging to set up. The MILP model implemented in Gurobi represents what can be
achieved with a relatively simple and compact MILP formulation solved by a state-of-the-art
mathematical optimization-based solver. It is important to note that the results produced by
Gurobi only represent the specific MILP formulation used, and that other formulations might
produce different results. Finally, the solver Hexaly is included to represent the group of

commercial solvers specifically designed for VRPs and other combinatorial problems.

The MILP model is implemented with Gurobi as described in section 3.1 and section 3.2.3. In

an effort to improve performance, Gurobi is run with the following non-default settings:
1. MIPFocus is set to 1 to find feasible solutions faster.
2. Heuristics is set to 0,8 to produce more and better feasible solutions.
3. Nodefilestart is set to 0,5 to limit memory usage.

4. SoftMemLimit is set to 15 to exit the optimization gracefully if memory usage is higher
than 15 GB.

Additionally, three optimizations are performed with different values for NoRelHeurTime.
Using this parameter enables a NoRel heuristic which searches for high-quality feasible sol-

utions. The intended purpose of the NoRel heuristic is to assist in cases where the root relaxation

Page 25 of 37

University of Southern Denmark May 19, 2025

is difficult; however, it is also helpful for combinatorial problems [9] such as VRPs. In this case,
the idea is to leverage the NoRel heuristic to achieve a better intial solution and to speed up
finding a first inital solution that the solver can improve upon. The values of NoRelHeurTime
used are 0%, 15% and 100% of the total runtime to see how the different runtimes of the NoRel

heuristic affects the solution quality.

To further assist Gurobi, vehicle sets formed from a single vehicle type are optimized in addition
to the standard vehicle sets formed from both vehicle types. This effectively halves the size of the
MILP problem. To ensure that the routes produced are still valid, when the company collects
the waste using both trucks, the single vehicle type is assumed to be the smallest truck type
with capacity for 37 boxes of hazardous waste and 30 bags of textile waste. Using vehicle sets
formed from only the smallest truck type is possible based on the routes found with PyVRP.
It is observed that more than 30 textile bags are never allocated to any of the trucks on any of
the routes. Furthermore, when the ratios of demand to capacity are calculated for vehicle sets
formed from only the smallest truck type, it is seen that the number of trucks needed to collect
all waste is the same regardless of whether the vehicle sets are formed from both truck types or
only the smallest truck type. Note that this does not hold in general. It is also important to note
that it might be sub-optimal to form the vehicle sets from only the smallest truck type, as there
is no proof that the optimal solutions will have less than 30 bags of textile waste allocated to all

routes, but it seems likely based on the routes found with PyVRP.

The ratios of demand to capacity for the vehicle sets, formed from both truck types and a single
truck type respectively, are presented in Table 3, showing that the vehicle sets formed from the

single truck type are also feasible.

Both truck types Single truck type

Collection P Haz Tex Rhazardous Rtextile Rhazardous Rtextile

February 8 267 97 0,90 0,27 0,90 0,40
May 11 378 181 0,93 0,35 0,93 0,55
September 14 493 199 0,95 0,32 0,95 0,47
November 8 282 107 0,95 0,30 0,95 0,45

Table 3: Ratios for the vehicle sets formed from both truck types and the smallest truck type
respectively. Haz and Tex denote the number of hazardous waste and textile waste to be

collected respectively.

The OR-Tools solver is setup as described in section 3.3. Since it is not possible to set a seed in
OR-Tools, and Gurobi is a deterministic solver, these are only run once for each dataset and set
of settings. Hexaly is setup as described in section 3.4. Hexaly does support setting a seed and

uses randomness in its search. Hexaly is therefore also run three times using the same seeds

Page 26 of 37

University of Southern Denmark May 19, 2025

as PyVRP. Hexaly also appears to convert numerical values to integers, so the distance data is
scaled in the same way as for PyVRP. The Hexaly results reported are the median results of the

three runs.

All the solvers are set up to use the same vehicle sets, formed by the set formation function
described in section 3.2.3, except for Gurobi that also performs optimizations with the vehicle
sets formed from only the smallest truck type. The solvers are run with a time limit of 900

seconds yielding the results in Table 4, Table 5 and Figure 13.

NRHT = 0% NRHT =15% NRHT = 100%

Collection Obj. Val. Lb. Obj. Val. Lb. Obj. Val. Lb.

Panel A: Vehicle set formed from both truck types

February - 196.852,9 863.431,4 196.845,8 359.663,2 164.431,6
May - 260.288,5 - 260.301,8 - 213.892,4
September - 289.564,1 - 289.517,98 - 236.127,2
November - 211.531,5 - 211.544,5 672.542,6 171.730,5

Panel B: Vehicle set formed from the smallest truck type

February 311.443,0 198.433,8 310.079,1 199.511,6 295.095,8 195.430,3

May - 263.528,2 1.412.838,4 265.002,7 551.490,5 260.475,2
September - 291.542,9 - 293.258,7 1.952.214,6 289.572,3
November - 210.665,9 359.204,7 214.522,1 391.081,4 210.023,0

Table 4: Gurobi optimizations of the MILP formulation using vehicle sets formed from both
truck types (panel A) and the smallest truck type (panel B). Results of using 0%, 15% and 100%
of the total runtime in the NoRel heuristic, denoted by NoRelHeurTime (NRHT), are reported.
Obj. Val. denotes the best objective value found. Lb. denotes the lower bound on the best

possible objective. "-" indicates that no solution was found.

The results reported in Table 4 demonstrates that the reduced model size, achieved by forming
the vehicle sets from only the smallest vehicle type, yields more and better results compared
to forming the vehicle sets from both vehicle types. Additionally, the results indicate that
applying the NoRel heuristic for a greater percentage of the total runtime generally leads to
better solutions. The best solutions are found when the NoRel heuristic is run for 100% of
the runtime, except for the November dataset where the best solution is found with the NoRel
heuristic running for 15% of the runtime. However, as seen in the table, using the NoRel
heuristic for more of the runtime comes at the cost of worse lower bounds since Gurobi spends

more time trying to find good solutions.

Page 27 of 37

University of Southern Denmark May 19, 2025

Gurobi* Hexaly

Collection n P Haz Tex PyVRP OR-Tools Obj. Val. Lb. Obj. Val. Lb.

February 290 8 267 97 284.826,2 286.497,8 295.095,8 195.430,3 285.202,5 283.553
May 425 11 378 181 357.390,0 376.308,2 551.490,5 260.475,2 358.393,0 351.976
September 536 14 493 199 429.976,6 464.6954 1.952.214,6 289.572,3 431.034,8 415.486
November 319 8 282 107 294.350,6 305.245,8 391.081,4 210.023,0 295.013,1 292.122

Table 5: PyVRP and Hexaly results are the median results of three runs. *Gurobi results are the
results using a vehicle set formed from the smallest truck type and NHRT = 100%. Obj. Val.
and Lb. denotes the best objective value found and the lower bounds respectively for Gurobi
and Hexaly. The best objective values for each instance are highlighted in bold, and the best
lower bounds are italicized. n is the number of customers. P is the number of vehicles. Haz and

Tex denotes the number of hazardous waste containers and bags of textile waste to be collected

respectively.
Instance 1, February Instance 2, May
286500 - ° .
375000
Q ()
S 286000 - S
= = 3700004
> >
(5] ()
= =
ai 285500 3 i 365000
Ke) Qo
(e} s (e}
285000 360000
[]
 § 3 .
Py\;RP ORTlooIs He>l<a\y Py\}RP ORTIOOIS He>l<aly
Instance 3, September Instance 4, November
[] []
460000 A
303000
Q Q
=) =
© [
> 450000+ >
.% _g 300000 4
© ©
2 o
Qo Qo
5 440000+ S 197000
[] o
i .]
430000 hd , , 294000 L | I
PyVRP ORTools Hexaly PyVRP ORTools Hexaly

Figure 13: The objective value after 900 seconds of runtime for each run of the algorithms

excluding Gurobi.

The results reported in Table 5 and seen in Figure 13 show that PyVRP and Hexaly are superior
in solution quality compared to OR-Tools and Gurobi. PyVRP and Hexaly produces very similar

Page 28 of 37

University of Southern Denmark May 19, 2025

objective values with PyVRP delivering marginally better results. OR-Tools yields results that
are slightly worse than PyVRP and Hexaly on the smaller February and November datasets.
However, the results of OR-Tools are notably worse on the larger May and September datasets.
Gurobi is only competitive on the smallest February dataset and performs significantly worse
on the other datasets. The lower bounds produced by Hexaly indicates that the PyVRP and

Hexaly solutions are very good.

For the solutions of each solver, the percentage-wise difference relative to the lower bounds

from Hexaly and the best solutions from PyVRP is calcuated as follows,

Ob;j. Val. - Ib.) Ob;j. Val. — Best Obj. Val.
————— %-increase over best sol. =

Jo-increase over lb. = o , Best Obj. Val.

The percentage-wise differences are reported in Table 6.

PyVRP OR-Tools Gurobi Hexaly
Collection Lower Bound Best Obj. Val. Lb. Obj. Val. Lb. Obj. Val. Lb. Obj. Val. Lb. Obj. Val.
February 283.553 284.826.2 0.45% 0.00% 1.04% 0.59% 4.07% 3.61% 0.58% 0.13%
May 351.976 357.390.0 1.54% 0.00% 691% 529% 56.68% 54.31% 1.82% 0.28%
September 415.486 429.976.6 3.49% 0.00% 11.84% 8.07% 369.86% 354.03% 3.74% 0.25%
November 292.122 294.350.6 0.76% 0.00% 449% 3.70% 33.88% 32.86% 0.99% 0.23%

Table 6: The percentage-wise differences over the lower bounds, denoted by Lb., and the best
solutions, denoted by Obj. Val. The percentage values show how much larger the found
solutions are compared to the lower bounds and best objective values produced by Hexaly and
PyVRP respectively.

Lastly, the solvers’ progress over time is reported for each dataset in Figure 14 for PyVRP, Hexaly
and Gurobi. OR-Tools does not output clear progress information over time and is excluded.
The progress is measured by the objective value after 1%, 5%, 10%, 20%, 50%, 75% and 100%
of the total runtime. If no progress information is available at the exact measurement point the
closest reported value is used. For PyVRP and Hexaly the line plots are based on the median
results of the seeded runs. The Gurobi results are the results using a vehicle set formed from

the smallest truck type and applying the NoRel heuristic for 100% of the total runtime.

Figure 14 indicates that Hexaly provides higher-quality solutions than PyVRP, in the early
stages of the optimization, with the exception of the November dataset where PyVRP provides
a better solution from the start. In the optimizations of the February and May datasets, PyVRP
has found better solutions than Hexaly after approximately 20% of the total runtime. In the
case of the larger September dataset PyVRP finds solutions that are better than those found
by Hexaly after approximately 75% of the total runtime. In the November dataset the PyVRP
solution quality temporarily degrades when the genetic algorithm is restarted. Gurobi is slow

to find solutions and yields very poor solutions at the start of the optimization.

Page 29 of 37

University of Southern Denmark May 19, 2025

Instance 1, February Instance 1, February Instance 2, May Instance 2, May

algorithm algorithm

algorithm algorithm

Hexaly Hexaly
Gurobi Gurobi

PYVRP PYVRP

OE]ec‘lve Value
?bjecnve Valge
f)h]ecm:e Valui
Oh]ecnve> Value

3 5 100 25 100 5 5 100 5 50 100
%runtime %runtime %runtime Y%runtime

Instance 3, September Instance 3, September Instance 4, November Instance 4, November

algorithm 2070004} algorithm

algorithm algorithm
Hexaly Hexaly
Gurobi Gurobi

— PYVRP — PyVRP

Objective Value
Objective Value

Objective Value

100 100 100 100

5 50 75 5 50 75 25 50 5 25 50 75
Y%runtime Y%runtime Y%runtime Y%runtime

Figure 14: PyVRP, Hexaly and Gurobi progress over time measured by objective value at 1%,
5%, 10%, 20%, 50%, 75% and 100% of the runtime.

44 Collection Time

This section attempts to provide an estimate of the time required to complete a collection.
The estimate is based on the September dataset and the median solution of the PyVRP-
based framework. As described in section 1.2 the utility company estimates that they spend
approximately 2 minutes at each customer to swap the hazardous waste containers and load
the textile waste. Since no data is available about the average driving speed, it is assumed that

the trucks are driven at an average speed of 50%’".

As an example, the time spent on driving and collecting hazardous and textile waste for the
first route is calculated as follows. The first route is 45,1 km long with 42 customers. The time

spent for the first route is estimated as,

_ . Distance
Time spent = Avg time per customer - 1 + ———
Avg. speed

= om - 4g 2002 (1138 08m

=

504

The estimated time to collect all waste from the first route is 138,1 minutes. The routes of
the PyVRP solution are summarized in Table 7 with the allocated vehicle types, the number
of customers, the amount of hazardous and textile waste to be collected, the distances of the

routes and the estimated time to complete the routes computed as above.

Page 30 of 37

University of Southern Denmark May 19, 2025

Route Vehicle Type n Haz Tex Dist(meters) Est. time (minutes)

1 Large 42 37 22 45.063,2 138,1
2 Large 37 34 11 28.014,0 107,6
3 Large 38 37 12 492211 135,1
4 Large 38 37 14 21.956,7 102,3
5 Large 40 37 12 17.719,5 101,3
6 Large 44 37 15 26.458,5 119,8
7 Large 39 37 18 53.898,6 142,7
8 Small 41 37 12 45.465,9 136,6
9 Small 45 36 16 17.755,0 111,3
10 Small 37 37 17 16.606,6 93,9

11 Small 41 37 15 14.219,5 99,1

12 Small 16 16 8 8.199,8 41,8

13 Small 38 37 14 43.834,5 128,6
14 Small 40 37 13 41.563,7 129,9

Table 7: Summary of the routes of the median solution produced by PyVRP with the estimated
time it takes to complete the routes. n is the number of customers. Haz and Tex denotes the

containers of hazardous waste and the number of textile bags to be collected respectively.

Based on the estimated time to complete the routes, the information about the working hours
and the loading and unloading of the trucks described in section 1.2, a rough suggestion of how
the collection week could be planned is presented in Table 8. It is assumed that the large truck
is available for the collection all days from 8:00-15:00 and the small truck from 9:00-16:00. For
simplicity it is assumed that the lunch break is held every day at 12:00, and that the trucks need

to be prepared every morning.

The time column of the timetables, in Table 8, indicates the start times of the tasks that are
to be completed on the given day. The timetables are generous in that there are considerable
time gaps around most of the tasks, which provides some flexibility in case of any delays. For
example, in the plan for Monday in Timetable A, the tasks at 8:30 are allocated 3,5 hours to be
completed; however, Route 3 incl. unloading and preparation for the next trip is estimated to

be completed in approximately 2,5 hours, leaving 1 hour until the lunch break.

As seen in Table 8 it is estimated that the large September dataset with 536 customers could be
collected in 3,5 days; however, it is important to note that the estimates of time spent on the
routes calculated in this section are rather naive and is an obvious point for improvement. As

such, this suggested plan should be taken with a grain of salt.

Page 31 of 37

University of Southern Denmark May 19, 2025

Time Monday Tuesday Wednesday Thursday Friday

Timetable A: Routes driven by the large truck

08:00 Prep (30 m) Prep (30 m) Prep (30 m) Prep (30 m)
08:30 Route 3 (135,1 m) Route 1 (138,1 m) Route 7 (142,7 m) Route 4 (102,3 m)
Unload/prep (20 m) Unload/prep (20 m) Unload/prep (20 m) Unload/prep (20 m)
12:00 Break (25 m) Break (25 m) Break (25 m) Break (25 m)
19:5 Route 5 (101,3 m) Route 6 (119,8 m) Route 2 (107,6 m)
Unload (20 m) Unload (20 m) Unload (20 m)
15:00

Timetable B: Routes driven by the small truck

09:00 Prep (30 m) Prep (30 m) Prep (30 m)

09:30 Route 9 (111,3 m) Route 13 (128,6 m) Route 10 (93,9 m)
Unload/prep (20 m) Unload/prep (20 m) Unload/prep (20 m)

12:00 Break (25 m) Break (25 m) Break (25 m)

1925 Route 14 (129,9 m) Route 11 + 12 (140,9 m) Route 8 (136,6 m)
Unload (20 m) Unload (20 m) Unload (20 m)

16:00

Table 8: Suggested timetables of how the collection week could be planned for the September
collection. Timetable A shows the timetable for the large truck. Timetable B shows the timetable

for the small truck.

NFS does not record the exact time spent to complete the collections, but NFS states that it
took approximately 4,5 days to complete the September collection in real-life. However, it is
important to note that the number of hazardous waste containers collected in real-life exceeded
the number of registered containers, since NFS also ended up collecting some containers placed
at the roadside that were not registered. With this in mind, a conservative estimate is that
NFS could have saved between 0,5 and 1 day to complete the collection using the rough plan

generated from the routes produced with the proposed framework using PyVRP.

5 Conclusion

In this bachelor project the collection of textile and hazardous waste by Nyborg Forsyning and
Service A/S has been examined and modelled successfully as a multi-compartmental vehicle

routing problem in MILP terms.

A framework using the open-source state-of-the-art solver PyVRP has been implemented to
optimize four synthetically generated datasets based on summary data of real-life collections
carried out in Eastern Funen. In this study the open-source solver is shown to perform very

well, slightly outperforming a commercial state-of-the-art solver on solution quality across the

Page 32 of 37

University of Southern Denmark May 19, 2025

four datasets. The results are noteworthy, as they indicate that open-source solvers can be a
viable alternative to commercial solvers in the context of WCPs similar to the one considered in

this project.

It has been demonstrated how the proposed framework can contribute to Nyborg Forsyning &
Service A/S reaching their goal, of minimizing the risk of harmful substances being released
into the environment, by accelerating the collection process to prevent the hazardous waste
containers being opened or removed while they are at the roadside. Further, the proposed
framework helps the company achieve their second goal, of reducing unnecessary ressource
consumption, by minimizing the distance covered and the routes driven. However, it is
important to acknowledge the presence of some potentially inaccurate assumptions such as
the time spent at each customer and the average driving speed when estimating how long
the collections will take to complete. Consequently, it is recommended for future research to
investigate the possibilities of modelling these variables with greater precision using methods

from probability theory.

Another intriguing research opportunity is to explore the integration of timetabling into the
proposed framework. It would be a natural extension to efficiently schedule the optimized
routes in the collection weeks, which would further help the company spend less time. This

could for example be done by modelling the timetabling as a bin packing problem.

For Nyborg Forsyning & Service A/S it is recommended that they extend their registration
form, where customers sign-up for the collections, with data fields for the number of containers
of hazardous waste and textile bags to be collected. Recording the exact amount of waste
to be collected at each customer will provide more accurate routes when optimizing future
collections, if any customers have more than one container or bag of hazardous waste or textile
waste respectively. It is also recommended that the company records more data about their

business processes as this will ease any future optimization projects, work and research.

In conclusion, this bachelor project has investigated a waste collection problem, modelled it
as a multi-compartmental vehicle routing problem and applied relevant methods to deliver a
solution to Nyborg Forsyning & Service A/S that can contribute to the company reaching its

goals.

Page 33 of 37

University of Southern Denmark May 19, 2025

References

[1] Milje- og Ligestillingsministeriet, “Bekendtgerelse om affald.” [Online]. Available: https:
/ /www.retsinformation.dk/eli/lta/2021/2512, 2021, Accessed: Feb. 17, 2025.

[2] Nyborg Forsyning & Service A/S, “Tilmeld afhentning af farligt affald.” [Online].
Available: https://www.nfs.as/nyheder/tilmeld-afhentning-af-farligt-affald /, 2025,
Accessed: Feb. 17, 2025.

[3] Transportministeriet, “Bekendtgerelse om vejtransport af farligt gods.” [Online]. Available:
https:/ /www.retsinformation.dk/eli/lta/2017 /828, 2017, Accessed: Feb. 17, 2025.

[4] OpenStreetMap contributors, “https://www.openstreetmap.org/copyright. Data is
available under the Open Database License.” [Online]. Available: https://www.
openstreetmap.org/, 2025.

[5] Project OSRM contributors, “Project OSRM.” [Online]. Available: https://project-osrm.
org/, 2025, Accessed: Mar. 26, 2025.

[6] Overpass turbo contributors, “Overpass turbo, a web based data mining tool for
OpenStreetMap.” [Online]. Available: https://overpass-turbo.eu/, 2025, Accessed: Mar.
26, 2025.

[7] Geo Fyn, “Geo Fyn - Sammen om data.” [Online]. Available: https://www.geofyn.dk/,
2025, Accessed: Apr. 28, 2025.

[8] IBM, “IBM ILOG CPLEX Optimization Studio.” [Online]. Available: https://www.ibm.
com/products/ilog-cplex-optimization-studio, 2025, Accessed: Apr. 27, 2025.

[9] Gurobi, “The Leader in Decision Intelligence Technology.” [Online]. Available: https:
/ /www.gurobi.com/, 2025, Accessed: Apr. 27,2025.

[10] Hexaly, “Hexaly.” [Online]. Available: https://www.hexaly.com/, 2025, Accessed: Apr.
27,2025.

[11] M. Akhtar, M. Hannan, R. Begum, H. Basri, and E. Scavino, “Backtracking search
algorithm in CVRP models for efficient solid waste collection and route optimization,”
Waste Management, vol. 61, pp. 117-128, 2017, Accessed: Mar. 6, 2025.

[12] G. B. Dantzig and]J. H. Ramser, “The Truck Dispatching Problem,” Management Science,
vol. 6, no. 1, pp. 80-91, 1959, Accessed: Feb. 28, 2025.

[13] A. M. Benjamin and J. E. Beasley, “Metaheuristics for the waste collection vehicle routing
problem with time windows, driver rest period and multiple disposal facilities,” Computers
& Operations Research, vol. 37, no. 12, pp. 2270-2280, 2010, Accessed: Mar. 6, 2025.

Page 34 of 37

https://www.retsinformation.dk/eli/lta/2021/2512
https://www.retsinformation.dk/eli/lta/2021/2512
https://www.nfs.as/nyheder/tilmeld-afhentning-af-farligt-affald/
https://www.retsinformation.dk/eli/lta/2017/828
https://www.openstreetmap.org/copyright
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://project-osrm.org/
https://project-osrm.org/
https://overpass-turbo.eu/
https://www.geofyn.dk/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com/
https://www.gurobi.com/
https://www.hexaly.com/

University of Southern Denmark May 19, 2025

[14] N. Ouertani, H. Ben-Romdhane, I. Nouaouri, H. Allaoui, and S. Krichen, “On Solving
the Hazardous Health-Care Waste Transportation Problem: a Real Case Study,” in 2020
International Multi-Conference on: “Organization of Knowledge and Advanced Technologies”
(OCTA), 2020, pp. 1-5, Accessed: Mar. 3, 2025.

[15] S.Wehlk and G. Laporte, “A fast heuristic for large-scale capacitated arc routing problems,”
The Journal of the Operational Research Society, vol. 69, no. 12, pp. 1877-1887, 2018, Accessed:
Mar. 6, 2025.

[16] E.Babaee Tirkolaee, M. Alinaghian, M. Bakhshi Sasi, and M. M. Seyyed Esfahani, “Solving
a robust capacitated arc routing problem using a hybrid simulated annealing algorithm:

A waste collection application,” Journal of Industrial Engineering and Management Studies,
vol. 3, no. 1, pp. 61-76, 2016, Accessed: Mar. 7, 2025.

[17] J.K.Lenstraand A. H. G.R. Kan, “Complexity of vehicle routing and scheduling problems,”
Networks, vol. 11, no. 2, pp. 221-227, 1981, Accessed: Mar 7, 2025.

[18] A. G. Soroka, G. V. Mikhelson, A. V. Mescheryakov, and S. V. Gerasimov, “Smart Routes:
A System for Development and Comparison of Algorithms for Solving Vehicle Routing
Problems with Realistic Constraints,” Automation and remote control, vol. 85, no. 3, pp.
309-319, 2024, Accessed: Mar. 7, 2025.

[19] Verolog, “Verolog challenge 2019.” [Online]. Available: https://verolog2019.ortec.com/,
2019, Accessed: Feb. 28, 2025.

[20] B. Graf, “Adaptive large variable neighborhood search for a multiperiod vehicle and
technician routing problem,” Networks, vol. 76, no. 2, pp. 256-272, 2020, Accessed: Mar. 8,
2025.

[21] DIMACS, “DIMACS :: Implementation Challenge: Vehicle Routing.” [Online]. Available:
http://dimacs.rutgers.edu/programs/challenge/vrp/, 2022, Accessed: Feb. 28, 2025.

[22] T.Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei, “A Hybrid Genetic Algorithm
for Multidepot and Periodic Vehicle Routing Problems,” Operations Research, vol. 60, no. 3,
pp- 611-624, 2012, Accessed: Feb. 28, 2025.

[23] T. Vidal, “Hybrid genetic search for the CVRP: Open-source implementation and SWAP*
neighborhood,” Computers & Operations Research, vol. 140, 2022, Accessed: Feb. 28, 2025.

[24] T. Vidal, “HGS-CVRP: A modern implementation of the Hybrid Genetic Search for the
CVRP.” [Online]. Available: https:/ /github.com/vidalt/HGS-CVRP, 2022, Accessed: Feb.
28, 2025.

[25] S.Jiang, Z.He, W. Lin, F. Ma, and Z. Lii, “FHCSolver: Fast Hybrid CVRP Solver,” Presented

Page 35 of 37

https://verolog2019.ortec.com/
http://dimacs.rutgers.edu/programs/challenge/vrp/
https://github.com/vidalt/HGS-CVRP

University of Southern Denmark May 19, 2025

at DIMACS. [Online]. Available: http://dimacs.rutgers.edu/programs/challenge/vrp/
papers-videos/, 2022, Accessed: Feb. 28, 2025.

[26] M. R. d. H. Maia, A. Plastino, and U. d. S. Souza, “An improved hybrid genetic search with
data mining for the cvrp,” Networks, vol. 83, no. 4, pp. 692-711, 2024, Accessed: Feb. 28,
2025.

[27] E. Queiroga and R. Sadykov, “POP-HGS: Hybrid Genetic Search as a subsolver in
a POPMUSIC algorithm,” Presented at DIMACS. [Online]. Available: http://dimacs.
rutgers.edu/programs/challenge/vrp/papers-videos/, 2022, Accessed Feb. 28, 2025.

[28] M. Simensen, G. Hasle, and M. Stalhane, “Hybrid Genetic Search With Ruin-and-
Recreate,” Presented at DIMACS. [Online]. Available: http://dimacs.rutgers.edu/
programs/challenge/vrp/papers-videos/, 2022, Accessed: Feb. 28, 2025.

[29] J. Zheng, X. Zheng, Y. Wei, and K. He, “MAESN: Solver Description,” Presented
at DIMACS. [Online]. Available: http://dimacs.rutgers.edu/programs/challenge/vrp/
papers-videos/, 2022, Accessed: Feb. 28, 2025.

[30] S. Voigt, M. Frank, P. Fontaine, and H. Kuhn, “Hybrid Large Neighborhood Search
for the Capacitated Vehicle Routing Problem and the Vehicle Routing Problem with
Time Windows,” Presented at DIMACS. [Online]. Available: http://dimacs.rutgers.edu/
programs/challenge /vrp/papers-videos/, 2022, Accessed: Feb. 28, 2025.

[31] W.Kool, J. Olde Juninck, E. Roos, K. Cornelissen, P. Agterberg, J. van Hoorn, and T. Visser,
“Hybrid Genetic Search for the Vehicle Routing Problem with Time Windows: a High-
Performance Implementation,” Presented at DIMACS. [Online]. Available: http://dimacs.
rutgers.edu/programs/challenge/vrp/papers-videos/, 2022, Accessed: Feb. 28, 2025.

[32] N. A. Wouda, L. Lan, and W. Kool, “PyVRP: a high-performance VRP solver package,”
INFORMS Journal on Computing, vol. 36, no. 4, pp. 943-955, 2024, Accessed: Feb. 28, 2025.

[33] M. Maia, “MDM-HGS-CVRP.” [Online]. Available: https:/ /github.com/marcelorhmaia/
MDM-HGS-CVRP, 2024, Accessed: Feb. 28, 2025.

[34] M. Simensen, “HybridCVRP.” [Online]. Available: https://github.com/martsime/
hybridcvrp, 2024, Accessed: Feb. 28, 2025.

[35] V.R.Méximo,].-F. Cordeau, and M. C. V. Nascimento, “AILS-II: An Adaptive Iterated Local
Search Heuristic for the Large-Scale Capacitated Vehicle Routing Problem,” INFORMS
Journal on Computing, vol. 36, no. 4, pp. 974-986, 2024, Accessed: Mar. 1, 2025.

[36] V. R. Médximo, J.-F. Courdeau, and M. C. V. Nascimento, “AILS-II: An Adaptive Iterated
Local Search Heuristic for the Large-scale Capacitated Routing Problem.” [Online].
Available: https:/ /github.com /INFORMSJoC /2023.0106, 2024, Accessed: Mar. 1, 2025.

Page 36 of 37

http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
http://dimacs.rutgers.edu/programs/challenge/vrp/papers-videos/
https://github.com/marcelorhmaia/MDM-HGS-CVRP
https://github.com/marcelorhmaia/MDM-HGS-CVRP
https://github.com/martsime/hybridcvrp
https://github.com/martsime/hybridcvrp
https://github.com/INFORMSJoC/2023.0106

University of Southern Denmark May 19, 2025

[37] N. Errami, E. Queiroga, R. Sadykov, and E. Uchoa, “VRPSolverEasy: A Python Library for
the Exact Solution of a Rich Vehicle Routing Problem,” INFORMS Journal on Computing,
vol. 36, no. 4, pp. 956-965, 2024, Accessed: Apr. 8, 2025.

[38] J. Coupey,]J.-M. Nicod, and C. Varnier, “VROOM v1.14, Vehicle Routing Open-source
Optimization Machine,” [Online]. Available: https://github.com/VROOM-Project/
vroom, Verso (https:/ /verso-optim.com/), Besangon, France, 2024, Accessed: Apr. 8, 2025.

[39] GraphHopper, “Jsprit,” [Online]. Available: https://github.com/graphhopper/jsprit,
2025, Accessed: Apr. 8, 2025.

[40] G. De Smet and open source contributors, “OptaPlanner,” [Online]. Available: https:
/ /www.optaplanner.org, 2025, Accessed: Apr. 8, 2025.

[41] V. Furnon and L. Perron, “OR-Tools Routing Library,” [Online]. Available: https://
developers.google.com/optimization/routing/, Google, Accessed: Apr. 8, 2025.

[42] M. Desrochers and G. Laporte, “Improvements and extensions to the Miller-Tucker-Zemlin
subtour elimination constraints,” Operations research letters, vol. 10, no. 1, pp. 27-36, 1991,
Accessed: May. 13, 2025.

[43] L. Kara, G. Laporte, and T. Bektas, “A note on the lifted Miller-Tucker-Zemlin subtour
elimination constraints for the capacitated vehicle routing problem,” European journal of
operational research, vol. 158, no. 3, pp. 793-795, 2004, Accessed: May. 13, 2025.

[44] R. Roberti and P. Toth, “Models and algorithms for the Asymmetric Traveling Salesman
Problem: an experimental comparison,” EURO journal of transportation and logistics, vol. 1,
pp- 113-133, 2012, Accessed: May. 13, 2025.

[45] I. Dunning, S. Mitchell, and M. O’Sullivan, “PuLP: A Linear Programming Toolkit
for Python,” [Online]. Available: https://optimization-online.org/2011/09/3178/, 2011,
Accessed: May. 19, 2025.

Page 37 of 37

https://github.com/VROOM-Project/vroom
https://github.com/VROOM-Project/vroom
https://verso-optim.com/
https://github.com/graphhopper/jsprit
https://www.optaplanner.org
https://www.optaplanner.org
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/
https://optimization-online.org/2011/09/3178/

