Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

The Generalized Travelling Deliveryman
Problem

Daniel Kubista

Supervisor: RNDr. Miroslav Kulich, Ph.D.
Study program: Cybernetics and Robotics
May 2025

ctuthesis t1606152353

ii

Acknowledgements

I would like to thank RNDr. Miroslav
Kulich, Ph.D., for the insightful discus-
sions and his guidance throughout the
majority of my studies.

iii

Declaration

I declare that I have elaborated the
master’s thesis entitled The Generalized
Travelling Deliveryman Problem inde-
pendently, and have cited all informa-
tion sources used in accordance with the
Methodological Instruction on the Obser-
vance of Ethical Principles in the Prepa-
ration of University Theses and with the
Framework Rules for the Use of Artificial
Intelligence at CTU for Academic and
Pedagogical Purposes in Bachelor’s and
Continuing Master’s Programmes.

I declare that I used artificial intelligence
tools during the preparation and writing
of this thesis. 1 verified the generated
content. I hereby confirm that I am aware
of the fact that I am fully responsible for
the contents of the thesis.

Prague, 23. May 2025

ctuthesis t1606152353

Abstract

The Mobile Robot Search Problem
(MRSP) is a task of searching for an ob-
ject in a priory known environment. The
location of the object is not known. The
goal is to find a trajectory that minimizes
the expected time to find the object. The
discretized variant of the problem can be
viewed as a graph theory problem. This
thesis approaches the task by representing
the MRSP as a novel combinatorial opti-
mization problem named the Generalized
Graph Search Problem (GSP) with order-
dependent weights, which combines the
Generalized Traveling Salesman Problem
(GTSP) and the GSP. The novel prob-
lem can be tackled by modifying GLNS,
a solver designed for solving the GTSP
using metaheuristic concepts Adaptive
Large Neighborhood Search and Simu-
lated Annealing. With proposed modi-
fications, the solver is able to efficiently
solve the Generalized GSP with order-
dependent weights, as we demonstrate in
the experimental evaluation.

Keywords: metaheuristics, Graph
Search Problem, Traveling Deliveryman
Problem, Generalized Traveling Salesman
Problem

Supervisor: RNDr. Miroslav Kulich,
Ph.D.

Intelligent and Mobile Robotics, CIIRC,
Jugoslavskych partyzéanu 1580/3, 160 00
Praha 6

ctuthesis t1606152353

Abstrakt

Mobile Robot Search Problem (MRSP)
je planovaci tuloha, pti které robot hleda
predmét v predem znamém prostiedi. Po-
loha objektu neni znama. Cilem tlohy je
naplanovat trajektorii, kterd minimalizuje
ocekavany ¢as nalezeni predmétu. Na dis-
kretizovanou variantu tohoto problému Ize
pohlizet jako na tilohu z teorie graft. Tato
prace pristupuje k tomuto problému tak,
ze reprezentuje MRSP jako novy problém
nazvany Generalized Graph Search Pro-
blem with order-dependent weight, ktery
kombinuje zndmé problémy Graph Search
Problem (GSP) a Generalized Traveling
Salesman Problem (GTSP). Novy pro-
blém lze fesit ipravou algoritmu GLNS,
navrzeného pro feseni GTSP, pomoci me-
taheuristickych koncepti Adaptive Large
Neighborhood Search a Simulated Anne-
aling. S navrzenymi ipravami algoritmu
jsme schopni efektivné resit Generalized
GSP with order-dependent weight, jak do-
kladdame pomoci experimentu.

Klicova slova: metaheuristika, Graph
Search Problem, Traveling Deliveryman
Problem, zobecnény problém obchodniho
cestujiciho

P¥eklad nazvu: Zobecnény problém
obchodniho dorucovatele

Contents 3.3 Algorithm modifications

3.3.1 Insertion heuristics

1 Introduction 1
3.3.2 Removal heuristics 28

1.1 State of theart 2l
3.3.3 Re-Optimize

1.2 Contributions 3l
3.3.4 Initial solution heuristics.... [3§

2 Mobile Robot Search Problem
3.4 Weight computation

2.1 Related graph theory problems . .
3.4.1 Static weights

2.2 Mobile Robot Search Problem as a

graph theory problem 9 3.4.2 Dynamic weights...........
3 Solution approach 15 4 Experiments 45|
3.1 Main concepts................ 4.1 Software and hardware
32GLNS ... 17 4.2 Tnstancesc.ouuuo...
3.2.1 Insertion heuristics 17 4.3 Metrics .. oo ove e
3.2.2 Removal heuristics 4.4 Cost modes 48]
3.2.3 Initial tour construction 4.5 Operator selection
3.2.4 Local optimization 4.6 Sampling method parameters. ..
3.2.5 Acceptance and stopping 4.7 Re-Optimize method

criteria 23
4.8 Greedy weights

3.2.6 Choosing insertion and removal

heuristics ... 4.9 Initial solution heuristics....... 60,

v ctuthesis t1606152353

4.10 The selected solver settings ...

4.11 Comparison with Hexaly
Optimizer......................

5 Conclusion and future work

A Acronyms

B Bibliography

C Attached files

D Project Specification

E Declaration

ctuthesis t1606152353

vi

Figures
2.1 Motivational example. 0|

2.2 Visual representation of the
visibility region and a newly
discovered region.

2.3 Visualization of environment
COVETAZE. v v vt eee e eeeeeeenns 12

2.4 Comparison of two solutions
visiting the clusters in the same

order. ...
3.1 Hlustration of insertion.
3.2 Effect of inserting a vertex in the

dynamic weights scenario.........
3.3 Hlustration of a vertex removal..
3.4 Tlustration of Re-Optimize using

dynamic programming.
3.5 Re-Optimize counter example. . .
3.6 Tllustration of the static weights.

3.7 Two examples of possible sampling,
with one visibility region highlighted

in each figure.
4.1 Maps used for experiments.

vii

4.2 Properties of the instances used for

the experiments.
4.3 Results of experiments with the

original solver with replaced cost

functions.
4.4 The first 100 iterations of the

search on the map large.

4.5 Influence of including a specific
operator.

51]

4.6 Influence of not using a specific

operator. 52|
4.7 Effect of sampling strategies. . . .
4.8 Effect of different number of

samples in the sampling

approximation. 54
4.9 Comparison of Re-Optimize

methods. 55
4.10 The comparison of different

variants of greedy weights.

4.11 The comparison of the initial cost

and the final cost................ 58
4.12 The effect of combining greedy

weights with sampling

approximation. 59|

4.13 Box plots of the quality of initial
solutions obtained by different
methods.

611

ctuthesis t1606152353

4.14 The selected solver settings. . . . Tables
4.15 Selected visualized solutions. .. 63

4.16 Comparison to the Hexaly
Optimizer.

ctuthesis t1606152353 viii

Chapter 1

Introduction

Continuous improvements of sensing and locomotive capabilities open many
opportunities and challenges for mobile robots. One of the challenges is the
Mobile Robot Search Problem (MRSP) - a search for an object with unknown
location located in a priory known environment. The real life applications of
this problem include the Search and Rescue, a task where mobile robots help
to localize the survivors of disasters such as fires, earthquakes and floods [4],
localization and tracking of animals in the wildlife conservation [3] or robot
inspection and monitoring [12].

Due to the complex nature of the task, simplifications are necessary in order
to make the problem tractable. A common approach is discretization of
the searched space followed by transforming the task into a combinatorial
optimization problem. In [23] the problem is solved with transformation
into the Traveling Deliveryman Problem (TDP), papers [17, [I5] transform
the problem to the Graph Search Problem (GSP) and [I8] [16] cover the
GSP with multiple robots. The most recently [27] proposes the GSP with
order-dependent weights to tackle the problem.

This thesis approaches the problem by first turning the problem into the
Generalized GSP with order-dependent weights and then solving this graph
theory problem using modified GLNS - a solver designed for solving the
Generalized Traveling Salesman Problem (GTSP) problem based on the
Adaptive Large Neighborhood Search (ALNS) and the Simulated Annealing
(SA) metaheuristics.

1 ctuthesis t1606152353

1. Introduction

. 1.1 State of the art

In this section we present some of the published methods for solving the
GTSP, the TDP and the GSP.

GTSP is a popular NP-hard combinatorial optimization problem that was
first defined in [37] in 1969, [28] provides an exhaustive list of methods for
solving the problem. The survey categorizes them into five categories.

Ezact algorithms are able to produce the optimal solution. For NP-hard
problems is the search very time consuming due to high complexity of the
calculations and large search space, therefore they are usually only applicable
on relatively small problems. These algorithms include dynamic programming
[37], branch-and-bound [5], integer programming [19] and branch-and-cut [7]
methods.

Transformation methods transform the generalized problem to the classical
Traveling Salesman Problem (TSP), which is then solved using one of the
standard methods for the TSP. A famous Noon and Bean transformation
method was introduced in [26]. This method transforms the asymmetric
GTSP to the asymmetric TSP while keeping the same number of vertices but
significantly increasing the number of edges.

Reduction algorithms represent a class of preprocessing procedures that elimi-
nate edges and vertices that are guaranteed not to be present in the optimal
solution. The preprocessing leads to reduction in the size of instances and
improved computation time. In paper [9] three reduction algorithms are
described.

Approximation methods are polynomial time algorithms that produce an
approximation of the optimal solution with demonstrable guarantees on the
quality of the solution. The design of these algorithms includes a mathematical
proof that the found solution has in the worst case some guaranteed quality.
An instance of this methods is poly-logarithmic approximation algorithm,
which is applicable on the GTSP and was introduced in [§].

Heuristic and metaheuristic algorithms are algorithms that provide no as-
surance on optimality nor sub-optimality of the found solution. However,
they usually find solutions with reasonably good quality. These algorithms
are especially useful on bigger problems, where the exact methods are too

ctuthesis t1606152353 2

1.2. Contributions

computationally expensive and on problems, where the exact algorithms are
not known. These algorithms include genetic algorithms [36], ant colony
optimization [39], evolution algorithms [10], large neighborhood search [35],
iterated local search [32] and variable neighborhood search [I1].

TDP is a NP-hard problem closely related to the TSP, in [23] authors rec-
ognize two main courses in the research community exact algorithms and
heuristic and metaheuristic algorithms. Early exact algorithms were based
upon non-linear integer formulation [I]. Later papers on exact methods pro-
pose algorithms utilizing linear integer formulations. These methods provide
optimal solution, but are only suitable for small instances due to infeasible
computational time. Heuristic and metaheuristic algorithms do not provide
any guarantees on the quality of the found solution, however, they still provide
reasonably good quality in exchange for better computational time. Most of
the methods modified for solving the TDP utilize a combination of Greedy
Randomized Adaptive Search Procedure (GRASP), Variable Neighborhood
Search (VNS) or Variable Neighborhood Descent (VND) [30} 25].

GSP - a NP-hard problem [31], which extends the TDP, was introduced
n [14]. This problem has not received as much attention as the two former
problems, however, there is still some relevant research on this problem.
In [31], 17] greedy algorithms, which construct a solution by optimizing the
immediate utility, are proposed. In [I5] a tailored GRASP is developed.
In [I§] a algorithm based on a combination of GRASP and VND is presented
for solving the Multi-robot GSP. In [27] metaheuristics Sequential Variable
Neighborhood Descent (SVND) and General Variable Neighborhood Search
(GVNS) are used for solving the GSP with order-dependent weights.

. 1.2 Contributions

This thesis contributes by the following points:

8 The Generalized GSP with order-dependent weights is defined as a
combination of two graph theory problems: GTSP and GSP.

B Several approximations are examined. Modifications to the approxi-
mation methods, used in the classical GSP that can be used in the
Generalized GSP are proposed.

3 ctuthesis t1606152353

1. Introduction

® The original GLNS operators are modified specifically to optimize the
Generalized GSP. Methods to reduce the time complexity of the heuristic
operator evaluation are proposed.

B8 The performance is experimentally evaluated. Specifically the trade-off
between the quality of approximation and computational time is exam-
ined. The algorithms are tested on four maps with the size of instances
up to 143 clusters and 841 vertices. Finally the modified Effective large
neighborhood search heuristic for the Generalized Traveling Salesman
Problem (GLNS) is compared to the Hezaly Optimizer'|- "the world’s
fastest optimization solver for Routing, Scheduling, Packing, and more".

"https://www.hexaly.com /hexaly-optimizer

ctuthesis t1606152353 4

Chapter 2

Mobile Robot Search Problem

In MRSP, a robot navigates through a priory known environment while
searching for an object of interest and optimizing the expected time to find
the object. In this chapter the problem is described using definitions from

[27, 3T, 21].

The robot is modeled by a point agent equipped with an omnidirectional
sensor with a limited sensing range . Robot moves at a constant positive
speed and can change its heading instantaneously. Because of the previous
assumption, the time needed to follow any trajectory is proportional to the
length of the corresponding path.

The environment W is completely known, static space modeled as a polygon
with polygonal obstacles. Obstacles can pose motion and visibility constraints.
We assume that all the obstacles that limit the movement of the robot are
sensed by its sensor and vice versa. We further assume that the robot can
reach any point y € W from any starting position xg € W. The searched
object can be sensed and is located somewhere in the environment with no
prior information about its location. Therefore we assume that the probability
of an object being in a certain region R C W is evenly distributed along the
environment ¥V and the probability is proportional to the area of the region.

When the robot searches for the object, it moves along a trajectory 7, where
7 : [0,00] — W. The natural objective is to find the object in minimal
time. From a probabilistic perspective we want to minimize the expected
(average) time to find the object. Therefore the optimization task is to find

5 ctuthesis t1606152353

2. Mobile Robot Search Problem

the trajectory 7% that minimizes the expected time:

BTl = [th(t)de (2.1)

A model, where the robot does not gather information continuously, but only
at discrete time steps leads to the discrete formulation of the expected time.
In this model the robot performs measurements at time steps t € (to, ..., tm),
t; < tiy1, at sensing locations (7(tg),...,7(tm)). In this time discrete case
expected time is computed as follows:

E(T|r) = tifr.(t:) (2.2)
i=0

Where fr-(t) is the probability that object was first seen in time ¢. The
function being a probability density function, implies that [fr-(t)dt =1
or Y31 fri(t:) = 1.

Figure shows a motivational example of the MRSP. The figure displays
two possible trajectories, both starting from the same point. The one on
the left is denoted as 7 and the one on the right as 7. Using colors, we
visualize the evolution of discovered regions of the environment. Regions
with lighter colors are discovered earlier that those with darker colors. The
length of the trajectory 7 is 19.89 and the expected time to find the searched
object is E(T'|m) = 7.87. The second trajectory 7o is longer, with length
20.39, but the expected time is only E(7'|m2) = 5.9. This example shows that
a shorter trajectory does not always equal smaller expected time. Intuitively,
the robot following the trajectory o has smaller expected time to find the
object, because it discovers the area hidden in the area of inverted U-shape.

(a) : Trajectory 7. (b) : Trajectory 7o.

Figure 2.1: Motivational example.

In order to express the probability density function, we define the visibility
region. It is a region that the robot senses from some point x and is denoted

ctuthesis t1606152353 6

2. Mobile Robot Search Problem

V(x), formally it is a set of points:
V(x) ={y e WXy S WA|[xyl| < rv} (2.3)

In other words, it is a set of points to which we can construct a straight line
from the point x that does not intersect with any obstacles or environment
border and its distance is less than maximal sensing distance of the sensor .

The robot moves along the trajectory and performs sensing in discrete time
steps, it gathers information about the points that belong to the visibility
region associated to its current location. If the object was first seen in time
ti, implies that the object is located in the current visibility region but not in
any prior visibility region of sensing points along the trajectory. We denote

the region EjVTV and define it as follows:
k—1
Ly = V() \ U V(r(t) (2.4)
=0
For more compact notation, we use label Wi = ¥ o V(7(t;)) to denote the

set that has been seen up the time step tx. We can also express it recursively
as:

seen — V(T(tk)) U seen — new U seen (25)

ty|T te_1lT tilT tp—1|7

As stated earlier, probability of an object being discovered at time step t
is proportional to the area of newly discovered region of the environment.
Because it resides somewhere in the environment, we normalize by the total
area.

| new

telr (2.6)

fT\T(tk) = ’W’

We can notice that the newly discovered regions are mutually disjoint, i.e.
Wi n Z‘Tf = () for i # j and that poty = Wiy U - UWpr. Using the
properties of mutually disjoint sets we can evaluate the area of seen region as:

| seen| — |WtHEW| + . _|_ | IleW| (27)

tm|T olT tm|T

By dividing both sides of the equation by |W|, we obtain:

W W W '
= fT\T(tO) +o fT|7’(tm) =1 (2.9)

7 ctuthesis t1606152353

2. Mobile Robot Search Problem

(a) : Hlustration of a visibility region. (b) : Tlustration of a newly discovered
region.

Figure 2.2: Visual representation of the visibility region and a newly discovered
region.

We can see that the property of probability density function >3 fr,(to) = 1
is in this case equivalent to the fact that the robot must visually cover the

entire environment, i.e. tseef; =W.
m

Figure 2.2 shows a simple example explaining the described terms. The figure
on the left shows a visibility region sensed from the blue point. The figure
on the right shows the newly discovered region (orange) from the blue dark
point. The gray area visualizes the region that was sensed, while following
the trajectory, before reaching the dark blue point.

B 2.1 Related graph theory problems

The TSP is a problem defined on either directed or undirected weighted graph
G = (V,E). The objective is to find a cycle that visits all vertices v € V
exactly once, returns to the start vertex and minimizes the cost of the cycle.
The generalized variant of the problem extends TSP by grouping the vertices
V into disjoint sets, also called clusters. A feasible solution of the GTSP is a
cycle visiting all clusters exactly once. The objective is again to minimize
the cost of the cycle.

The GSP is a task defined on a complete weighted graph G = (V, E). Each
vertex is assigned a weight w(v) and each edge is assigned a cost d(e). The

ctuthesis t1606152353 8

2.2. Mobile Robot Search Problem as a graph theory problem

graph is complete, which means that we can address any edge e € F connecting
the vertices v; € V and v; € V directly by the tuple (v;,v;). One of the
vertices vy € V is specified as a start depot. The objective is to find a path
that starts in vg, visits all the vertices v € V' exactly once and minimizes the
objective function. The objective function is defined as

n %

c(x) = Z w(vg,) Z d(Ve; 15 Va;) (2.10)
i=1 j=1
Where x = (vg, . .., Vs,) defines the order of vertex visits. In [27], a variant

specific for mobile search problem is defined. In this variant the weight w
is not associated with a single vertex, but instead depends on the current
vertex and also the previously visited vertices. The weight corresponds to
the probability of detection of the object when visiting v.

B 2.2 Mobile Robot Search Problem as a graph
theory problem

As stated before, there are two key requirements on a selection of a trajectory.
First the trajectory must ensure that the object is found during its execution.
Second the trajectory must minimize the expected time to find the object.
The common approach is to decouple the problem by first generating a set of
sampled sensing locations from the environment, and then selecting a sequence
of those sensing location, which corresponds to a trajectory that begins in
the start location and covers the whole environment while minimizing the
expected time.

Papers that previously addressed this problem [27, [15, 31, 21] sample the
environment with sensing locations [y, ..., [, such that the union of visibility
regions covers the whole environment, i.e.

Uvw) =w (2.11)

Then they search for a solution that starts in the specified start location,
without loss of generality we denote this location Iy, and visits all of the
sensing locations while minimizing the expected time. The task to find the
optimal order of visits can be viewed as the Graph Search Problem.

We address this problem by taking inspiration from the GTSP and the TSP
with neighborhoods. These extensions of the classical TSP assume that the

9 ctuthesis t1606152353

2. Mobile Robot Search Problem

necessary information or reward is not associated only with one certain point,
but rather with either a whole region or a set of points. This idea can be
utilized in the mobile search problem.

We cover the environment with regions Ry, ..., Rm, such that
m
URrRi=w (2.12)
i=0

Each region R; is then associated with a cluster C;. A cluster is assigned a
set of points, that holds:

R; C V(l),Vl S CZ (2.13)

Under this condition, to fully cover the environment, it is sufficient to visit
only one point from each cluster. Therefore, a feasible solution is a solution
that begins in the start location and visits every cluster exactly once. This
extension allows us to potentially explore solutions with shorter paths while
exploring the same regions of the map.

Now we can formally define the problem as an instance of the Generalized
GSP with order-dependent weights. We are given a complete weighted graph
G = (V, E). Vertex vy is defined as the start vertex. We associate the physical
locations with the vertices and denote them I; = [(v;). Since the graph is
complete, i.e. every pair of distinct vertices is connected by exactly one
unique edge, we can address the edge e € E connecting arbitrary pair of
vertices v; € V and v; € V simply by the tuple (v;, vj). The edge cost

d(vi,vj) : V x Vs RS (2.14)

is equivalent to the shortest path from location {(v;) to I(v;). Unlike in the
classical GSP a weight function is not only a property of a single vertex, but
instead is defined as:

w(v, L) : V x Vs RS (2.15)

where V* is the set of all possible finite sequences of vertices. The weight
function represents the area seen from the location associated with the vertex
v provided that locations linked with the sequence of vertices L has been
already visited, i.e.

w(v, L) = V() \ U v(i(w) (2.16)

uel

A function

S(L): V* = RS (2.17)

ctuthesis t1606152353 10

2.2. Mobile Robot Search Problem as a graph theory problem

corresponds to the length of a path that visits all the vertices from sequence

L in given order, i.e. for a sequence L = (vg,...,V;,) We write
1
I(Vagy -« s Vgy) = Z d(vg, ,,vz;) (2.18)
i=1
The vertices are partitioned into mutually disjoint sets (Vp, ..., V},) such that:

1. U()EV(),’V()‘ZI
2. VinVj=0fori#j
3. wu---uvV,, =V

We also refer to these subsets as clusters. A feasible complete solution is
a sequence of vertices L = (vg,...,Vs,,), which starts in the start depot,
i.e. vy, = vo and the solution visits each cluster exactly once. Alternatively
we can address the same solution by specifying only the sequence of indices

= (20, ...,%m). The cost of a solution is computed as follows:
m
c(x) = Zw(vwi, (Vags -+ s Va;—1))0(Vags - - - 5 Vay) (2.19)
i=1
For a more compact notation, we can denote w; = w(vy,, (Vgg, .-, Vz;—1))
and &; = 0(vyg,...,vy,;). A feasible partial solution starts in the vertex vy

and visits each cluster at most once.

In our model, the robot moves with constant positive speed in arbitrary
direction, therefore the time is proportional to the traveled distance, i.e.
t = pud. The probability of discovering an object in a region is proportional to
the area of the region, i.e. the weight. Finally we can compare the expected
time to the cost function and obtain:

E(T|r) = thm = (2.20)

L
|W| Z I (Vags -+ s Uz,)W (Va5 (Vs o v oy Uy,) = WC(X) (2.21)

Because both the speed p and the normalizing factor |W| are independent on

the trajectory, they were factored out of the summation. The scalar ﬁ is a

positive number and since multiplying a function by positive number does
not change the location of a minimum, we see that the task of minimizing
¢(x) is equivalent to minimizing expected time for given clusters and sensing
locations.

11 ctuthesis t1606152353

2. Mobile Robot Search Problem

Figure [2.3| shows a possible way of covering the environment. The figure
on the left shows that map is completely covered with convex regions that
were created from circles with radius equal to the half of the sensor range ry.
In the right figure we show one of the polygons in violet. Sensing locations
within one cluster are located on the border of the polygon. Because all of
the sensing locations are located inside or on the border of a virtual circle
with radius /2, it is certain that the distance from a sensing location to
any point from this convex polygon does not exceed the sensing range ry.
Because the polygon is convex, we also know that we can construct a line
segment between a sensing location and any point in the convex polygon.
Line segments lies entirely within the convex polygon. That means the line
segment does not interfere with any obstacle. Altogether, we can see that
this method of sampling leads fulfills the conditions, we required.

(a) : Coverage of the environment (b) : Sensing location on the border
by convex polygons. of a convex polygon.

Figure 2.3: Visualization of environment coverage.

Figure 2.4| provides a motivation on why to turn the problem into the Gener-
alized GSP instead of the classical GSP. The figure shows two solutions. In
order for a solution to be feasible, all clusters must be visited exactly once.
Both displayed solutions visit the clusters in the same order, but choose differ-
ent vertices. At each cluster both robots discover similar newly seen regions.
However because the robot on the right followed more efficient trajectory 7o,
the final expected time is E(T'|r) = 8.39, compared to the trajectory on the
left 71, with expected time E(T'|m) = 9.8.

ctuthesis t1606152353 12

2.2. Mobile Robot Search Problem as a graph theory problem

(a) : Trajectory 7 (b) : Trajectory 72

Figure 2.4: Comparison of two solutions visiting the clusters in the same order.

13 ctuthesis t1606152353

ctuthesis t1606152353

14

Chapter 3

Solution approach

In this chapter, first we describe the main ideas used for solving the problem.
Then, we explain the functioning of the GLNS solver, introduced in [35].
Finally we go through all the changes that were done in order to transform
the original solver to the solver that tackles mobile search problem.

B 3.1 Main concepts

Large neighborhood search is a optimization technique, originally proposed to
solve vehicle routing problem [33] 34]. This method has some key differences
to local search techniques. Local search explores the solution space by slightly
modifying previous solution. This slight changes may lead to getting trapped
in local minima, i.e. out of the allowed moves, there are none that would
lead to improving the solution. This problem is tackled by minima escaping
procedures (meta-heuristics), such as simulated annealing or tabu search.
Large neighborhood search takes a different approach, instead of small steps
it makes larger moves, that are more complex and stronger. Such moves
allow the algorithm to reach broader solution space from any point. The
size of the neighborhood can be increased when the search seems to stagnate.
The basic concept of LNS is called relaxation and re-optimization. In the
relaxationﬂ step, a partition of a solution is damaged by removing certain
solution blocks. In the re-optimization step, the solution is repaired by
inserting permissible blocks into the solution, preferably in optimal manner.

LAlso called destroy.

15 ctuthesis t1606152353

3. Solution approach

The original article proposes that selection of what parts to remove is based
on relatedness measure. This measure is not strictly defined and depends on
specific problem that is being solved, but the idea is that components that
play a similar role within the solution are preferred to be selected for removal.
Authors argue that if distant component were removed, in re-optimization
part, they would likely end up in the same place in the solution as the original.

Adaptive Large Neighborhood Search [29], also originally developed for vehicle
routing problems, extends Large Neighborhood Search (LNS) by introducing
an adaptive layer to the search procedure. This layer controls the selection
of destroy and repair neighborhoods. The selection is stochastic but favors
neighborhoods, that yielded better results in the past. Introducing the
randomness into the selection of destroy and repair operators causes more
diversification and may possibly avoid stagnation in the search. Apart from
generating more diverse solutions, the greatest strength is robustness and
ability to adapt to specific problems. Thanks to this properties the need for
calibration to specific problems is minimal.

Another concept used by GLNS is called Simulated Annealing. It is a
optimization technique used for combinatorial problems that exploits an
analogy to how metal cools and freezes into minimum energy structure.
Compared to greedy search algorithms, SA may accept even the moves that
do not improve the solution. The main control parameter is the temperature.
The system temperature decreases over time and influences which solutions
are explored and which are selected. A non-improving move is selected with
a probability given by the following equation:

e
p=e¢ T (3.1)

where dc is the difference between the cost of trial generated by the move
and the original cost. T is the current temperature of the system and is
always a positive number, i.e. 7 > 0. We consider only non-improving moves,
therefore dc > 0. The formula for computing the probability shows that
worse solutions are generally less likely to be accepted and that the overall
probability of accepting a non-improving move decreases with decrease of
temperature. Important concept in SA is the selection of annealing schedule.
It consists of selecting the appropriate initial temperature and the rules for
decreasing the system temperature. There are two common strategies for
decreasing the temperature - exponential and linear. In the exponential case,
every iteration the temperature is multiplied by a coefficient o € (0,1). In
the linear case, every iteration a constant is taken off of the temperature. The
final step is selecting the terminal temperature - the parameter that defines
when the search ends. When selecting the mentioned parameters it may be
useful to utilize a knowledge about the magnitude of changes in cost that are
produced by application of a move in the specific problem [2].

ctuthesis t1606152353 16

3.2. GLNS

B 32 GLNS

GLNS utilizes the combination of Adaptive Large Neighborhood Search and
Simulated Annealing along with other optimization methods for solving the
GTSP. An input of the algorithm is a complete graph G = (V, E) and
partitioning of the vertices into clusters Py = {Vi,...,V,,}. Each edge is
assigned a cost d(e). The Algorithm |1| shows the high level overview of the
algorithm. The procedure consists of several iterations, called trial, after each
trial the weights assigned to removal and insertion heuristics are updated
based on their score. In the beginning of each iteration an initial tour is
created using construction heuristics, see line 2. The algorithm then enters
inner loop, where first removal and insertion heuristics are selected based on
the selection weights, see line 5. In the next steps, lines 6 to 9, the number
of vertices to remove N, is uniformly selected from given range, then N,
vertices are removed from the tour using removal heuristic. Finally the tour
is repaired by application of insertion heuristic. The tour is then further
optimized by local optimization techniques, see line 10. The new tour is then
tested whether it is the so far best found solution in this iteration, if so it is
stored in a memory. At line 14, acceptance criteria are tested, if successful
it is selected as current solution. This inner loop is repeated until stopping
criteria, explained later, are met. At the end of each outer loop the selection
weights are updated based on performance of individual removal and insertion
heuristics.

B 3.2.1 Insertion heuristics

Insertion heuristics work such that we receive a partial solution, then one by
one vertices are added forming a feasible complete solution. The partial tour
T = (Vr, Er) is a cycle in G such that each cluster is visited at most once.
We denote clusters present in the partial tour as Pr C Py,. The insertion of
a vertex can be divided into two steps, first a cluster is selected and then a
vertex belonging to this cluster is inserted into the partial solution at the
optimal position. The selection of the cluster to insert depends on the specific
heuristics. GLNS implements commonly used insertion heuristics: nearest,
farthest, random and cheapest [7]. Authors of the GLNS propose another
insertion heuristic called unified. This insertion heuristic unifies the nearest,
farthest and random methods into one. This heuristic optionally introduces
randomness into selecting the clusters to be inserted. While keeping the
preference to selecting either the nearest or farthest cluster. Experiments

17 ctuthesis t1606152353

3. Solution approach

Algorithm 1 GLNS(G, Py)

Input: A GTSP instance (G, Py)
Output: A GTSP tour on G
1: for ¢ = 1 to numTrials do
T <« initialTour(G, Py)
Tbest,i T
repeat
Select a removal heuristic R and insertion heuristic I using the
selection weights
6: Select the number of vertices to remove, NV,, uniformly randomly
from {1,..., Npaz }
Create a copy of T called T},eq
Remove N, vertices from T}, using R
For each of the N, sets not visited by T}, insert a vertex into Tyeq

using [
10: Locally re-optimize Teq
11: if c(Thew) < ¢(Tpest,;) then
12: Tbest,i — Thew
13: end if
14: if accept(Thew, ') then
15: T+ Thew
16: end if
17: Record improvement made by R and [

18: until stop criterion is met

19: Update selection weights based on improvements of each heuristic over
trial

20: end for

21: return tour Tjes ; that attains ming c(Thest i)

show that the unified heuristic performs better that the original heuristics
alone [35].

An input of the insertion heuristics, described in Algorithm [2| is a partial
solution T' = (Vp, Er) First we explain the selection of cluster, in Algorithm |2
at line 1. There are three methods that utilize the distance of a tour to the
cluster. A distance to a cluster is computed:

dist(u, V;) = qr)réi‘l/:(min(d(v,u),d(u, v))) (3.2)

That means that it is the distance between vertex u and vertex v € V; that
has the minimal edge cost. In case of asymmetric graph, we consider the
smaller edge cost. In the four mentioned heuristics the clusters are selected
as follows:

ctuthesis t1606152353 18

3.2. GLNS

Algorithm 2 Framework of insertion heuristics.

Input: A GTSP instance (G, Py) and a partial tour T'= (Vp, E7) on G
Output: An updated partial tour T" that visits one additional set.

1:

Pick a set V; in Py \ Pr.

2: Find an edge (z,y) € Er and vertex v € V; that d(z,v) +d(v,y) —d(z,y).
3: Delete the edge (z,y) from Erp, add the edges (z,v) and (v,y) to Ep, and
add v to V.
4: return T
1. Nearest insert: A cluster V; that minimizes the distance to the nearest
vertex on the partial tour is selected, i.e.
Vs = argmin mindist(u, V;) (3.3)
V,L-EPV\PTUEVT
2. Farthest insert: A cluster V that maximizes the distance to the nearest
vertex on the partial tour is selected, i.e.
Vs = argmax mindist(u, V;) (3.4)
ViePy \Ppu€Vr
3. Random insert: A cluster Vy is randomly, with uniform distribution,
selected out of the sets that are not present in the partial solution.
4. Cheapest insert: A cluster Vs that contains a vertex v which minimizes

the insertion cost is selected, i.e.

Vs = argmin min d(z,v) +d(v,y) — d(z,y) (3.5)
ViePy\PpveVi(z.y)€Er

The first three cases can be covered under a general insertion unified.

Algorithm 3 Set selection for the unified insertion heuristic.

Input: A GTSP instance (G, Py), a partial tour T' = (Vp, E7) of G, and

A €]0,00)

Output: A set V; € Py \ Pr

1:

Randomly select k € {1,..., ¢} according to the unnormalized probability
mass function [A%, A1, ..., X1

2: Pick the set V; € Py \ Pr with the kth smallest distance dist; to the tour
3: return V;

Algorithm (3| describes the the procedure of selecting the set using unified
heuristic. At line 1, an integer k is randomly selected from ¢ options, where £

19 ctuthesis t1606152353

3. Solution approach

is the number of sets that are not present in the partial tour. The probability
of selecting k is defined by unnormalized mass function [A%, X!, ..., X*"!]. The
set V; € Py \ Pr with kth smallest distance to the tour is selected. There are
three edge cases:

1. A =0, in this case, assuming 0° is defined as 1, only the first item in the
mass function is non-zero, therefore this case corresponds to the nearest
insertion.

2. A =1, in this case all of the items in the mass function are equal to 1
which yields the random insertion.

3. X\ = oo corresponds to the farthest insertion.

For intermediate values A € (0, 1), unified insertion heuristic offers a trade-off
between selecting the set closest to the partial tour and uniform random
selection. Similarly, in the range A € (1,00) the sets farther from the
partial tour are selected with higher probability. Experiments show that the
intermediate values perform better compared to the edge cases [35].

The next step, line 2 in the Algorithm 2, is to find an edge (z,y) that
will be replaced by a vertex v € Vs and will replace the insertion cost, i.e.
d(z,v) 4+ d(v,y) — d(x,y). The algorithm introduces randomness by additive
noise added to the insertion cost. A random sample 7, ; , for each combination
of (v,x,y) is generated from uniform distribution [0,7]. The combination
that minimizes (1 + 7y 24)(d(x,v) + d(v,y) — d(z,y)) is then selected. This
serves as another tool for diversification of the search. After selecting the
edge (x,y) € Ep and the vertex v € Vy the final step is to remove the edge
and insert edges (x,v) and (v, y).

B 3.2.2 Removal heuristics

Removal heuristics work such that N, vertices are removed from a given
complete solution. GLNS utilizes worst, random, distance and segment
removal heuristics. The worst removal and random are unified under unified
removal heuristic.

Algorithm [4) describes one iteration of the general removal heuristic framework.
The procedure starts by selecting a random integer k£ from the probability
mass function, defined by parameter A, see line 1. Next, at line 2, vertex v;

ctuthesis t1606152353 20

3.2. GLNS

corresponding to the kth smallest value r; is selected. In the unified removal
heuristics the value r; is the cost of removing the corresponding vertex. This
framework is also used in the distance removal, where r; corresponds to the
distance. Finally, the selected vertex is removed. We apply this procedure
until IV, vertices are removed from the original tour.

Algorithm 4 Removal heuristic framework for a given A and distance metric
T

Input: A partial tour T' = (Vp, Er), A € [0,00), and values r; for each
v € Vr
Output: A new tour with one vertex removed from Vp
1: Randomly select k € {1,..., ¢} according to the unnormalized probability
mass function [\, A1, ... A71, where ¢ = |V7|
Pick the vertex v; € Vp with the kth smallest value r;
Remove v; from Vp
Remove (vj_1,v;) and (vj,v41) from Ep and add (vj—1,vj41) to Ep
return T

The worst removal method can be combined with the random removal into
a unified removal, which selects the vertex to be removed. Based on the
parameter A we can decide whether the removal is more towards uniform
randomness or selection of the maximal value. When A\ = 1 the unified
removal becomes the random removal and for A = oo it becomes the worst
removal.

The next removal insertion is called distance removal. The idea is to remove
the vertices that are close to each other. It utilizes the idea of relatedness
introduced in the original paper about LNS [33], which suggests removing the
vertices that are in some aspect similar. In this case, the vertices with low
cost of edges connecting the already removed vertices are preferably removed.
The removal starts by randomly selecting a vertex from the tour and inserting
it in a set of removed vertices Viemoved- Then in each iteration, the distances
rj are computed as follows:

1. Vertex vgeeq is randomly selected from the set Viemoved-
2. For each vertex v; € Vp in the tour compute distance

Ty = min(d(vjv Useed)7 d(vseeda Uj))) (36)

The values 7y, ...,rp, where £ = |Vp|, are then inputed to the Algorithm |4}
Returned vertex is removed from the tour and the procedure is repeated until
N, vertices are removed.

21 ctuthesis t1606152353

3. Solution approach

The last implemented removal is called segment removal. A vertex from
the tour is randomly selected, then N, following vertices within the tour are
selected, i.e. we remove the vertices vj,...,vj4n,—1. If the index of the vertex
exceeds the length of the tour, we assume that the indexing wraps around.
Motivation of this heuristic is to escape deep local minima by destroying large
solution segments.

B 3.2.3 Initial tour construction

There are two methods used for constructing the initial tour. Random
insertion tour is a construction method that begins by selecting a vertex
and adding it into an empty tour. In each iteration a unified insertion with
A =1 is performed, i.e. a random cluster is selected uniformly and then a
vertex v € V; from this cluster is inserted so that it minimizes the randomized
insertion cost:

Cinsert (U, ,Y) = (1 4+ 1y 24) (d(z,v) + d(v,y) — d(z,y)) (3.7)

This is repeated until a complete tour is formed, that is in total m — 1
iterations.

The second method, called Random tour, starts by selecting a random ordering
of the clusters, alternatively, we can say that the clusters are shuffled, then
from each cluster a random vertex is selected. Finally the selected vertices
are connected forming a complete tour.

It was experimentally shown that the selection of the initial tour construction
does not significantly affect the final solution, but the random insertion tour
typically converges faster, therefore it seems to be better in cases where time
is highly limited [35].

B 3.2.4 Local optimization

After each iteration of GLNS and before evaluation of the acceptance condi-
tions the tour is attempted to further optimize by applying local optimization
techniques that are cyclically repeated for as long as an improvements are
found.

ctuthesis t1606152353 22

3.2. GLNS

Re-optimize vertex in each set. First the order of sets is fixed in accordance
to the order of given tour. From each set a vertex is selected so that when
the vertices are connected into a tour the cost is minimal. This problem
can be solved using graph traversal algorithm such as breadth-first search
or depth-first search. However, this problem can be tackled using dynamic
programming as was shown in [I3]. Which especially for larger problems can
significantly reduce the search time.

Move-opt. This operator attempts to optimize the ordering of the cluster.
A cluster is randomly uniformly selected from a complete tour. From this
cluster a vertex that minimizes the insertion cost is selected and placed to the
best such location. This process is repeated Nyove times. This optimization
technique can be viewed as an instance of GLNS where N, = 1.

B 3.2.5 Acceptance and stopping criteria

As acceptance criterion the standard SA acceptance criterion is used: if the
Thew improves the solution it is always accepted, if not the probability of
acceptance is given by:

p = exp Do), (3.9

For cooling scheme the exponential cooling is used, which decreases the
temperature by multiplying it by some scalar . The temperature is decreased
every iteration of the inner loop. The temperature is reinitialized in the
beginning of every outer loop (trial).

Every trial consists of the initial descent and several warm restarts. In the
initial descent phase, if there are no improvements found for certain number
of consecutive iterations, the trial switches to the warm restarts phase. In
the beginning of each warm restart the temperature is increased, in order to
allow for more diversification in the search. Each warm restart ends, when no
improvement is found for several consecutive iterations. For more information
about the cooling scheme, selection of parameters, and implementation refer
to [35].

23 ctuthesis t1606152353

3. Solution approach

B 3.2.6 Choosing insertion and removal heuristics

Both removal and insertion heuristics are selected based on the assigned score.
At each iteration of the inner loop, the score for both removal and insertion
is evaluated as

c(T) — e(Thew)

s = max(o(T)

,0) (3.9)
Disallowing negative score is used so that when no improvement is found no
penalty is applied. The scores are stored for the specific heuristic and at the
end of each trial an they are averaged and the global score is updated as a
weighted sum of the original score times ¢ and the new score times (1 —¢).
The solver contains a bank of insertion heuristics, i.e. cheapest heuristics and
unified heuristics along with some value A and n. Also a bank of removal
heuristics, i.e. distance and worst removal along with a value A, and a the
segment removal, which is parameter-less.

B 33 Algorithm modifications

In this section we discuss the modifications to the GLNS solver in order to
adjust it to the mobile search problem. We consider two cases - static weights
and dynamic weights. Static weights correspond to solving the MRSP as the
GSP, and dynamic weights to the GSP with order-dependent weights. TDP,
a special case of GSP, is included in the static weights.

B 3.3.1 Insertion heuristics

We have to consider that the cost function is different to GTSP, therefore, we
need to change the parts of the algorithm where the cost or difference in cost is
evaluated. In case of GTSP the difference can be computed by simply adding
the cost of edges that connect the inserted vertex to the tour and subtracting
the cost of edge that was removed, i.e. d(z,v) + d(v,y) — d(z,y). In case of
GSP the calculation is more complex. First the insertion of vertex does affect
the contribution of all the following vertices within the solution. The static
weights are not affected by their order, but by adding a vertex before, the
path length § is modified. Moreover, in case of dynamic weights, insertion

ctuthesis t1606152353 24

3.3. Algorithm modifications

of a vertex may modify the regions discovered by the following vertices and
therefore also modify their corresponding weights. One way would be to
evaluate the cost before and after the insertion and then to simply find their
difference. However, because the evaluation of a solution may be very costly,
we use methods that allow to evaluate the difference faster and are presented
in the following text.

Assume we are given a partial solution x = (zo,...,2z,). For more compact
notation for a given solution we assume w(vy,) = w;, d(vg,_,,vz,) = d; and
d(Vzgy - -+ Vz;) = 0;. The cost of the original solution is then computed as:

4

c(x) = Zwi& (3.10)

i=1

Consider we want to insert a vertex v with weight w = w(v) at position k, i.e.
between vertices vy, , and v,,. Let us denote edge costs L1 = d(vs, ,,0)
and Ly o = (U,vs, ,). The cost of modified solution can be then computed as

C()~() = w101 + ...+ Wp_10p_1+
+ w(0k + Li1)+ (3.11)
+ wi(0k + Ly + Lo — dg) + ... we(d¢ + Ly + Ly o — di)

We can rearrange the equation to:

L L

(%) = Y wib; + @(6k + L) + (Ley + Lia — di) Y w; (3.12)
i=1 i=k

As you can see, the first term is equal to the original, therefore we do not
have to evaluate the whole equation but only the difference to the original
cost. The second term is only a constant number of operations, but the last
term contains summation of £ — k 4+ 1 elements, while this number is less
then /, it is still proportional to the number of clusters m. Therefore this
modification would not reduce the overall complexity. However, because the
term does not depend on the vertex v, when insertion of more vertices is
evaluated, the computation of Zf:k w; can be done only once and be stored
in a memory. Moreover it can be computed for all possible values of k£ in
O(f) = O(m). For evaluation of O(n) vertices, we obtain complexity O(nm),
compared to O(nm?), which would be necessary if we evaluated O(n) vertices
inserted at O(m) possible positions and each solution evaluated in O(m).

The evaluation of inserting certain vertex at all possible positions can be
done using the formula:

o(Xk) = (%) + W(0k + Li,1) + (Li,y + Lio — di)Sk (3.13)

Where S;, is variable that can be precomputed. We define it recursively as
Si—1 = Si + wr_1, where Sy = wy.

25 ctuthesis t1606152353

3. Solution approach

Figure[3.1] shows a schematic illustration of inserting a vertex in static weights
case. We can see that by inserting a vertex, the path length of vertices
followed by the inserted vertex may change.

Figure 3.1: Ilustration of insertion.

The variant with dynamic weights is even more complicated, because the
inserted vertex does not only influence by changing the path lengths to indi-
vidual vertices but also can change the weights of the following vertices. Let us
assume a partial solution x = (xg,...,z,). For more compact notation we de-
note w; 1= w(vg;, (Vggs -+, Vagyp_y))s di = d(Vg, ,,Vg,) and 6; := (Vg - - -, Vs,)-
The cost of a partial solution is then computed as

¢
c(x) =Y wid; (3.14)
=1

For even more compact notation we denote, for fixed partial solution

k
Ay, =V((v,)) ap = [JV(l(vzy)) (3.15)
1=0

We denote the original solution extended by inserting the v to the kth
position as X = (g, ..., Tk_1,T, Tk, ..., 2g). Let us start with simplest case
of inserting vertex v, with associated visibility region V(I(?)), to the end of
the solution.

¢
c(Re1) = D 1A\ @i1|0i + [B\ ag|(6 + Lyya1) (3.16)

=1

For other cases when k < n, the modified cost is

k—1
c(Xx) = Z |Ai \ 1|0+
i=1

+[B\ ag—1|(0k—1 + Li1)+ (3.17)
¢
+ Z |Ai \ (BU;1)|(0i + Lg,1 + Lio — dy)
i=k

ctuthesis t1606152353 26

3.3. Algorithm modifications

Unfortunately unlike in the case of static weights, we cannot perform the
same simplification. We can, however, subtract the costs of solutions with
insertion of the same vertex at adjacent positions £ and k£ + 1. We obtain

A= |B \ ak,ﬂ((sk,l + Lk,l)_
— |Ak \ ak,1‘5k+
+ A\ (BU ap—1)|(0k — di, + L1 + Li2)—

— B\ ag|(6k + Li+1,1)+
¢
+ > AN\ (BUi—1)|(Liy + Liz — dig = Lis11 — Lig1,2 + diy1)
=kt 1
(3.18)

In order to examine the time complexity, we need to know the time complexity
to perform set operations and to find a size of the set. Because we always
use set operations together with the cardinality operation, we can denote
the complexity of performing both operations as O(f). The second term
can be precalculated for the whole neighborhood in O(fm). First, third and
fourth terms need to be calculated for each combination of edge positions
and inserted vertex, for fixed inserted vertex it is £ + 1 o ?m. The last
term is a summation of ¢ — k o< m elements. This summation for any k can
be evaluated given inserted vertex v in ¢ o< m steps. When the steps are
combined, for a fixed inserted vertex it is complexity O(fm). For the whole
neighborhood with number of candidates o n, we obtain total complexity
O(fmn). After preprocessing, A can be evaluated using constant number of
mathematical operations. Cost of all modified solution ¢(Xy) can be evaluated
by first calculating the cost of the original solution extended by inserting v
at the end, and then repeatedly evaluating and adding the A, for each k.

In order to evaluate the cost of inserting a certain vertex at all possible
positions, we need to first compute the cost of inserting the vertex at the last
position, i.e. ¢(Xg4+1). The A is equal to the difference in the cost of inserting
the vertex at two adjacent positions, i.e. A = ¢(Xy) — ¢(Xg41). By repeatedly
decreasing k by one, we can evaluate the cost of inserting at all positions, by
computing:

c(Xp) = A+ c(Xp41) (3.19)

where A has to be recalculated for every k and k + 1.

Figure 3.2 shows an illustration of inserting a vertex in the dynamic weights
case. Compared to the static weights not only the path lengths of the vertices
following the inserted vertex change, but also their associated weight may
change. In this example, it is obvious that by inserting the dark blue vertex,
the weight of red and dark green vertices changed too.

2 is a symbol to denote proportional to.

27 ctuthesis t1606152353

3. Solution approach

Y

(a) : A partial solution. (b) : A solution after inserting dark blue
vertex.

Figure 3.2: Effect of inserting a vertex in the dynamic weights scenario.

B 3.3.2 Removal heuristics

The computation of removal cost gets more complicated when using different
cost function. In order to decrease the computation complexity, we present
formulas that allow us to reduce the time complexity of evaluation of the
removal costs. Here it seems only the Generalized GSP with order-independent
weights can be simplified to reduce the time complexity.

Assume we are given a solution x = (xo, ..., z). Let us denote w(vg,) = wj,
d(vg;_;,vg,) = d; and 6(vg,, ..., Vs,) = 0;. The cost is then calculated as
¢
c(x) = Z w;0; (3.20)
i=1

A solution, where the vertex at kth position, i.e. vertex v,,, was removed
solution from the original solution x is denoted as Xj. Its cost is then
computed as:

k—1 4
C()ch) = Z widz- + Z wz(éz + Lk — dk — dkfl) (3.21)
=1 i=k+1

Where Lj is the edge cost between the vertices adjacent to the removed
vertex, i.e. the vertices vy, , and vy, ,. The formula can be rearranged to
the following form:

l J4
C()Aik) = Zwiéi — w0 + (Lk —dp — dk+1) Z w; (3.22)
=1 i=k+1

ctuthesis t1606152353 28

3.3. Algorithm modifications

It is apparent that the first term is equal to the original cost, the second
term is the contribution of the vertex v, to the original cost. The last term
is a summation of ¢ — k o m items, which can be precomputed in O(m)
as Sk = Sk+1 + wk, where Sy = wy. The cost of removal one vertex can is
then only a constant number of mathematical operations and is computed as
follows:

c(Xk) = ¢(x) — wdg + (L — di — di41) Sk (3.23)

To evaluate the removal for all suitable vertices, we obtain complexity O(m).

Figure 3.3 shows a schematic of removing a vertex from a solution.

-—-

,
\

I
1
1
1
l

Figure 3.3: Illustration of a vertex removal.

B 3.3.3 Re-Optimize

In the original Re-Optimize method the optimal solution is found through
dynamic programming. Input to this procedure is a complete solution. The
idea is that we do not change cluster ordering, but only select a sequence of
vertices which minimizes the cost. The original algorithm starts by selecting
an arbitrary start cluster, then for each vertex v belonging to the start cluster,
we find a minimal tour that starts in the vertex v, traverses over all the
cluster in predetermined order and finishes in the same vertex v. For each
vertex from the start cluster we obtain a path, finally we simply select the
cheapest one as the final solution.

In the Generalized GSP the start vertex is fixed, therefore we need to evaluate
minimal tours from the start vertex to all of the vertices in the final cluster,
while respecting the cluster ordering. The more important difference lies

29 ctuthesis t1606152353

3. Solution approach

in the dissimilar cost functions, because direct application of the original
procedure does not lead to optimal solution, as it will be shown later.

Figure [3.4] shows a schematic illustration of the Algorithm [5]

Figure 3.4: Ilustration of Re-Optimize using dynamic programming.

The algorithm is described in Algorithm |5l It starts by initialization, fu, is a
list storing the minimal found cost to each vertex. In the beginning we do not
known any path to the vertices except for the start vertex vg. Initialization
is described at lines 1 and 2. At line 3 memory is initialized, this variable is
specific for each cost function and its implementation is described later in the
corresponding section. The rest of algorithm contains three loops, the most
outer one iterates over the clusters in the specified order (V,,...,V,,.). The
two inner loops find all the combinations of vertices from adjacent clusters,
described at lines 5 and 6. Inside the loop, we want to evaluate the cost of a
path that reaches v, by visiting vgom- At line 7, the cost is decomposed to
the minimal cost to reach vgom and an addition of going from vgem t0 V4. If
this candidate path yields better solution, its cost is stored in fni, and the
helper variables are stored in the memory. The concrete implementation of
memory update, described at line 10, is specific to the cost function and is
described in designated sections. Finally, the algorithm finishes by selecting
the vertex v € V,, from the final cluster that has the minimal cost and
returning the path that leads to this vertex, see line 13. The way the path is
obtained depends on the implementation of the memory, either each vertex
stores the previous vertex, then the path is obtained by backtracking back
to the start vertex, or alternatively each vertex can store the whole partial
solution.

In order to show that this pseudo-code yields the optimal solution for a given
fixed order of clusters, we need to show, in accordance to the Bellman’s

ctuthesis t1606152353 30

3.3. Algorithm modifications

Algorithm 5 Re-Optimize

Input: G = (V,E)
Output: Shortest path over ordered clusters (Vy,,...,Vy,,)
: fmin [UO] 0
: fmin[v] ¢ 00, Vv € V' \ v
M v] < initializeMemory(v), Vv € V
: for i € (y1,...,ym) do
for all vgon € Vi_q do
for all v;, € V; do
Z < fmin [Ufrom] + fa ('Ufroma 'Uto)
if 2 < fmin[vto] then
Jmin [Uto] <z
M vio] +— updateMemory (Vgom, Vo, M)
end if
end for
end for
: end for

: return path of argmin fin [v]
’UGVvym

© PP g Wy

e e e
AN e

principle of optimality, that if there is an optimal path from vy to venq that
crosses arbitrary vertex vpiq that there is not any path from vg to vpiq what
would be cheaper than the path from vy to vpiq that is contained in the
optimal path. If this condition is not fulfilled, the algorithm may select a
different path to vpiq and the optimal solution may not be found. More
formally, we can say that there is an optimal solution x* that starts at vertex
Ugo = V0, Crosses Umin = vy and ends at vertex v,, = Vend, this solution can
be written as:

*

X = (20, .oy The1, Thy - - -, T (3.24)

Then there is a solution x’ which also starts in v, = vg and visits v,/ = Vmiq
Zo Ty

and finishes at vy = venq-

X' = (Tl ooy T gy Ty oy Thy) (3.25)

Up until vertex wvniq the paths are different but from v, until the end of
the solution, the paths are equal, i.e.

X' = (X, Tl 1y Thy -+ Tin) (3.26)

We denote the partial solutions, that is the first k£ + 1 items of the solution

as x,, = (%o, ..., Tk1,7x) and X;) = (0, -+, Thy_q, Th)-

Next, we examine the optimality of the dynamic programming approach
for multiple variants of the graph problems. In order to use the dynamic
programming, we need to define the cost of a partial solution f(x,). We

31 ctuthesis t1606152353

3. Solution approach

attempt to prove the optimality by contradiction. Our first assumption is
that the solution x* is optimal i.e.

f(x*) — f(x) <0,Vx (3.27)

We also assume that the partial solution x;, of the non-optimal solution x’
minimizes of the partial cost function, i.e.

f(x) — f(x;) >0 (3.28)

B Generalized Traveling Salesman Problem with fixed start

First we examine the simplest scenario - the GTSP. We need to define the
cost function of the partial solution. For the cost function that is simply the
length of the path, we define:

f(x) =d(xo,x1) + ...+ d(xp_1,20) (3.29)

For more compact notation we denote d; = d(z;_1,x;) and d, = d(z,_,, z}).

First, we evaluate the cost of individual solutions:

fx)=di+...+dp+dpyr + ...+ dn (3.30)
f)=di+. A dp+d + . dy (3.31)
fxp)=di+...+dg (3.32)
Fx) =dy + ... +d, (3.33)

Notice that we replaced d; for d; in terms where d; = d}, i.e. i € {k+1,...,m}.
Now we compare the costs of the complete solutions by finding their difference,
we obtain

fE) = f&X)=di+... +dp—(dy+...+di) = f(x;) — f(x}) (3.34)

By planting this result to the first assumptions (Equation 3.27) we obtain
f(x3)—f(x) < 0. This inequality is, however, apparently in contradiction with
second assumption (Equation |3.28)), this leads to contradiction. Therefore we

have proved that the approach leads to optimal solution.

In the Algorithm [5, we need to define the addition to the cost fa. It
can be computed simply as the distance from one vertex to the other, i.e.
fa(Wtom, Vo) = d(Vfrom, Vto). Every time we found a better solution, we
update the vertex from which we reached v, this way we can backtrack the
solution later. In the beginning we can initialize all the previous vertices to
some invalid value. Apart from that we do not need to store any other helper
variables.

ctuthesis t1606152353 32

3.3. Algorithm modifications

B Generalized Traveling Deliveryman Problem

Next we take a look at the Generalized TDP, the setup is the same except
for the cost function, which we define as:

)4
fp) =di+...+) d; (3.35)
i=1
Let us now evaluate the cost functions again
k k+1 m
f)=dit .+ Y di+ D dit . 4D di (3.36)
i=1 i=1 i=1
k k k m
FO) =di+o) di+ (ZdekH) +o+ (ng+ > di>
i=1 i=1 i=1 i=k+1
(3.37)
k
fE) =di+...+> d; (3.38)
i=1
k
fxp)=di+...+) d (3.39)
i=1

Again we plant the results to the first assumption (Equation 3.27)) and we
obtain:

k k
FO) = 1) = F05) = £6) + (m =) Sod =S od) (340)
=1 1=1

We can see that in this case we have not received a contradiction because it
is not guaranteed that (m — k)(XF_, d; — Y28, d}) > 0, which would cause a
contradiction. However, this result gave us an insight how to define a cost of
partial solution that would yield optimal results in the algorithm.

Example 3.1. A problem shown in Figure [3.5| serves as a counter example,
which shows that with cost of a partial solution defined f(x,) =d; + ...+
Ele d;, dynamic programming would not yield the optimal solution. The
cost of transition from vgem to v is then defined as fa (Vfom, Vto, M) =
0(Vrom) + d(Verom, Vto). Where §(vgom) is stored in the memory and is equal
to the length of the path from the start vertex vg. This variable is updated
as 0(vgo) < 0(Vrom) + d(Vfrom, Vo). In this trivial example, there are only
two possible solutions x; = (vg, v1, v3,v4) and xg = (vg, v2, v3,v4). Simply by
planting the solutions to the definition of cost function for the Generalized
TDP, we obtain ¢(x;) = 10+ 30+ 31 = 71 and ¢(x2) = 20 + 21 4+ 22 = 63.
Therefore the optimal solution is x2, now we emulate the run of the algorithm
to see if it reaches the same result. When the algorithm reaches vertex v; it

33 ctuthesis t1606152353

3. Solution approach

Figure 3.5: Re-Optimize counter example.

stores fmin[v1] <= 10 and §(v;) < 10, similarly for vertex v, fmin[ve] < 20
and 0(v2) < 20. Next the algorithm reaches vertex vz, there are two ways
how to reach this vertex. Therefore it must decide whether chose vertex
vy with value 21 = fmin[v1] + (6(v1) + d(vi,v3)) = 10 + (10 + 20) = 40, or
vertex vy with value 2o = fmin[v2] + (6(v2) + d(v2,v3)) = 20+ 20+ 1 = 41.
The algorithm must chose the vertex with smaller z, so it chooses vertex
v1. From vz there is only one possible choice v4. We see that the resulting
solution is (vg,v1,vs,v4), that is the solution x;. However, we have shown
that the optimal solution is xo, therefore we can see that this approach does
not generally yield optimal solution.

Note that there is not a strict method how to define a cost of partial solution.
The only requirement is that when applied on a complete solution, the value
of cost function must be equal. In the previous example we implicitly assumed
that the cost of a solution of length ¢+ 1 is a summation of the first ¢ terms.
We show that the cost can be rearranged:

c(x)=di+...+> di=mdi + (m—1)dy+ ...+ dn, (3.41)
=1

Therefore we define the cost of a partial solution as:

F(x) =mdy + (m—1)dy + ...+ (m— £+ 1)d, (3.42)

ctuthesis t1606152353 34

3.3. Algorithm modifications

We proceed to the proof with the newly defined cost function, first the
individual costs are evaluated

F) = mdy+ o 4+ (m—k+ Dy + (m— K) s + .+ d (3.43)
fX)y=mdi+...+(m—k+1)d,+ (m—k)dgs1+...+dn (3.44)
f(xp) =mdi+ ...+ (m —k+1)dy (3.45)
f(x,) =md| + ...+ (m—k+1)d (3.46)

)

We substitute the evaluated functions to the first assumption (Equation (3.27
and obtain:

fx7) = f(x) = f(xp) = f(x3) (3.47)
We result is f(x;) — f(x;) < 0, which again contradicts with the second

assumption. Therefore we have proven that using this cost function, the
algorithm yields optimal solution. This gives us a hint on how to approach
to constructing the cost function for partial solution in more general cases
that TDP.

In order to implement this method to the Algorithm |5, we need define the
increase in cost fa by traveling from vgom to vyo. We define the function as:

Fa(Wtrom, Vo, M) = (m — k(vio) + 1)d(Vtrom, Vto) (3.48)

We need to obtain the value of the integer k(vy,), which is the order (counting
from 0) of vy, within the solution. This value can be stored in the memory
and derived by incrementing the k(vgom), belonging to vgoem, by 1. Value of
k(vg) of start vertex vg is initialized to 0.

B Generalized Graph Search Problem with order-dependent weights

We approach the dynamic weights scenario with the same analogous attitude -
we rearrange the formula in the format of weighted sum of distances. For more

compact notation we denote w; = w(vg,, (Vgg,s ...,V ,)). An important
insight is that we assumed that the weights sum up to the area of the
environment, i.e. Y ivqw; = [W|. Then we can rearrange formula to the

following form:

=Y wi »_dj =widy +wa(di +d2) + ...+ Wp(di + ...+ dm) =
i=1 j=1
(3.49)

= (w1 + ... +wp)di + (wa + ... +wp)da + ... + wpdy = (3.50)

m 1—1
= > di((W =D wy) (3.51)
i=1 j=0

35 ctuthesis t1606152353

3. Solution approach
Therefore we define the cost function of a partial solution as:

y4
f(xp) = Z (W= Z w;) (3.52)
i=1

We plant the solution to this function and obtain:

F(x) = di(IW] = wo) + ... + di((W] — Zw]

. (3.53)
+ di1 (W] - ng +dm (W] =) wj)
j=0
FO) = dy(IW] = wh) + ..+ dy (W] — z o
. (3.54)
+ di 1 (W] — Zw +d, (W] — Z w;)
§=0
f(x3) = di(IW| —wo) + ... + dp (W] - Z w;) (3.55)
F(xp) = dy (W] = wp) + ... + di (W] - Z w! (3.56)
Notice that unlike in case of distances, where d; = d} for i € {k+1,...,m},

we cannot do the same for the weights that is because the weight depends
on all the previously visited vertices, which are not the same, i.e. w; =
W(Vg,, (Vag, - - -5 Vay 1)) 7# W(Vgr, (Ut V) = wi. When these formulas
are planted in the first assumption (Equation 3.27) we get:

m i—1
Fx) = f(x) = fxp) = flxp) + > di) (wi—wy) (3.57)

i=k+1 §=0

The last term is not necessarily greater or equal to zero, therefore we do
not come to a contradiction. However, as we show in the experimental part
of the text, this method of computing the cost of a partial solution yields
significantly better results than a straight forward definition:

Flxp) =3 wi) d; (3.58)

These two methods have different interpretation in the Mobile Robot Search
Problem. The latter function can be interpreted as the expected time to
discover the object inside the area corresponding to the visited location, while
the first method can be interpreted as the expected time to discover the
whole area, but after the last location is visited the rest of the environment
is discovered instantaneously.

ctuthesis t1606152353 36

3.3. Algorithm modifications

For the implementation in Algorithm [5, we define the addition in cost by
traveling from vg.om t0 vt as:

fA(Ufromyvtm M) = d(/UfI‘OIn7/UtO)(|W‘ - ’S(Ufrom”) (359)

where S(vgom) expresses the region that was seen from the start up until
visiting vgom. Update of the value is done so that S(vio) < S(Verom) UV (L(v40)),
i.e it is a union of region seen until vgem combined with the region seen
from location corresponding to the vy,. The start vertex is initialized as

S(vo) + V(l(vp)).

B Generalized Graph Search Problem with order-independent weights

The last scenario we cover are the static weights, where all vertices within one
cluster are assigned the same weights, i.e. w(v;) = w(v;) forallv; € V,v; € V.
This scenario may not seem useful but we show in the experiments that the
best method that uses static weights have this property. An advantage is
that we know in advance what is the sum of all the weights Sy, = > iy w(vs,)
for any arbitrary complete solution x = (zg, ..., Tm).

Now we proceed in the similar fashion as in the previous cases and rearrange
the cost function as follows:

3

= Z d; Z w; = diwy + (dl + d2)’w2 + (d1 + ...+ dm)wm = (3.60)
=1 j=1

wy + . +wm)+d2(w2+...+wm)+...+dmwm: (3.61)

d;(S Z w;) (3.62)

sam

1

-
Il

Let us then define the cost of partial solution x, = (xo, ..., %) as

4 i—1
Fp) =Y di(Sw = Y _wj) (3.63)
i=1 j=0

37 ctuthesis t1606152353

3. Solution approach

Now we evaluate the cost functions

k—1
f(X*) = dl(Sw — wo) + ...+ dk(Sw — Z wj)—l—
) - (3.64)
=0 =0
k—1
FO) = di(Sw = wo) + -+ di(Sw = 3 wy)+
. - (3.65)
+di1(Sw = D wi) + o+ din(Sw — D wy)
=0 §=0
k—1
F(xp) = di(Sw = wo) + ... + di(Sw — D wy) (3.66)
j=0
-
F(x) = d)(Sw —wo) + ... + di(Sw — > wy) (3.67)
j=0

Notice, that it holds that w; = w] for all i € {0,...,m}. After planting the
results, we obtain

Fx7) = f(x) = f(xp) = f(x3) (3.68)

This results leads the result f(x;) — f(x}) < 0 which is a contradiction to
the second assumption (Equation |3.28)). Therefore, we have proved that this
methods also finds the optimal solution.

Implementation of this last case in Algorithm [5 has got the increment in cost
function caused by going from vgom t0 vy defined as:

fA (Ufroma Vto, M) = d(Ufroma Uto)(Sw - E('Ufrom)) (369)

where ¥ (vgom) is the sum of weights summed over vertices visited from the
start up until vgem. A memory update is done as X (vyo) = X (Vfrom) + W(Vto).
The start vertex is initialized as X(vp) < 0.

B 3.3.4 Initial solution heuristics

We modify the construction heuristics of the original GLNS so that it accom-
modates the assumption that any feasible solution starts at vertex vg. In the
random insertion tour, instead of selecting the first vertex, which is inserted
to the empty path, randomly. Similarly in the random tour, the cluster 1}

ctuthesis t1606152353 38

3.3. Algorithm modifications

which contains vg is fixed to be first, the order of the remaining clusters is
then chosen randomly.

Additionally we come up with the generalized version of construction heuristics
proposed for the GSP with order-dependent weights in [27]. The construction
is initialized by adding the start vertex vy to a partial solution L, see line 1.
We store the vertices that are possible candidates, i.e. vertices that belong
to unvisited clusters, in a set C, initialization is described at line 2. In every
iteration of a loop, a vertex v is selected from candidate set based on a
criterion function, which is described later. Then, this vertex is added to
the partial solution and all the vertices from the cluster that contain v are
removed from the candidate set C (lines 4 - 6). We use a function g(v) = V4
returning the cluster that contains the argument vertex v € V.

Algorithm 6 Constructive heuristic

L+ (7)0)

C+V \ Vo

forie(1,...,m) do
v < select Vertex(C)
L+ (L,v)
C+C\yg(v)

end for

return L

There paper [27] distinguishes two methods greedy and randomized greedy.
Both methods work very similarly - a certain criterion function is evaluated
for all the vertices in the candidate set. In case of the greedy method the
vertex with the minimal value of criterion function is selected. In case of the
randomized greedy method, the candidate vertices are assigned a probability
based on their score of criterion function. The vertex is then selected randomly
with their assigned probabilities.

Apart from the randomized and stochastic methods of selecting vertices, we
can also distinguish different criterion functions. The original paper lists five
possible functions to evaluate the candidate vertex u. All of them calculate
the function based on the partial solution L = (vg, ..., Vg,).

8 Added cost:
fu, L) = w(u, L)(6(L) + d(vs,,u)) (3.70)

® Distance to the next vector:

f(u, L) = d(vg,,u) (3.71)

39 ctuthesis t1606152353

3. Solution approach

® Distance to weight ratio

d(vg,,u)
L)y=——-“"—+— 3.72
flu, L) w(u, L) 4+ 0.01 (3.72)
®m Total distance traveled to weight ratio
(L) + d(vg,,u)
L) = £)
flu, L) w(u, L) +0.01 (873)
® Weighted distance
f(u, L) = w(u, L)d(vg,, u) (3.74)

The performance of the construction heuristics is evaluated in the experimental
section.

B 34 Weight computation

In this section we discuss the selection of weight function. Previously, we
have presented the GSP, where the weights are static, and GSP with order-
dependent weights, where the weights change dynamically based on the
previously visited vertices. The main advantage of static weights is that the
weight does not have to be recalculated, which may be costly, every time
we need to find out the cost. Although we have shown, how to reduce the
number of weight recalculations in evaluation of operators, it may still be
too time expensive. On the other hand, when we are solving the GSP with
order-dependent weights the static weights serve only as an approximation.
The approximation introduces an error that may not be leveraged even by
the quicker computation time. This may vary based on our time budget and
complexity of the instance.

B 3.4.1 Static weights

We consider three variants of static weights. Unit weights is a case, where the
weights assigned to all vertices equal to the 1, i.e. w(v;) = w(v;) = 1,V4, 5.
This scenario corresponds to the case where visiting any vertex brings the
same amount of information, no matter the order nor the specific location.
The scenario, however, is in the Mobile Robot Search Problem not realistic

ctuthesis t1606152353 40

3.4. Weight computation

as experiments show that the weights usually decrease within the solution.
This case is equivalent to the TDP.

Visibility weights is an approximation where the weights are equal to the area
of visibility region with no prior regions discovered. It was experimentally
shown [27] that this is a very good approximation for cases, where the regions
have small mutual overlap. When the overlap is zero, then this approximation
actually yields the real cost.

Greedy weights is an approximation method recently proposed in [22] for
solving GSP. The weights are obtained by running a greedy algorithm that
constructs a complete solution. The procedure starts in the vertex vg and in
every iteration vertex is selected and added at the end of a partial solution.
The vertex is selected so that it minimizes the ratio of newly discovered area
to the total traveled distance. The weight of a vertex is then assigned based
on the area of newly discovered region by the vertex, i.e.

i—1
w(vy,) = V(U(ve,)) \ | V(U(vg,))] (3.75)
j=0
The regions associated with the weights are mutually disjoint and their union
forms the whole environment. In [22] this method has outperformed both
unit and visibility weights. However, this method cannot be directly used for
Generalized GSP. Therefore, we propose two modification suitable for this
problem.

In both modifications we assume that we have found the order by a greedy
algorithm. In this case, the ordered vertices do not contain all the vertices
from V', but only one vertex from each cluster. In the first variant, for all
vertices u belonging to the same cluster as v,,, the weight is assigned as
follows:

i—1
w(u) = V() \ J V(i(vs,))] (3.76)

Jj=0

In this variant, each vertex is assigned its own weight. In the second variant,
for all vertices u from the same cluster as v,,, the weight is assigned as:

i—1
w(u) = [V(Uvz)) \ U V(U(v,))] (3.77)
§=0
All the vertices from the same cluster have therefore the same weight. In the

experimental section we evaluate performance of both variants. Further, we
test a different criteria in the vertex selection of the greedy algorithm.

Figure [3.6| shows an illustration of the different methods of static weights.

41 ctuthesis t1606152353

3. Solution approach

(a) : Unit weights. (b) : Visibility weights. (c) : Greedy weights.

Figure 3.6: Illustration of the static weights.

B 3.4.2 Dynamic weights

Dynamic weights are used in the Generalized GSP with order dependent
weights. In order to evaluate the weights we need a way of performing set
operations union and difference. For practical reasons we do not attempt to
find analytical solutions but instead the visibility regions are approximated
by polygon approximation or approximation using sampling methods.

B Polygonal approximation

Generally the shape of a visibility region composes of straight lines and
circular arcs. We can approximate the circular arcs by multiple straight lines
and we obtain a polygon. Once we approximate the visibility regions by
polygons, the set operations can be then obtained using clipping algorithms.
In the experimental setup we utilize Clipper2?’|library, which based on Bala
Vatti’s polygon clipping algorithm [38]. Neither the paper nor the library
states the complexity of the algorithm, however, in [20] a new algorithm,
which outperforms Vatti’s algorithm, is proposed and runs in O((n+ k) logn),
where n is total number of edges across all the polygons involved and k is
the number of intersections of all polygon edges. Therefore we assume that
the implementation Clipper2 runs at best in O((n + k) logn).

S3https://www.angusj.com/clipper2/Docs/Overview.htm

ctuthesis t1606152353 42

3.4. Weight computation

B Sampling methods

Sampling methods are used in order to approximate the area of regions by
placing samples on the map. Each sample point s belongs to the vertex v if
it resides inside of the visibility region of the vertex, i.e. s € V(v).

The first method used for sampling is random sampling. The second method
is equidistant grid sampling, i.e. the map is split into square grid cells and
the samples lie in the center of the square. In an ideal case the map would
be a square shaped with no holes. In reality, the map can have arbitrary
shape. Generally the map can be wrapped into a rectangle with dimensions
[0, W] x [0, H]. We want to cover the map with n, columns in the x-axis and
ny rows in the y-axis. Assume we want to cover the map with n samples,
where the distance between two adjacent samples is a in one of the dimensions.
From these requirements we obtain the following:

ang =W (3.78)
any = H (3.79)
NNy =N (3.80)

after rearranging the equations we receive:

|nW InH |WH

Generally, n, and n, are real numbers, but number of rows and columns in
our context only makes sense as natural numbers, therefore we round the
results to nearest natural number. We then obtain:

alng| +e, =W alny| +e,=H (3.82)

Where e, e, are the errors, e, € [~5, 5], e, € [=§,5]. The set of all the
samples is then

1 1
zemijH' + ey

{(ia +)Wi€0,..., [na] —1,j€0,...,|n,] —1} (3.83)

In an environment that contains obstacles, some of the samples may fall into an
obstacle. These samples do not bring any information into the approximation
and therefore we discard them. Because of the discarded sample, the total of
actually used samples would be less than intended. In order to better match
the actual amount of samples with the intended amount, we computed the
number of samples as follows:

_WH
W

n

(3.84)

43 ctuthesis t1606152353

3. Solution approach

Where |W)| is the area of the environment, WH is the area of rectangle
wrapping the environment and n’ is the intended number of samples. Although
there are no guarantees that the final set of samples have the intended
cardinality, empirically we verified that this method produces amount of
samples relatively close to the intended amount.

Figure [3.7a shows an example of the equidistant sampling and Figure [3.7b
shows an example of the random sampling.

(a) : Equidistant sampling on the (b) : Random sampling on map the
map large with 425 samples potholes with 1600 samples.

Figure 3.7: Two examples of possible sampling, with one visibility region
highlighted in each figure.

ctuthesis t1606152353 44

Chapter 4

Experiments

In this chapter we provide experimental evaluation of the modified GLNS
solver. The overall goal is to evaluate the performance of the solver on the
Generalized GSP with order-dependent weights and examine the quality of
presented the approximations and their trade-off with computational cost.

. 4.1 Software and hardware

The solver was implemented in C++ and is based on the implementation of
the original GLNS by Jan Mikulaﬂ The experiments were carried out on
the Lenovo ThinkPad P51 with 32.0 GiB memory, processor Intel® Core™
i7-7820HQ CPU @ 2.90GHz x 8 and Mesa Intel® HD Graphics 630 (KBL
GT?2) graphics.

. 4.2 Instances

We carried out the experiments on four maps, shown in Figure The maps
differ in their size, shape, density of obstacles, complexity of obstacles and
other parameters. For each map we generated five different instances by dual

"https://orcid.org/0000-0003-3404-8742

45 ctuthesis t1606152353

4. Experiments

sampling method, described in [24]. The sampling generates a set of convex
polygons that completely cover the environment. Each of the generated
polygons corresponds to a cluster. Sensing locations belonging to a certain
cluster are constructed by sampling the border of the corresponding polygon.
The described instance generation was done using Visiéﬂ framework with
visibility radius of a robot set to 10.

SRR X

_|
QI‘I:|| : 'l:.|0 3 e "s
_| |

1 a P X
._| o I:‘,. :‘ ,/“). '

(a) : Map complex2. (b) : Map jari-huge. (c) : Map potholes. (d) : Map large.

Figure 4.1: Maps used for experiments.

The instances range from problems with 19 clusters and 81 vertices up to
problems with 143 clusters and 841 vertices. Figure shows the size of
the individual instances. Figure shows the overlap of visibility regions,
computed as the sum of areas of all visibility regions divided by the area of
the environment.

¥ map_name

map_name X X
X X
8001 x complex2_smoothed K 70 X Fornplexz_smoothed
» jari-huge_smoothed x > jari-huge_smoothed
7001 x potholes_smoothed % potholes_smoothed
X large_smoothed

X large_smoothed

Overlap ratio
o o
o o

I
o
X

Number of points

XX

X
w
o

100 15 20155
Zb 4b Sb 8‘0 160 1%0 1110 2‘0 4‘0 6‘0 8b 160 ﬁo 14'10
Number of sets Number of sets
(a) : Relation between number of sets (b) : Relation between number of sets
and points. and overlap retio.

Figure 4.2: Properties of the instances used for the experiments.

Zgitlab.ciirc.cvut.cz /mission-planning /visis-planner

ctuthesis t1606152353 46

4.3. Metrics

. 4.3 Metrics

In most of the experiments, we examine the evolution of solution’s quality in
time. The goal of the MRSP is to minimize the expected time. Therefore we
measure cost of the solution, i.e. the expected time to find an object. We
also measure the elapsed computational time displayed on the x-axis. We set
the time budget to 60 seconds, as it is sufficiently long time interval, where
we can see a convergence of the search.

In order to make the results more interpretable, instead of showing the
absolute value of the objective function, we show the cost’s gap, i.e. the
relative difference of the cost to the best found solution. With gap, we
can easier see, how does the solution compare to the best known solution
percentage-wise. The gap of a solution x is computed as follows:

() = 10050 = Cmin g1 (4.1)
Cmin
where ¢(x) is the cost of solution x and ¢y, is the minimal value of cost
function found across all experiments for a specific instance. Along with the
averaged run shown on the y-axis, we also show a standard deviation error
bars. For normally distributed data, around 68% of the data lie inside of the
error bars.

Note that in order to measure the expected time we may need to find the
intersections of two shapes made up of straight lines and circular arcs. For
practical reasons we do not find the intersections analytically but instead we
approximate the shapes using polygons. Therefore measured expected time
is not exactly equal to the real expected time, but for our purposes the error
is negligible.

47 ctuthesis t1606152353

4. Experiments

. 4.4 Cost modes

In the first experiment, our goal was to explore the dissimilarities in the
cost functions. While the definitions of costs differ, all of them, in essence,
minimize the traveled distance. In this experiment, we kept the original
GLNS algorithm with a modification that instead of using the length of a
tour as a cost function, one of the tested cost function is used. The examined
cost functions and approximations were described in the theoretical part of
this thesis. We distinguish the following cost functions:

B PathLen is simply a sum of distances, i.e. the total traveled distance.

B FEzpectedTime is the reference method to compute the expected time, i.e.
uses polygonal approximation. The weights are order dependent.

8 FEzxpected TimeGridMap uses sampling method for weight computation.
In this experiment the map was sampled with 400 samples equidistantly.

B Fapected TimeVisibility Weights is an approximation of the expected time
using the area of visibility region.

8 FErpected TimeUnit Weights approximates all the weights by 1.

8 Fxpected TimeGreedy Weights approximates the expected time with static
weights as described in Section [3.4.1l For the initialization we use greedy
distance construction heuristic.

In this experiment we ran the solver in total 720 times, that is for a unique
combination of map and cost function 30 runs. Figure 4.3/ shows that across
all maps FxpectedTimeGridMap yields the best solutions. However, we could
argue that without limited time budget the EzpectedTime would eventually
converge to same or even better result, as the objective criterion is actually
the same as the cost function. Figure [4.4] demonstrates it by comparing the
EzpectedTime and the Expected TimeGridMap on the large map. Instead of
using elapsed time on x-axis, we use iterations. It is apparent that both
cost modes behave very similarly. Out of the cost modes that are not
order-dependent. There is not a clear winner, but greedy weights seem to
outperform the rest in most of the cases. Notice that in Figure [4.3| actually
increases with increased time. This effect happens, because the objective
cost, displayed in the graphs, is not equal to the cost functions used by the
the solver. Clearly, optimizing one cost function may worsen the quality
computed using a different cost function.

ctuthesis t1606152353 48

4.4. Cost modes

Gap [%]

complex2 jari-huge
60 80
50
60
= 40 X
3 e S S —— -
8 30 — 8 40
204 B - -
y —— 20 ——
10 — — N—T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
potholes large
120
80 [
100
~—
80 _.60
S S
60 =3
8 40 “\\i—l_‘__
401 k - ahﬁs
20 — . —— =
0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
—— ExpectedTimeGridMap =~ —— ExpectedTimeGreedyWeights =~ —— ExpectedTimeVisibilityWeights

—— ExpectedTime —— ExpectedTimeUnitWeights —— PathLen

Figure 4.3: Results of experiments with the original solver with replaced cost

functions.
I]
105 —— ExpectedTimeGridMap
L ——— ExpectedTime
100 111
95
— 90
o 85 1
e
80
75
70
0 20 40 60 80 100

Iterations [-]

Figure 4.4: The first 100 iterations of the search on the map large.

49

ctuthesis t1606152353

4. Experiments

B a5 Operator selection

Since the previous experiments showed that the order-dependent approxima-
tion of the objective function using sampling methods seems to offer the most
reasonable trade-off between computational time and quality of solution, we
continue this next experiment with the same cost function.

In the theoretical section we have shown modifications to the original GLNS
that allow adaptation to minimize the cost specific for the Generalized GSP
with order-dependent weights, i.e. the expected time. Since the usage
of dynamic weights increases the computational complexity caused by the
necessity to recalculate the weights using the set operations, we want to
evaluate the influence of the specific operators on the quality and time.
Implementation of the GLNS can be done so that one iteration of search is
divided into five steps.

The experiment is set up so that the we start with the original solver, then
for each part of the experiment one of the steps of the original procedure is
replaced with the corresponding step but adjusted for optimization of different
cost function. The options are:

® None refers to none of the order-dependent weights specific operators,
i.e. the original solver.

B Remouwal refers to the order-dependent weights specific removal heuristics.

® SelectSet refers to the the order-dependent weights specific set selection
within the insertion heuristics.

® [InsertVer refers to the the order-dependent weights specific vertex inser-
tion within the insertion heuristics.

8 ReOpt2 refers to the the order-dependent weights specific Re-Optimize
local optimization.

8 MoveOpt refers to the the order-dependent weights specific MoveOpt
local optimization.

Figure 4.5 shows the effect of individual scenarios. We can see that InsertVer,
ReOpt2 and MoveOpt alone outperform the solver without cost function
specific operators. Out of the local optimization methods MoveOpt seems
to outperform ReOpt2. On the map complex2, ReOpt2 method performs

ctuthesis t1606152353 50

4.5. Operator selection

significantly worse than MoveOpt and seem to got stuck in a local optima.
This result is not that surprising as Re-Optimize cannot change the order
of clusters and therefore may be more prone to plateau during the search.
On the other hand SelectSet performed the worst, which may be caused by
the computational expanse of evaluating the insertion cost of all possible
clusters. There were total of 600 runs of the solver, with 25 runs for a unique
combination of a map and an option.

complex2 jari-huge
15.0 P 50) 9
12.5
40
10.0
:\o‘ 7.5 — o\'? 301
3 &
o 501 © 20
2.5 \
W 10 A
0.0 A
T T T T T T T O h T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
otholes large
60 P 60 9

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Time [s] Time [s]
—— None —— Remove —— SelectSet —— InsertVer —— ReOpt2 —— MoveOpt

Figure 4.5: Influence of including a specific operator.

The next experiment is similar to the previous one, but now we started with
a solver that has all parts of the implementation adjusted to minimizing
the expected time with dynamic weights. This option is denoted All. The
remaining options examine the situation, where one block of the solver is
replaced with the original implementations. We denote these NotRemouve,
NotSelectSet, NotInsertVer, NotReopt and NotMowveopt.

Figure displays that all of the methods performed similarly, except for
NotlInsertVer, which performed the worst. An interesting result is shown for
the map large, where the search stagnated at a very bad quality of solution.
In this experiment there were also 600 runs in total and 25 runs per unique
tuple map and option.

51 ctuthesis t1606152353

4. Experiments

complex2 jari-huge
10 P 40 | 9
8
30
— 6 —
X X
P ‘s 201 N
8 8 by .
2 104
‘L
T T T T T T T 0 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
otholes large
60 p g
80
50
40 60 1
3 T 40 A
S 50 O
10 A h Y 20 A
) 8 S S S — 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 70
Time [s] Time [s]
— All —— NotRemove —— NotSelectSet —— NotlInsertVer —— NotReopt —— NotMoveopt

Figure 4.6: Influence of not using a specific operator.

Our conclusion from these two experiments is that the most crucial piece of
the solver is the insertion of vertices, followed by local optimization operators.
The cost function specific removal heuristics and set selection do not seem to
be worth the increased computational complexity.

ctuthesis t1606152353 52

4.6. Sampling method parameters

B 46 Sampling method parameters

As we have shown in the previous experiments approximation based on
sampling seems to be the best approximation candidate. In those experiments
we used settings with 400 equidistant samples. Now we examine the effect of
different sampling strategies and number of samples. The sampling strategies
were explained in the theoretical part of this thesis. Our experiment consists
of testing two sampling strategies equidistant and random, and five values
of the number of samples 100, 200, 400, 800 and 1600. We have tested
combinations of all the parameters. Figure 4.7 shows the influence of the
sampling strategy. In the processing of this experiment, we combined all of
the possible values of the number of samples. This experiment consisted of
400 runs of the solver, with 10 runs per unique combination of map, number
of samples and sampling strategy. It is apparent that on all of the maps,
equidistant sampling outperformed the random sampling in the quality of
solution, the time required to converge seems to be independent on the
sampling strategy.

complex2 jari-huge
10
80
g
6 60 H
o 47 o 40
© ©
(U]]
24
20 A
0
0+
_2 .
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
otholes large
60 p 9
80
50 1
40 60
® 30+ X
g g4
O 20 1 (U]
10 20
04
04
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
—— Equidistant Random

Figure 4.7: Effect of sampling strategies.

Figure 4.8 shows the effect of sampling density. Because the the former
experiment showed that random sampling performs worse, we only show the

53 ctuthesis t1606152353

4. Experiments

results of equidistant sampling. In accordance to expectations, with increasing
number of samples, the best solution found by the solver is better, while the
time to converge increases. From the experiment, we imply that the most
suitable choice for the number of samples is somewhere between 400 and 800
samples. 1600 samples do not significantly improve the quality of best found
solution and moreover it delays the convergence time. However, the selection
depends on the specific instance, more complex maps with narrow passages
and complex obstacles may require higher sampling density. Important finding
is that we did not see a need for increasing sampling density with an increase
in the size of the map, in fact on the biggest map large the 400 samples found
the solution with cost very close to the cost of solutions found by sampling
with 800 and 1600 samples.

complex2 jari-huge
10
80 4
8
6 60
s 4 S 40
U] 6]
P
20
0
21 ! ! ! ! ! ! 01 } i i i i i
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
otholes large
60 p g
50 80

30 M*"l_. S
2 40
©
(U]
10 20 1
—_—

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]

Gap [%]

—— 100 samples —— 200 samples —— 400 samples —— 800 samples —— 1600 samples

Figure 4.8: Effect of different number of samples in the sampling approximation.

ctuthesis t1606152353 54

B a7 Re-Optimize method

4.7. Re-Optimize method

In this section we test the performance of two variants of Re-Optimize operator
tailored to the Generalized GSP with order-dependent weights.

Re-Optimize method

Re-Optimize method

GridMapVar2

GridMapVarl

GridMapVar2

GridMapVarl

8 GridMapVarl refers to the Re-Optimize method using dynamic program-

ming with the more straight forward definition of the transition function

defined in the Equation [3.58

8 GridMap Var2 refers to the Re-Optimize method using dynamic program-

ming with the transition function defined by the Equation [3.52. This
function is inspired by the method used in the case of the Generalized

TDP, where it yields the optimal solution.

0.6 0.8 1.0 12 1.4
Relative cost [-]

(a) : Map complez?.

16

0.4 0.6 0.8 1.0 12 1.4
Relative cost [-]

(c) : Map potholes.

1.6

Re-Optimize method

Re-Optimize method

GridMapVar2 4

GridMapVarl 4

0.6 0.8 1.0 12 1.4
Relative cost [-]

(b) : Map jari-huge.

GridMapVar2 4

GridMapVarl 4

—

0.6 0.8 1.2 14

Relative cost [-]

(d) : Map large.

Figure 4.9: Comparison of Re-Optimize methods.

In this experiment we constructed a random solutions, then both variants
of Re-Optimize were applied on the solutions. Figure [4.9 shows violin plots

with the quality of resulting solutions. The measured quality was normalized

by the median cost of the initial random solutions. It is apparent that the
GridMap Var2 exceeds the improvement on all the maps. Furthermore the

ctuthesis t1606152353

4. Experiments

GridMapVarl improved the initial solution on average only on the simplest
map complex?. The Re-Optimize is implemented so that if no improvement
is found, the original solution is returned, therefore it is possible that the
solutions generated by GridMapVarl were in fact worse that the initial
solutions.

ctuthesis t1606152353 56

4.8. Greedy weights

B as Greedy weights

In this experiment we examine the performance of the two suggested greedy
weight variants. In the theoretical part we proposed two modifications to
the original greedy weights approximation used in the GSP. We denote the
variant, where each vertex has its own weight, as Vertex. This variant is
described by the Equation 3.75. The other variant, where all vertices within
the same cluster share the same weight, is denoted as Set and is described by
the Equation [3.77,

Note that the weights assigned to the individual vertices are determined by
the initial solution constructed in the beginning of every iteration of the
GLNS algorithm. In order to explore the effect of the initial solution on the
final cost, we experimented with all five of the deterministic greedy initial
solution heuristics described in Subsection |3.3.4] In the first part of the
experiment, we tested the performance of both variants of greedy. All runs
independent on the initial solution heuristic were combined. There were
100 runs of the solver for every combination of a map and a greedy weights
variant. Figure 4.10| shows the evolution of solution quality in time. It is
apparent the the Set variant exceeds the Vertex variant across all maps.

complex2 jari-huge
80 P 60) 9
50 4
60
40 4
= 40 = 30 4
© ©
V] o
20 4
20 4
10 A
0+ T T T T T T 01— T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
potholes large
100
100 A
80
80
< < 60+
= 60 A s
o Q
8 8 40
40
20 20
0+ T T T T T T 0+ T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
— Set Vertex

Figure 4.10: The comparison of different variants of greedy weights.

57 ctuthesis t1606152353

4. Experiments

Another view of the same experiment is provided by the Figure [4.11. The
figure is a scatter plot, where each point corresponds to one search. In this
figure we only display the runs of Set variant. The value on x-axis is the cost
of the initial solution and the value on y-axis is the final cost obtained by the
search. The figure also displays an orange line, which interpolates the data
using linear regression. The black dashed line is a unit slope linear function
passing through the origin. This line separates the plane into two parts. The
points above this line actually correspond to search runs, where the solution
got worse. Such situation is not pleasant, but can happen because the cost
computed using greedy weights is only an approximation of the real cost.
Apart from that, we can see that there does not seem to be a significant
correlation between the initial solution and a final solution.

complex2
25)g 7
20 1 217 -
%2 2790 ari-huge
z Ky x| = - o
7 151 K 7 ARG %
o e © 204 7
(o} e e
© 10 1 ©
£ £ 0+ T T T T T T T
w w
5 0 25 50 75 100 125 150 175
Initial cost [-]
0
0 10 20 30 40
Initial cost [-]
potholes large
z SIS D oh] T R
2 10 =X x = x| % 2 R b 3208
© ~ S 501
© ’ ©
f= c
T 04 T T T T T T — = 04 T T T T
0 10 20 30 40 50 60 70 0 100 200 300 400
Initial cost [-] Initial cost [-]

Figure 4.11: The comparison of the initial cost and the final cost.

Next, we examined a combination of greedy weights and sampling method
approximation. In the previous experiments, we observed that these two
methods performed the best. With greedy weights being faster at convergence
and sampling method finding better final solution. In Figure 4.12 three solver
settings are compared. A modified solver that uses both greedy weights
specific operators and cost function is denoted as NoGridmap. The next two
modifications have greedy weights specific operators but use cost function
computed using sampling. They are denoted as Gridmap and GridmapRnd.
While Gridmap uses GreedyDist method for initialization of greedy weights,
GridmapRnd uses RndGreedyDist initialization. We can see that both options
that use the combination of method yielded better results. There were in
total 540 runs of the solver and 45 runs for every combination of a map and
an option.

ctuthesis t1606152353 58

4.8. Greedy weights

complex2 jari-huge
30 P 30) 9
25 A 25 A
20 A 20
= 15 1 = 15
g g
O 10 1 9 104
5 B
S— 37
O B
0 -
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
otholes large
100 P 25 9
80 20
= 60 = 151
X X
=% [=% \
8 40 8 10
20 A 5 4
0 1 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
—— Gridmap —— GridmapRnd —— NoGridmap

Figure 4.12: The effect of combining greedy weights with sampling approxima-

tion.

59

ctuthesis t1606152353

4. Experiments

. 4.9 |nitial solution heuristics

In this experiment we tested the quality of initial solutions created by the
presented construction heuristics. While a better initial solution does not
always equal a better final solution, it is reasonable to start the search with a
sufficiently good solution. Because the GLNS constructs the initial solution
several times within the search, it is also appropriate to utilize a construction
method, which generates diverse selection of initial solutions. With more
diverse initial solutions it is more likely that broader part of the search space
can be discovered. We distinguish 12 construction heuristics

B GreedyDist refers to the method minimizing the distance to the next
vertex described by Equation 3.71, RndGreedyDist is its randomized
variant.

B GreedyGMAddedCost refers to the method minimizing the added cost by
appending selected vertex described by Equation |3.70. The added cost
is computed using sampling approximation with 400 equidistant samples.
RndGreedyAddedCost is its randomized variant.

8 GreedyGMDistToWeight refers to the method minimizing distance to
the next vertex to the area discovered by that vertex ratio, the for-
mula is described by Equation [3.72 The distance to weight ratio is
computed using sampling approximation with 400 equidistant samples.
RndGreedyDistTo Weight is its randomized variant.

8 GreedyGMPathLenWeight refers to the method minimizing the total trav-
eled distance to discovered area ratio, described by Equation 3.70l The
function is evaluated using sampling approximation with 400 equidistant
samples. RndGreedyGMPathLenWeight is its randomized variant.

B GreedyGM WeightedDist refers to the method minimizing the distance
to the next vertex times the area discovered by this vertex, the for-
mula is described by Equation |3.74l The weighted distance is com-
puted using sampling approximation with 400 equidistant samples. Rnd-
GreedyGM WeightedDist is its randomized variant.

8 RndInsertionGM refers to the method random insertion tour. The
necessary weight computation is obtained sampling approximation with
400 equidistant samples.

8 Random refers simply to the random tour.

For the randomized version, we sort the candidates by their greedy objective
function. A vertex is selected from the top three candidates with probabilities

ctuthesis t1606152353 60

4.9. Initial solution heuristics

p1 = 0.66,p2 = 0.22 and p3 = 0.12. When there is less then three candidates,
the best one is selected deterministically.

GreedyDist HEl GreeayDist{ HJ
RndGreedyDist Il o RndGreedybist{ HHo
GreedyGMAddedCost o | o GreedyGMAddedCost o
5 RndGreedyGMAddedCost — g RndGreedyGMAddedCost —1 T
£ GreedyGMDistToweight {] E GreedyGMDistToweight { o}
£ £
S RndGreedyGMDistloweight { HJjHpo £ RndGreedyGMDistioweight { HHo
2 GreedyGMpathlenweight{ | 3 GreedyGMPathLenWeight %
S RndGreedyGMPathLenWeight - é RndGreedyGMPathLenWeight o
£ GreedyGMWeightedDist — - £ GreedyGMWeightedDist fo
RndGreedyGMWeightedDist - RndGreedyGMWeightedDist Hi-e
Rndinsertionci | HIIH © RndinsertionGM | o
Random k _ | Random)—.—{
20 30 40 50 60 50 100 ;é? 200 250
Cost [-] Cost[]
(a) : Map complez?. (b) : Map jari-huge.
GreedyDist 'K GreedyDist []
RndGreedyDist{ Il RndGreedybist{ H—JJH©
GreedyGMAddedCost Ik GreedyGMAddedCost o Il
5 RndGreedyGMAddedCost - g RndGreedyGMAddedCost -
3 GreedyGMDistToweight | |] GreedyGMDistToweight {
; RndGreedyGMDistToweight { cifi § RndGreedyGMDistloweight | Hio
3 GreedyGMPathLenWeight [é GreedyGMPathLenWeight]
ndGreedyGMPathLenWeight{ § RndGreedyGMPathLenWeight
GreedyGMWeightedDist - £ GreedyGMWeightedDist HIl:
RndGreedyGMWeightedDist = RndGreedyGMWeightedDist o Il
Rndinsertionh | HjHo RndinsertionaM{ HH
Random —— Random —— o
20 40 60 80 100 200 300 70 500
Cost [-] Cost [-]
(c) : Map potholes. (d) : Map large.

Figure 4.13: Box plots of the quality of initial solutions obtained by different
methods.

Figure displays performance of the individual construction methods
using box plot graph. We can see that across all the maps, both deterministic
and randomized versions of GreedyWeightedDist performed the worst. Both
versions of GreedyWeightedDist performed, except for one map, also very
poorly. In both of these methods, the greedy criterion is computed such that
the area of discovered region is multiplied by some sort of distance. The
criterion can be interpreted as minimizing both the distance and the area
of discovered region. Therefore vertices that discover less area are preferred,
which is in conflict with what we have observed in the best quality solutions.
When the deterministic and randomized variants are compared, we can see
that on average the deterministic variants yield better solutions and their
deviation is smaller, which may imply less diverse initial solutions. In this
experiments, we do not show computational time, because it was negligible
in comparison to the total length of the search.

61 ctuthesis t1606152353

4. Experiments

B 4.10 The selected solver settings

Based on the knowledge obtain from the previous experiments, we believe
that modified solver performs the best in two modes:

® Mode A is suitable for scenarios where the time budget is highly limited.
This mode is composed from operators specific for greedy weights and
cost computation using sampling approximation.

® Mode B is suitable for scenarios, where the time is not that critical.
This mode uses the original set selection and vertex removal, but vertex
insertion and local optimization procedures modified for the sampling

approximation.
complex2 jari-huge
10 30
8 25
6 20
g, & 151
Q Q
8 8
2 L 10
——
N 5
0+
0-
_2 .
T T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
otholes large
40 P 40 9
30 A
= 201
[N
©
(U]
104
- —
0 — —_— o
0-
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s]
—— A, 400 samples —— B, 400 samples —— A, 800 samples = —— B, 800 samples

Figure 4.14: The selected solver settings.

Figure displays the results of the two modes with number of samples 400
and 800. During this experiment the solver was run in total 400 times, with
25 runs per unique combination of map, mode and the number of samples.
The figure shows that in the early stages of the search mode A performs
better. In the later stages, mode B with 800 samples clearly outperforms all
other combinations of parameters. To our surprise both variants of mode A

ctuthesis t1606152353 62

4.10. The selected solver settings

surpassed the mode B with 400 samples in the quality of the final solutions.
Apart from that, the results correspond to our expectations.

(a) : Map complez2. (b) : Map jari-huge. (c) : Map potholes. (d) : Map large.

Figure 4.15: Selected visualized solutions.

From this experiment, we conclude that both modes perform in accordance
to our intentions and expectations. The number of samples should be chosen
based on the complexity of a map and our time budget.

For illustration, in Figure we provide examples of solutions found
during the experiments. The trajectory is visualized with the red curve, the
discovered regions are displayed using different colors. The region discovered
earlier in the search have lighter tone of blue and the regions discovered later
have darker tone of blue.

63 ctuthesis t1606152353

4. Experiments

B a1 Comparison with Hexaly Optimizer

In this final experiment we compare the modified GLNS to the Hexaly
Optimizer - a general purpose optimizer, which claims to be the world’s
fastest optimization solver for routing, scheduling, packing, and more. We
have decided to make a comparison to this solver, because it is the main
topic of a concurrent thesis by Libor Dubsky [6]. From our instances, we
generated a dataset of problems. In this case, we experimented only with
the order-independent weights, more specifically the visibility weights. Libor
Dubsky wrote a model for the Hexaly Optimizer and provided us with the
results. Both solvers ran 50 times for each map.

complex2 jari-huge
120 P 220) 9
210 A
110 A
200 1
= 1001 = 1901
2 2
O g0+ O 180 1
170 A
80 -
160
70 1= T T T T T T 150 +— T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time [s] Time [s]
otholes large
P 1000 9
320 900
300 A 800 1
‘g‘ ‘g‘ 700 4
§ 280 S
600 -
260 1 h—
500 -
240 1 ; ; ; ; ; ; 400 1 : : : : . :
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time [s] Time [s]
—— GLNS Hexaly

Figure 4.16: Comparison to the Hexaly Optimizer.

Figure 4.16| shows a comparison of the two solvers. Hexaly Optimizer provides
the solution every second, therefore the corresponding graphs start at 1 second.
It is apparent that the GLNS outperforms the Hexaly Optimizer in both the
quality of the best found solution and the speed of convergence. Although
it should not be much of a surprise that the solver specifically designed
for solving the Generalized GSP surpasses the general purpose solver, this
experiment serves as a check that we successfully modified the GLNS so that
it can tackle the Generalized Graph Search Problems.

ctuthesis t1606152353 64

Chapter 5

Conclusion and future work

In this work, we have defined the Generalized GSP with order-dependent
weights as a combination of two combinatorial optimization problems GSP and
GTSP with order-dependent weights. In the theoretical part, we presented
GLNS - a solver using ALNS metaheuristics to tackle the GTSP. We have
shown the modifications necessary to be done in order to solve the newly
defined problem. We have also defined formulas for a more efficient evaluation
of heuristic operators. These modifications have been implemented in C++
to an existing GLNS solver and tested experimentally. The experiments
have shown a trade-off between quality of a solution and computational time
of different heuristic operators, based on specific approximation methods.
We identified the most successful heuristic operators and their appropriate
combinations. The most successful operators were based on greedy weights
and sampling approximations. Finally, we compared the modified GLNS
solver to a general-purpose Hexaly Optimizer. The experiments show that
the modified GLNS surpassed Hexaly Optimizer in both the quality of the
solution and the computational time.

During work on this thesis the main concern was the high expense of recal-
culating a weight based on previously visited vertices. This high expense
was the motivation for using the approximation methods that were studied
in this work. Although we have seen some of the approximation to be very
successful, we believe that there is still room for improvement and further
research. In the implementation and experiments, we kept heuristic operators,
based on different approximations, separate. This allowed us to clearly see
the effects of different approximation methods. However, in order to fully
utilize the adaptivity of the GLNS, more operators could be used in the
bank of methods at the same time. The solver would then itself decide,

65 ctuthesis t1606152353

5. Conclusion and future work

which heuristic operators and which approximations to use based on their
performance. This should lead to better robustness and independence of
the specificity of an instance. Moreover, some of the studied operators are
computationally inexpensive but not as powerful as other more expensive
but stronger operators. The adaptive scheme of GLNS could then select
inexpensive operators earlier in the search and later use more powerful oper-
ators. This could lead to even better trade-off between fast convergence of
the search and quality of the final solution. Because we have mainly focused
on approximation methods and their incorporation into the existing solver,
there is a room for implementation of some other neighborhood structures,
which could be used as a local optimization methods.

ctuthesis t1606152353 66

Appendix A

Acronyms

ALNS Adaptive Large Neighborhood Search

GLNS Effective large neighborhood search heuristic for the Generalized
Traveling Salesman Problem

GRASP Greedy Randomized Adaptive Search Procedure
GSP Graph Search Problem

GTSP Generalized Traveling Salesman Problem
GVNS General Variable Neighborhood Search
LNS Large Neighborhood Search

MRSP Mobile Robot Search Problem

SA Simulated Annealing

SVIND Sequential Variable Neighborhood Descent
TDP Traveling Deliveryman Problem

TSP Traveling Salesman Problem

VND Variable Neighborhood Descent

VNS Variable Neighborhood Search

67 ctuthesis t1606152353

ctuthesis t1606152353

68

Appendix B
Bibliography

L. Bianco, A. Mingozzi, and S. Ricciardelli. The traveling salesman
problem with cumulative costs. Networks, 23(2):81-91, 1993.

F. Busetti. Simulated annealing overview. 05 2001.

F. Chen, H. V. Nguyen, D. A. Taggart, K. Falkner, S. H. Rezatofighi,
and D. C. Ranasinghe. Conservationbots: Autonomous aerial robot
for fast robust wildlife tracking in complex terrains. Journal of Field
Robotics, 41(2):443-469, Nov. 2023.

G. D. Cubber, D. Doroftei, K. Rudin, K. Berns, A. Matos, D. Serrano,
J. Sanchez, S. Govindaraj, J. Bedkowski, R. Roda, E. Silva, and S. Oure-
vitch. Introduction to the use of robotic tools for search and rescue. In
Search and Rescue Robotics, chapter 1. IntechOpen, Rijeka, 2017.

V. Dimitrijevi¢, M. Milosavljevi¢, and M. Markovié. A branch and
bound algorithm for solving a generalized traveling salesman problem.
Publikacije FElektrotehnickog fakulteta. Serija Matematika, (7):31-35,
1996.

L. Dubsky. Hexaly optimizer for multi-goal problems. Master’s thesis
in progress, Department of Cybernetics, Czech Technical University in
Prague, 2025.

M. Fischetti, J. J. Salazar Gonzéalez, and P. Toth. A branch-and-cut
algorithm for the symmetric generalized traveling salesman problem.
Operations Research, 45(3):378-394, 1997.

N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation
algorithm for the group steiner tree problem. Journal of Algorithms,
37(1):66-84, 2000.

69 ctuthesis t1606152353

B. Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

D. Gutin, Gregory ; Karapetyan. Generalized traveling salesman problem
reduction algorithms. Algorithmic Operations Research, 4(2):144—154,
2009.

Z. Hao, H. Huang, and R. Cai. Bio-inspired Algorithms for TSP and
Generalized TSP. INTECH Open Access Publisher, 2008.

B. Hu and G. R. Raidl. Effective neighborhood structures for the
generalized traveling salesman problem. In J. van Hemert and C. Cotta,

editors, Evolutionary Computation in Combinatorial Optimization, pages
36-47, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

D. Huamanchahua, D. Yalli-Villa, A. Bello-Merlo, and J. Macuri-Vasquez.
Ground robots for inspection and monitoring: A state-of-the-art review.
In 2021 IEEE 12th Annual Ubiquitous Computing, Flectronics € Mobile
Communication Conference (UEMCON), pages 0768-0774, 2021.

O. Jellouli. Intelligent dynamic programming for the generalised trav-
elling salesman problem. In 2001 IEEE International Conference on
Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics
in Cyberspace (Cat.No.01CHS37236), volume 4, pages 2765-2768 vol.4,
2001.

E. Koutsoupias, C. Papadimitriou, and M. Yannakakis. Searching a fixed
graph. In F. Meyer and B. Monien, editors, Automata, Languages and
Programming, pages 280-289, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg.

M. Kulich, J. J. Miranda-Bront, and L. Pfeucil. A meta-heuristic
based goal-selection strategy for mobile robot search in an unknown
environment. Computers & Operations Research, 84:178-187, 2017.

M. Kulich and L. Preucil. Multirobot search for a stationary object
placed in a known environment with a combination of grasp and vnd.
International Transactions in Operational Research, 29(2):805-836, 2022.

M. Kulich, L. Preucil, and J. J. M. Bront. Single robot search for a sta-
tionary object in an unknown environment. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 5830-5835, 2014.

M. Kulich, L. Preucil, and J. J. Miranda Bront. On multi-robot search
for a stationary object. In 2017 European Conference on Mobile Robots
(ECMR), pages 1-6, 2017.

G. Laporte and Y. N. and. Generalized travelling salesman problem
through n sets of nodes: An integer programming approach. INFOR:
Information Systems and Operational Research, 21(1):61-75, 1983.

F. Martinez, A. J. Rueda, and F. R. Feito. A new algorithm for computing
boolean operations on polygons. Computers & Geosciences, 35(6):1177—
1185, 2009.

ctuthesis t1606152353 70

[21]

[30]

[31]

B. Bibliography

J. Mikula. Search for a static object in a known environment. Mas-
ter’s thesis, Czech Technical University in Prague, Faculty of Electrical
Engineering, January 2021. Supervisor: RNDr. Miroslav Kulich, Ph.D.

J. Mikula. Anytime metaheuristic framework for global route optimiza-
tion in expected-time mobile search. Manuscript in review, 2025.

J. Mikula and M. Kulich. Solving the traveling delivery person problem
with limited computational time. Central European Journal of Operations
Research, 30(4):1451-1481, 2022.

J. Mikula and M. Kulich. Optimizing mesh to improve the triangular
expansion algorithm for computing visibility regions. SN Computer
Science, 5, 02 2024.

N. Mladenovic, D. Urosevic, and S. Hanafi. Variable neighborhood search
for the travelling deliveryman problem. JOR, 11, 03 2013.

C. E. Noon and J. C. Bean. A lagrangian based approach for the
asymmetric generalized traveling salesman problem. Operations Research,
39(4):623-632, 1991.

V. Ostapovych. A metaheuristics for the graph search problem with
order-dependent weights. Master’s thesis, Czech Technical University in
Prague, Faculty of Electrical Engineering, May 2024. Supervisor: RNDr.
Miroslav Kulich, Ph.D.

P. C. Pop, O. Cosma, C. Sabo, and C. P. Sitar. A comprehensive survey
on the generalized traveling salesman problem. Furopean Journal of
Operational Research, 314(3):819-835, 2024.

S. Ropke and D. Pisinger. An adaptive large neighborhood search
heuristic for the pickup and delivery problem with time windows. Trans-
portation Science, 40:455-472, 11 2006.

A. Salehipour, K. Sérensen, P. Goos, and O. Braysy. Efficient grasp+vnd
and grasp+vns metaheuristics for the traveling repairman problem. JOR,
9:189-209, 06 2011.

A. Sarmiento, R. Murrieta, and S. Hutchinson. An efficient strategy
for rapidly finding an object in a polygonal world. In Proceedings 2003
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2003) (Cat. No.03CH37453), volume 2, pages 1153-1158 vol.2,
2003.

J. Schmidt and S. Irnich. New neighborhoods and an iterated local
search algorithm for the generalized traveling salesman problem. FURO
Journal on Computational Optimization, 10:100029, 2022.

P. Shaw. A new local search algorithm providing high quality solutions
to vehicle routing problems. 1997.

71 ctuthesis t1606152353

B. Bibliography

[34] P. Shaw. Using constraint programming and local search methods to
solve vehicle routing problems. In M. Maher and J.-F. Puget, editors,
Principles and Practice of Constraint Programming — CP98, pages
417-431, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[35] S. L. Smith and F. Imeson. Glns: An effective large neighborhood search
heuristic for the generalized traveling salesman problem. Computers &
Operations Research, 87:1-19, 2017.

[36] L. V. Snyder and M. S. Daskin. A random-key genetic algorithm for the
generalized traveling salesman problem. Furopean Journal of Operational
Research, 174(1):38-53, 2006.

[37] S.S. Srivastava, S. Kumar, R. C. Garg, and P. Sen. Generalized travelling
salesman problem through n sets of nodes. CORS Journal, 7(2):97-101,
1969. Accessed: 2025-05-22.

[38] B. R. Vatti. A generic solution to polygon clipping. Commun. ACM,
35(7):56-63, July 1992.

[39] J. Yang, X. Shi, M. Marchese, and Y. Liang. An ant colony optimiza-
tion method for generalized tsp problem. Progress in Natural Science,
18(11):1417-1422, 2008.

ctuthesis t1606152353 72

Appendix C

Attached files

The attached folder contains the solver along with some example instances.
The folder has got the following structure. Please refer to the README.md for
more information.

/
conda/
data/
example_instances/
experiments/
visis/
build.bash
README.md

73 ctuthesis t1606152353

ctuthesis t1606152353

74

S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
e R
Student's name: KubiSta Daniel Personal ID number: 492344

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

Study program: Cybernetics and Robotics
_

Il. Master’s thesis details
' R
Master's thesis title in English:

The Generalized Travelling Deliveryman Problem

Master’s thesis title in Czech:

Zobecnény problém obchodniho dorucCovatele

Guidelines:

In the Generalized Traveling Salesman Problem (GTSP), we are given a set of cities grouped into possibly intersecting
clusters. The objective is to find a closed path of minimum cost that visits at least one city in each cluster. The Traveling
Deliveryman Problem (TDP), on the other hand, asks for a path visiting all cities exactly once minimizing the sum of waiting
times in all cities. In the thesis, a new problem combining GTSP a TDP will be studied. The student will proceed in the
following steps:

1. Familiarize yourself with the GLNS method [4] for solving the Generalized Traveling Salesman Problem.

2. Familiarize yourself with methods for solving the Traveling Deliveryman Problem [2,3,5,6].

3. Design a method for solving the Generalized Traveling Deliveryman Problem based on the methods mentioned above.
4. Perform experimental verification of the proposed method. Document and discuss the results.

Bibliography / sources:

[1] Mikula, J., and Kulich, M. (2022). Towards a continuous solution of the d-visibility watchman route problem in a polygon
with holes. IEEE Robotics and Automation Letters, 7(3), 5934-5941. https://doi.org/10.1109/LRA.2022.3159824

[2] Kulich, M., and Preudil, L. (2022). Multi-robot search for a stationary object placed in a known environment with a
combination of GRASP and VND. International Transactions in Operational Research, 29(2), pp. 805-836.
https://doi.org/10.1111/itor.12794

[3] Mikula, J., and Kulich, M. (2022). Solving the traveling delivery person problem with limited computational time. Central
European Journal of Operations Research, 1-31. https://doi.org/10.1007/S10100-021-00793-Y

[4] Stephen L. Smith, Frank Imeson, GLNS: An effective large neighborhood search heuristic for the Generalized Traveling
Salesman Problem, Computers & Operations Research, Volume 87, 2017, Pages 1-19, ISSN 0305-0548,
https://doi.org/10.1016/j.cor.2017.05.010.

[5] Mualla Gonca Avci, Mustafa Avci, An adaptive large neighborhood search approach for multiple traveling repairman
problem with profits, Computers & Operations Research, Volume 111, 2019, Pages 367-385, ISSN 0305-0548,
https://doi.org/10.1016/j.cor.2019.07.012.

[6] Cédric Pralet, Iterated Maximum Large Neighborhood Search for the Traveling Salesman Problem with Time Windows
and its Time-dependent Version, Computers & Operations Research, Volume 150, 2023, 106078, ISSN 0305-0548,
https://doi.org/10.1016/j.cor.2022.106078.

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

4)

Name and workplace of master’s thesis supervisor:

RNDr. Miroslav Kulich, Ph.D. Intelligent and Mobile Robotics CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 29.01.2025 Deadline for master's thesis submission:

Assignment valid until: 20.09.2026

prof. Dr. Ing. Jan Kybic prof. Mgr. Petr Pata, Ph.D.

k Head of department’s signature Dean'’s signature

[ll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

FAKULTA ELEKTROTECHNICKA CTU
FACULTY OF ELECTRICAL ENGINEERING
Technicka 2

CZECH TECHNICAL

166 27 Praha 6 :JNNL\;EAI:;SJ:Y

DECLARATION

I, the undersigned

Student's surname, given name(s): Kubista Daniel
Personal number: 492344
Programme name: Cybernetics and Robotics

declare that | have elaborated the master’s thesis entitled

The Generalized Travelling Deliveryman Problem

independently, and have cited all information sources used in accordance with the Methodological Instruction
on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules
for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor's and Continuing
Master's Programmes.

| declare that | used artificial intelligence tools during the preparation and writing of this thesis. | verified the
generated content. | hereby confirm that | am aware of the fact that | am fully responsible for the contents of
the thesis.

In Prague on 23.05.2025 Bc. Daniel Kubista

student's signature

	Introduction
	State of the art
	Contributions

	Mobile Robot Search Problem
	Related graph theory problems
	Mobile Robot Search Problem as a graph theory problem

	Solution approach
	Main concepts
	GLNS
	Insertion heuristics
	Removal heuristics
	Initial tour construction
	Local optimization
	Acceptance and stopping criteria
	Choosing insertion and removal heuristics

	Algorithm modifications
	Insertion heuristics
	Removal heuristics
	Re-Optimize
	Initial solution heuristics

	Weight computation
	Static weights
	Dynamic weights

	Experiments
	Software and hardware
	Instances
	Metrics
	Cost modes
	Operator selection
	Sampling method parameters
	Re-Optimize method
	Greedy weights
	Initial solution heuristics
	The selected solver settings
	Comparison with Hexaly Optimizer

	Conclusion and future work
	Acronyms
	Bibliography
	Attached files
	Project Specification
	Declaration

