
Various Model Types
Tony Hürlimann
info@matmod.ch

March 13, 2025
(First version: Oct 24, 2011)

Abstract

Mathematical models can be classified into groups using various criteria: discrete, con-
tinuous, linear, non-linear, etc. Different model types also dominate in different research do-
mains. Linear and non-linear optimization models prevail the realm of operations research.
Dynamical models such as differential equations, appear more in physics and engineering.
Statistical models and models treating uncertainty (p.e. stochastic models, fuzzy models)
occur in social sciences. This is not to say that physicists do not use statistics. However, the
various research domain use a slightly different vocabulary in building their models.

Coming from the operations research, a lot of attention is given to the classification in
this research field. Several model types are formulated in mathematical notation and in the
modeling system LPL (see [10]). They are compared with each other from various point of
views. Concrete model application examples are given for most model type.

A ZIP file of all models can be found HERE

1

https://matmod.ch/lpl/doc/zip/variants.7z

Contents
1 Introduction 4

2 Variations 6

3 A Linear Program (examp-lp) 10

4 A Integer Linear Program (examp-ip) 14

5 A 0-1 Integer Program (examp-ip01) 17

6 An LP-relaxation of the 0-1 Program (examp-ip01r) 20

7 A Quadratic Convex Program (examp-qp) 24

8 A 0-1-Quadratic Program (examp-qp01) 27

9 Second-Order Cone (socp1) 30

10 Rotated second-order Cone (socp2) 31

11 A NQCP model (bilinear) 32

12 Largest Empty Rectangle (iNCQP) (quadrect) 33

13 A NLP (non-linear) Model (chain) 36

14 Discrete Dynamic System (foxrabbit) 39

15 A Simple Permutation Model (examp-tsp) 41

16 Capacitated Vehicle Routing Problem (examp-cvrp) 44

17 Binpacking (examp-binpack) 47
17.1 Permutation Problems as Implemented in LPL 48

18 Additional Variable Types 50
18.1 Semi-continuous Variable (semi-1) . 50
18.2 Semi-integer Variable (semi-2) . 50
18.3 A Multiple Choice Variable (mchoice-3) . 51

19 Additional Constraint Types 52
19.1 Sos1 Constraint (sos-1) . 53
19.2 Sos2 Constraint (sos-2) . 53
19.3 MPEC Model Type (compl-3) . 54

20 Global Constraints 55
20.1 Alldiff and alldiff . 55
20.2 Element . 57
20.3 Occurrence . 57
20.4 Sequence_total . 58

2

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-lp
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-ip
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-ip01
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-ip01r
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-qp
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-qp01
https://lpl.matmod.ch/lpl/Solver.jsp?name=/socp1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/socp2
https://lpl.matmod.ch/lpl/Solver.jsp?name=/bilinear
https://lpl.matmod.ch/lpl/Solver.jsp?name=/quadrect
https://lpl.matmod.ch/lpl/Solver.jsp?name=/chain
https://lpl.matmod.ch/lpl/Solver.jsp?name=/foxrabbit
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-tsp
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-cvrp
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-binpack
https://lpl.matmod.ch/lpl/Solver.jsp?name=/semi-1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/semi-2
https://lpl.matmod.ch/lpl/Solver.jsp?name=/mchoice-3
https://lpl.matmod.ch/lpl/Solver.jsp?name=/sos-1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/sos-2
https://lpl.matmod.ch/lpl/Solver.jsp?name=/compl-3

21 Conclusion 58

3

1 Introduction
Models can be classified into different groups using various criteria:

Qualitative versus quantitative: When taking a decision or solving a problem, many trust
one’s gut, taking into account intuition and experiences. We all build consciously or uncon-
sciously a model to capture the situation at hand. More often than not, the model may have the
form of a feeling and a decision is taken spontaneously. On the other hand, collect all kinds
of relevant data, formulate the conditions in a clear way, define the goals formally may lead to
superior decision. All depends on the situation and the problem. Surely, many problems must
be quantified to achieve a “good” result. For example, to planify a round-trip to deliver goods to
various clients, intuition will in general be a bad advisor in finding the shortest trip. This paper
only treats quantitative models.

Continuous versus discrete (integer or Boolean): Fractional values may be unacceptable.
“Buy 3.5 aeroplanes” does not make sense in most context, but “on average 3.5 persons die
every second due to drug consumption” may be adequate. However, there is another huge and
important class of models that use discrete (Boolean) values: models to represent problems that
must answer yes/no questions, for example, “should we build a factory or not?”. The significance
of this class is shown in another paper (see [8]). Discrete – also called combinatorial – problems
are in general much more difficult to solve. On the other hand, problems dealing with physical
quantities and their rates of change can be modeled as differential equations. Most of them can
only be solved by discretizing them.

Zero- versus One- versus Multi-objective: We may looking for all, for an arbitrary or
for a particular solution. For zero-objective problems, we are interested only in an arbitrary
solution, it may be unique or not. For example, in model example3a any solution would be
fine (it is unique in this case). In many situations, we are interested in the “best” solution,
with regards to one or many objectives. These problems are called optimization problems. We
may minimize cost, resources, redundancy, etc. or we may maximize revenue, utility, turnover,
customer satisfaction, robustness, etc. Normally, we are looking for one objective. In same
cases, however, several – maybe conflicting – objectives have to be considered. These problems
are called multi-objective optimization problems. Such problems can be handled by various
methods, for example, with goal programming (see below).

Unconstraint versus constrained: Within the class of optimization problems there are un-
constraint or constraint problems. Unconstraint problems only contain an objective function and
no constraint, example: find the minimum of a parable : min 𝑓 (𝑥) = 𝑥2. Constraint problems
consist of an objective and one or several constraints.

Deterministic versus stochastic: If the data in a resultant model is not known with certainty,
we have stochastic models. In many situation, the data are uncertain or unknown, for example,
future demand on a market are not known or uncertain, but even data from the past are often not
known or only a small sample is known. Statistical methods to estimate them are then needed.
Mostly, however, we pretend that data are deterministic in order to avoid complicated models.
In many cases, this may be realistic, but the modeler should be aware of that fact. There is a
broad theory of stochastic models, but in this paper only deterministic once are treated.

Static versus dynamical: In many situation we are looking for an (optimal) state: finding
an optimal production plan, a tournament schedule of a sport league, the shortest round trip,
etc. Normally, optimization models result from these problems. These models are static. When
change has to be modeled, like motion over time in physics, evolution in animal population
in biology, fluctuation in monetary quantities in economy, or development of a virus in a pan-
demic, dynamical models are commonly use, such as discrete dynamical systems or a system of

4

https://lpl.matmod.ch/lpl/Solver.jsp?name=/example3a

differential equations.
Linear versus non-linear: Linear models only contain linear terms with regards to the vari-

ables. Completely different methods are used to solve linear and non-linear problems. Linear,
continuous problems are solved mainly by the simplex method, a modification of this method
solves also certain problems containing quadratic terms (QP, QPC, etc.) – if they are convex.
Linear, discrete (combinatorial) problems use branch-and-bound, cutting plane or other reduc-
tion algorithms. Non-linear problems are in general much more difficult to solve, and a large
number of algorithms have been developed. The distinction between linear and non-linear mod-
els may be arbitrary. We also may partition the models into convex and concave, or into “easy”
and “difficult” to solve. “Easy” could be defined as problems in P (polynomial-solvable), the
“difficult” once are NP-complete, or beyond.1 In any case, the purpose of these partitions is to
classify the models into groups of different algorithmic methods. The reason is more practical
then theoretical: A modeling system – that allows to formulate a wide range of mathematical
models, must be able to be linked to a large number of solutions algorithms – so called solvers
– in order to solve it. The modeling system should be able to recognizes into which group(s) a
model falls to select the solver automatically.

In this paper, a general overview of various mathematical (optimization) model types is
presented. A general specification and formulation is given first in a mathematical notation then
in the modeling language LPL (see [10]).

A mathematical model has the following general form:
min 𝑓 (𝐱)
subject to 𝑔𝑖(𝐱) ≤ 0 forall 𝑖 ∈ {1,… , 𝑚}

𝐱 ∈ 𝐗
If the first line is missing, we have a zero-objective model, if the second line is missing, we
have an unconstraint model. The 𝑓 and 𝑔𝑖 are functions defined in 𝐑𝑛.2 𝐗 is a subset of 𝐑𝑛 (or
𝐍𝑛), and 𝐱 is a vector of 𝑛 components 𝑥1,… , 𝑥𝑛. The above problem has to be solved for the
values of the variables 𝑥1,… , 𝑥𝑛 that satisfy the restrictions 𝑔𝑖 while minimizing the function
𝑓 . The function 𝑓 is called the objective function, 𝑔𝑖 are the constraints. A vector 𝐱 ∈ 𝐗 that
satisfies all constraints 𝑔𝑖(𝐱) ≤ 0 is called feasible solution. The collection of all such points is
the feasible region. The problem then of the mathematical model above is to find a 𝐱𝑜 such that
𝑓 (𝐱) ≥ 𝑓 (𝐱𝑜) for each feasible point 𝐱. Such a point 𝐱𝑜 is called an optimal solution.

A small example is the following model (see [2], page 3):
min (𝑥1 − 3)2 + (𝑥2 − 2)2
subject to 𝑥2

1𝑥2 − 3 ≤ 0
𝑥2 − 1 ≤ 0
−𝑥1 ≤ 0

The objective function and the 3 constraints are:
1 It would be too involving here to explain these concepts. They are developed in the theory of complexity in

computer science.
2 The set of operators that can be used in a function decide on the expressiveness on models. Boolean operators

belong to that set, if all kind of combinatorial problems are to be formulated. Note that any model containing several
constraints could be expressed by a single constraint – by concatenating the constraints with the Boolean operator
and.

5

𝑓 (𝑥1, 𝑥2) is (𝑥1 − 3)2 + (𝑥2 − 2)2
𝑔1(𝑥1, 𝑥2) is 𝑥2

1𝑥2 − 3 ≤ 0
𝑔2(𝑥1, 𝑥2) is 𝑥2 − 1 ≤ 0
𝑔3(𝑥1, 𝑥2) is −𝑥1 ≤ 0

Figure 1 illustrates the model geometrically in the two-dimensional real Euclidean space.

Figure 1: Geometric representation of the model

2 Variations
There are useful practical variations in notation that can be reduced to a standard model type.

1. A maximizing objective function can be transformed into a minimizing function (and vice
versa):

max 𝑓 (𝐱) ⟹ min −𝑓 (𝐱)
A greater or equal constraint can be transformed into a less or equal than constraint:

𝑓 (𝐱) ≥ 0 ⟹ −𝑓 (𝐱) ≤ 0

A equality constraint can be transformed into a less and a greater or equal than constraint:

𝑓 (𝐱) = 0 ⟹

{

𝑓 (𝐱) ≥ 0
𝑓 (𝐱) ≤ 0

2. A maximin (or a minimax) objective can be transformed as follows (let 𝐼 = {1,… , 𝑛})
(note that the functions are convexe) :

max
(

min
𝑖∈𝐼

𝑓 (𝑥𝑖)
)

⟹

⎧

⎪

⎨

⎪

⎩

max 𝑧
s.t. 𝑓 (𝐱𝐢) ≤ 𝑧 forall 𝑖 ∈ 𝐼

𝑧 ≥ 0

6

min
(

max
𝑖∈𝐼

𝑓 (𝑥𝑖)
)

⟹

⎧

⎪

⎨

⎪

⎩

min 𝑧
s.t. 𝑓 (𝐱𝐢) ≥ 𝑧 forall 𝑖 ∈ 𝐼

𝑧 ≥ 0

This notation is useful for example in zero-sum games (see gameh, or in regression models
and others (see model regression).

3. The following objective function is concave, hence, the transformation is more involving
(𝑀 being an upper bound for 𝑥) :

max |𝑥| ⟹

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max 𝑧
s.t. 𝑧 = 𝑥𝑝 + 𝑥𝑛

𝑥 = 𝑥𝑝 − 𝑥𝑛
𝑥𝑝 = 𝑀𝑦
𝑥𝑛 = 𝑀(1 − 𝑦)
𝑦 ∈ {0, 1}
𝑧, 𝑥𝑝, 𝑥𝑛 ≥ 0

4. An arbitrary (non-linear) objective function 𝑓 (𝑥) can be replaced by a linear function by
introducing an additional variable 𝑧. Then the general model is replaced by:

min 𝑧
subject to 𝑔𝑖(𝐱) ≤ 0 forall 𝑖 = 1,… , 𝑚

𝐱 ∈ 𝐗
𝑓 (𝐱) ≤ 𝑧

5. A fractional linear objective can be replaced by a linear one by introducing additional
variables. The method is explained in model bill046

6. Let 𝑓 (𝑦) be a non-linear function used in a constraint. Then we can approximate it by a
piecewise linear function. The procedure is explained in model bill227.

7. The variables 𝑥 in a standard (non-linear) model are free. If they must be positive only,
then one can easily add the constraints: (𝐱 ≥ 0).
The variables in a linear model (LP) normally are tacitly limited to be positive. If a variable
𝑥 should be free, then we can make the following substitutions:

𝑥 = 𝑥𝑝 + 𝑥𝑛, with 𝑥𝑝, 𝑥𝑛 ≥ 0

8. A model with 𝑘 multiple objectives, say 𝑓1(𝐱),… , 𝑓𝑘(𝐱) can be formulated by forming a
new combined objective 𝑓 as follows:

𝑓 (𝐱) = 𝑤1𝑓1(𝐱) +… +𝑤𝑘𝑓𝑘(𝐱)

where𝑤1,… , 𝑤𝑘 are numbers (weights) that reflect the importance of the single objectives
(the higher the number, the more important the objective). An illustrative example is give
in the model multi1.

7

https://matmod.ch/lpl/HTML/gameh.html
https://matmod.ch/lpl/HTML/regression.html
https://matmod.ch/lpl/HTML/bill046.html
https://matmod.ch/lpl/HTML/bill227.html
https://matmod.ch/lpl/HTML/multi1.html

9. A useful variant is goal programming by the means of soft constraints. In many situation,
we do not mind if a particular constraint is slightly violated. For instance, with a given
budget of $1’000’000, it would certainly be acceptable to over- or undershoot it by, say,
$100. On the other hand, a constraint that defines 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 = 𝐵𝑢𝑑𝑔𝑒𝑡, enforces exactly
the amount. To resolve (and relax) this problem, the constraint can be made “soft”, that is,
two positive variables 𝑝 and 𝑛 are added to absorb a positive or negative deviation (slacks)
from the budget goal, and the constraint is modified to

𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠 + 𝑛 − 𝑝 = 𝐵𝑢𝑑𝑔𝑒𝑡 (𝑛, 𝑝 ≥ 0)

In the objective function, a weighted sum of these slack variables can be minimized (as
seen in the previous item about multiple objectives, or the maximal deviation can be min-
imized. Hence, the goal, namely “attaining the budget exactly” is substituted by the goal
“attaining the budget approximately”. Several positive and negative slacks could be added
to a goal constraint, that can be penalized with an increasing weight parameters in the ob-
jective function. This method is closely related with the problem of multiple objectives:
The objectives are – between others – to minimize the deviations of the different goals. A
example to illustrate this technique is given in the models goalpr and in goalpr1.

10. Preemptive goal programming is another technique to handle soft constraints. Finding the
right weights for the different goals in an multiple objective function is sometimes difficult.
Hence, in this method the user orders the goals in a list of decreasing importance. The
first optimization minimizes/maximizes the most important goal. Then the corresponding
slack variables are fixed and the next goal is optimized, and so on, until all goals has been
optimized. Formally, solve the model first with 𝑓1(𝐱) (supposing 𝑓1 is the most important
goal). Let the optimal value be 𝑓 𝑜

1 , then add the constraint 𝑔𝑚+1(𝐱) = 𝑓1(𝐱)−𝑓 𝑜
1 = 0. Now

continue in the same way with the second most important objective, an so on until the least
important objective. This method is illustrated by the model goalpr2. A real model where
this method is used can be found in the Casebook II.

In an application, the objective function may have various meaning. We may maximize
profit, utility, turnover, return on investment, net present value, number of employees, customer
satisfaction, probability of survival, robustness; or we may minimize cost, number of employees,
redundancy, deviations, use of resources, etc.

The constraints reflect a large variation of requirements in a concrete application. In a
production context there may be capacity, material availability marketing limitation, material
balance constraints; in a resource scheduling we may have due date, job sequencing, space
limitation constraints, etc.

In the following sections various model types are presented and most of them implemented:
1. Linear programs (LP) consist of linear constraints and a linear objective function and real

variables.
2. Integer (linear) programs (IP) consist of linear constraints and a linear objective function

and integer variables.
3. 0-1 (linear) programs consist of linear constraints and a linear objective function and

binary variables (integer variables with only values of 0 and 1). This type is a special
case of the previous one, where variables are integer but can only take the values 0 or 1.
From the formulation point of view, the difference between the three types is very small.

8

https://matmod.ch/lpl/HTML/goalpr.html
https://matmod.ch/lpl/HTML/goalpr1.html
https://matmod.ch/lpl/HTML/goalpr2.html
https://matmod.ch/lpl/doc/book2.pdf

However – as we shall see – the difficulty to solve integer problems is much higher. Linear
programs (LP) can be solved in polynomial time, while IP and 0-1 IP problems are mostly
NP-complete. The application field of these three model types is very large. We shall
point to examples.

4. Quadratic problems (QP) which consist of linear constraints and a quadratic convex ob-
jective function.

5. 0-1 quadratic problems (0-1-QP) which consist of linear constraints and a quadratic con-
vex objective function and contain 0-1 variables. Both types have interesting applications
in portfolio theory.

6. Quadratic constraint problems (QCP) which consist of linear and quadratic convex con-
straints and a quadratic convex objective function.

7. Second order cone problems (SOCP), which have many applications in physics. All of
these previous model classes are convex problems – and much easier to solve.

8. Non-convex quadratic problems (NCQP), an interesting application is given below. All
of these previous model classes can today be solved by commercial solvers like Gurobi or
Cplex.

9. A large class of models is the non-linear optimization model class (NLP). Many solver
exist for specific subclasses of this class. Also some general commercial solvers exist
such as Knitro or Hexaly solver. Version 11.0 of Gurobi also can solve some non-linear
models.

10. Many application in physics, biology, or economy use dynamic models which are basically
discrete dynamic system or systems of differential equations.

11. A particular class is the permutation model class. Many routing, scheduling, or assign-
ment problems can be formulated in this way, a concrete example is given, more of them
can be found in the paper [9].

For most of the model types, a concrete application and an implementation in LPL is given.
We shall show the gap in difficulty to solve integer problems compared to non-integer linear
problems.

Of course, one can also build combined models: LP model part mixed with IP model leads
to mixed integer programs (MIP) containing real and integer variables, etc.

9

https://www.gurobi.com
https://www.ibm.com/products
https://www.artelys.com/solvers/knitro/
https://hexaly.com

3 A Linear Program (examp-lp)
—- Run LPL Code , HTML Document –
Problem: The general linear programming model – called LP – consists of a linear objective
function 𝑓 (𝐱) and 𝑚 linear constraints 𝑔𝑖(𝐱) and 𝑛 variables. It can be compactly formulated as
follows (see [12]):

min
∑

𝑗∈𝐽
𝑐𝑗𝑥𝑗

subject to ∑

𝑗∈𝐽
𝑎𝑖,𝑗𝑥𝑗 ≥ 𝑏𝑖 forall 𝑖 ∈ 𝐼

𝑥𝑗 ≥ 0 forall 𝑗 ∈ 𝐽
𝐼 = {1…𝑚}, 𝐽 = {1… 𝑛}, 𝑚, 𝑛 ≥ 0

An more compact formulation using matrix notation for the model is as follows:
min 𝐜 ⋅ 𝐱
subject to 𝐀 ⋅ 𝐱 ≥ 𝐛

𝐱 ≥ 0
The objective function 𝑓 the constraints 𝑔𝑖, and 𝐗 (in the general format) are as follows:

𝑓 (𝑥1,… , 𝑥𝑛) = 𝑐1𝑥1 +…+ 𝑐𝑛𝑥𝑛
𝑔𝑖(𝑥1,… , 𝑥𝑛) = 𝑏𝑖 − (𝑎𝑖,1𝑥1 +…+ 𝑎𝑖,𝑛𝑥𝑛) ≤ 0 forall 𝑖 = 1,… , 𝑚

𝐱 ∈ 𝐑𝑛

Note that in addition to the 𝑔𝑖 constraints we also have the non-negativity conditions on the
variables 𝐱 in the standard formulation. If we need negative variables, we must explicitly replace
𝐱 by 𝐱𝟏 − 𝐱𝟐, where 𝐱𝟏, 𝐱𝟐 ≥ 0 are two positive vectors ∈ 𝐑𝑛.

In the following, a concrete problem with random data for the matrix 𝐀, and the two vectors
𝐛 and 𝐜 is specified (with 𝑛 = 15 and 𝑚 = 15):

𝐜 =
(

16 73 39 81 68 60 90 11 33 89 71 12 24 23 47
)

𝐀 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

87 34 0 0 43 0 52 85 36 0 0 0 0 0 0
0 0 39 0 84 0 0 88 0 0 0 0 0 0 22
55 63 79 0 0 0 0 71 0 0 0 0 70 0 79
0 0 0 0 0 0 0 73 0 0 0 22 0 0 0
0 0 0 66 0 0 34 0 0 24 0 61 0 0 64
0 0 16 19 0 0 0 0 0 0 0 0 0 0 18
15 70 61 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 52 0 14 0 0 92 0
0 0 0 0 0 0 0 30 0 0 98 0 19 0 0
0 70 37 0 0 0 0 0 0 0 0 86 0 93 0
90 0 82 0 66 0 0 0 0 26 0 0 0 0 0
77 30 0 0 0 0 13 10 0 0 0 50 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 72 0 0 0 79 0 0 0 0 0 11 90 0 0
0 0 0 0 0 32 55 0 23 0 0 0 0 0 36

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐛 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
0
0
0
58
44
0
0
0
0
0
119

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

10

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-lp
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-lp
https://matmod.ch/lpl/HTML/examp-lp.html

With these data, the model is specified by the following explicit linear program:

min 16𝑥1 + 73𝑥2 + 39𝑥3 + 81𝑥4 + 68𝑥5 + 60𝑥6 + 90𝑥7 + 11𝑥8 + 33𝑥9
+89𝑥10 + 71𝑥11 + 12𝑥12 + 24𝑥13 + 23𝑥14 + 47𝑥15subject to 87𝑥1 + 34𝑥2 + 43𝑥5 + 52𝑥7 + 85𝑥8 + 36𝑥9 ≥ 0

39𝑥3 + 84𝑥5 + 88𝑥8 + 22𝑥15 ≥ 0
55𝑥1 + 63𝑥2 + 79𝑥3 + 71𝑥8 + 70𝑥13 + 79𝑥15 ≥ 0
73𝑥8 + 22𝑥12 ≥ 0
66𝑥4 + 34𝑥7 + 24𝑥10 + 61𝑥12 + 64𝑥15 ≥ 0
16𝑥3 + 19𝑥4 + 18𝑥15 ≥ 0
15𝑥1 + 70𝑥2 + 61𝑥3 ≥ 0
52𝑥9 + 14𝑥11 + 92𝑥14 ≥ 58
30𝑥8 + 98𝑥11 + 19𝑥13 ≥ 44
70𝑥2 + 37𝑥3 + 86𝑥12 + 93𝑥14 ≥ 0
90𝑥1 + 82𝑥3 + 66𝑥5 + 26𝑥10 ≥ 0
77𝑥1 + 30𝑥2 + 13𝑥7 + 10𝑥8 + 50𝑥12 ≥ 0
72𝑥2 + 79𝑥6 + 11𝑥12 + 90𝑥13 ≥ 0
32𝑥6 + 55𝑥7 + 23𝑥9 + 36𝑥15 ≥ 119
𝑥𝑗 ≥ 0 forall 𝑗 ∈ {1…15}

Modeling Steps: The formulation of the model in the LPL modeling language is straightforward
and the notation is close to the mathematical notation using indices: First, define the two sets
i and j. Then declare and assign the data as parameters A, c, and b. The variable vector x is
declared, and finally the constraints R and the minimizing objective function obj are written.

Note that the data matrices 𝐀, 𝐛, and 𝐜 are generated using LPL’s own random generator.
(To generate each time the same data, the code can also use the function SetRandomSeed(a)
where a is an integer.)

Listing 1: The Complete Model implemented in LPL [10]� �
model Lp15 "A L i n e a r Program ";

set i := [1..15]; j := [1..15];
parameter A{i,j}:= Trunc(if(Rnd(0,1)<.25,Rnd(10,100)));

c{j} := Trunc(Rnd(10,100));
b{i} := Trunc(if(Rnd(0,1)<.15,Rnd(0,120)));

variable x{j};
constraint R{i} : sum{j} A*x >= b;
minimize obj : sum{j} c*x;
Writep(obj,x);

end� �
Today, models with 𝑛, 𝑚 > 10000 and much larger are solved on a regular base. LP models

with millions of variables can be solved today. A linear programming model with 2000 variables
and 1000 linear constraints can be downloaded and solved at: lp2000.
Solution: The small model defined above has the following solution:

𝑥 =
(

0 0 0 0 0 0 0 1.4667 1.1154 0 0 0 0 0 2.5929
)

The optimal value of the objective function is:
𝑜𝑏𝑗 = 174.8096

11

https://matmod.ch/lpl/HTML/lp2000.html

Further Comments: The linear programming (LP) model has many applications in quantitative
decision making. LP is used for capacity planning, resource (raw material) allocation, manpower
planning, blending, transportation, network flow, network design, portfolio selection, optimal
marketing mix, multiperiod product mix, and many others.

A small example in multi period production planning is given in the model: product. A
historical example of a the so-calledmin-cut problem is modeled by Tolstoi1930. An application
example for transportation is trans or ship3.

A linear model implementing three common regression methods is given in regression.
Further Notes: As already seen in the model regression certain non-linear functions can be
transformed in a way that the model becomes an linear one. We mention three of them (see [3],
Chap. 13):

1. The absolute value. Suppose the (minimizing) objective function has the form:
𝑓 (𝐱) = |𝐜 ⋅ 𝐱|

One can add a single variable 𝑦 and modify the LP as follows:
min 𝑦
subject to 𝐀 ⋅ 𝐱 ≥ 𝐛

𝐜 ⋅ 𝐱 ≤ 𝑦
−𝑐 ⋅ 𝐱 ≤ 𝑦
𝐱 ≥ 0
𝑦 ≥ 0

This can be generalized. If the objective function is:
𝑓 (𝐱) =

∑

𝑖∈𝐼

|

|

𝐜𝑖 ⋅ 𝐱||

One can add a vector of variables 𝑦𝑖 (with 𝑖 ∈ 𝐼) and modify the LP as follows:
min

∑

𝑖∈𝐼 𝑦𝑖subject to 𝐀 ⋅ 𝐱 ≥ 𝐛
𝐜𝑖 ⋅ 𝐱 ≤ 𝑦𝑖 , forall 𝑖 ∈ 𝐼
−𝑐𝑖 ⋅ 𝐱 ≤ 𝑦𝑖 , forall 𝑖 ∈ 𝐼
𝐱 ≥ 0
𝑦𝑖 ≥ 0 , forall 𝑖 ∈ 𝐼

2. The maximal value. Suppose the objective function has the form:
𝑓 (𝐱) = max 𝐜 ⋅ 𝐱

One can add a single variable 𝑦 and modify the LP as follows:
min 𝑦
subject to 𝐀 ⋅ 𝐱 ≥ 𝐛

𝐜 ⋅ 𝐱 ≤ 𝑦
𝐱 ≥ 0
𝑦 ≥ 0

12

https://matmod.ch/lpl/HTML/product.html
https://matmod.ch/lpl/HTML/Tolstoi1930.html
https://matmod.ch/lpl/HTML/trans.html
https://matmod.ch/lpl/HTML/ship3.html
https://matmod.ch/lpl/HTML/regression.html

In a similar way, if the objective function is:
𝑓 (𝐱) = max

𝑖∈𝐼
|

|

𝐜𝑖 ⋅ 𝐱||

One can add a single variable 𝑦 and modify the LP as follows:
min

∑

𝑖∈𝐼 𝑦𝑖subject to 𝐀 ⋅ 𝐱 ≥ 𝐛
𝐜𝑖 ⋅ 𝐱 ≤ 𝑦 , forall 𝑖 ∈ 𝐼
−𝑐𝑖 ⋅ 𝐱 ≤ 𝑦 , forall 𝑖 ∈ 𝐼
𝐱 ≥ 0
𝑦𝑖 ≥ 0 , forall 𝑖 ∈ 𝐼

3. The fractional LP. Suppose the objective function consists of maximizing the ratio of
two linear functions (where 𝐩 and 𝐪 are two data vectors and 𝛼 and 𝛽 are two scalars):

𝑓 (𝐱) = 𝐩 ⋅ 𝐱 + 𝛼
𝐪 ⋅ 𝐱 + 𝛽

One can convert this into a LP model. If the feasible set {𝐱|𝐀 ⋅ 𝐱 ≤ 𝐛, 𝐱 ≤ 0} is nonempty
and bounded and if 𝐪 ⋅ 𝐱 + 𝛽 > 0, using the following transformations:

𝑧 = 1
𝐪 ⋅ 𝐱 + 𝛽

, 𝐲 = 𝑧𝐱

we obtain the following LP:
min 𝐩 ⋅ 𝐱 + 𝛼
subject to 𝐀 ⋅ 𝐲 − 𝐛𝑧 ≤ 0

𝐪 ⋅ 𝐲 + 𝛽𝑧 = 1
𝐲 ≥ 0
𝑧 ≥ 0

A small example is given in bill046.

13

https://matmod.ch/lpl/HTML/bill046.html

4 A Integer Linear Program (examp-ip)
—- Run LPL Code , HTML Document –
Problem: The general linear integer programming model – called IP – contains a linear ob-
jective function 𝑓 (𝐱), 𝑚 linear constraints 𝑔𝑖(𝐱), and 𝑛 integer variables. It can be compactly
formulated as follows (see [12]):

min
∑

𝑗∈𝐽
𝑐𝑗𝑥𝑗

subject to ∑

𝑗∈𝐽
𝑎𝑖,𝑗𝑥𝑗 ≥ 𝑏𝑖 forall 𝑖 ∈ 𝐼

𝑥𝑗 ∈ ℕ+ forall 𝑗 ∈ 𝐽
𝐼 = {1…𝑚}, 𝐽 = {1… 𝑛}, 𝑚, 𝑛 ≥ 0

A more compact formulation using matrix notation for the model is :
min 𝐜 ⋅ 𝐱
subject to 𝐀 ⋅ 𝐱 ≥ 𝐛

𝐱 ∈ 𝐍+

The objective function 𝑓 , the constraints 𝑔𝑖, and 𝐱 (in the general model format) are as follows:
𝑓 (𝑥1,… , 𝑥𝑛) = 𝑐1𝑥1 +…+ 𝑐𝑛𝑥𝑛
𝑔𝑖(𝑥1,… , 𝑥𝑛) = 𝑏𝑖 − (𝑎𝑖,1𝑥1 +…+ 𝑎𝑖,𝑛𝑥𝑛) ≤ 0 forall 𝑖 = 1,… , 𝑚

𝐱 ∈ 𝐍𝐧

The IP model has the same notation as the LP model, the only difference is that the variables are
integer values. However, IP model are much more difficult to solve in general. (To get an idea
solve the following model: lp2000. Then try to solve ip2000.)

In the following a problem with random data is specified (with 𝑛 = 15 and 𝑚 = 15):
𝑐 =

(

16 73 39 81 68 60 90 11 33 89 71 12 24 23 47
)

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

87 34 0 0 43 0 52 85 36 0 0 0 0 0 0
0 0 39 0 84 0 0 88 0 0 0 0 0 0 22
55 63 79 0 0 0 0 71 0 0 0 0 70 0 79
0 0 0 0 0 0 0 73 0 0 0 22 0 0 0
0 0 0 66 0 0 34 0 0 24 0 61 0 0 64
0 0 16 19 0 0 0 0 0 0 0 0 0 0 18
15 70 61 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 52 0 14 0 0 92 0
0 0 0 0 0 0 0 30 0 0 98 0 19 0 0
0 70 37 0 0 0 0 0 0 0 0 86 0 93 0
90 0 82 0 66 0 0 0 0 26 0 0 0 0 0
77 30 0 0 0 0 13 10 0 0 0 50 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 72 0 0 0 79 0 0 0 0 0 11 90 0 0
0 0 0 0 0 32 55 0 23 0 0 0 0 0 36

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑏 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
0
0
0
58
44
0
0
0
0
0
119

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

14

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-ip
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-ip
https://matmod.ch/lpl/HTML/examp-ip.html
https://matmod.ch/lpl/HTML/lp2000.html
https://matmod.ch/lpl/HTML/ip2000.html

The data given above specify the following explicit linear program:

min 16𝑥1 + 73𝑥2 + 39𝑥3 + 81𝑥4 + 68𝑥5 + 60𝑥6 + 90𝑥7 + 11𝑥8 + 33𝑥9
+89𝑥10 + 71𝑥11 + 12𝑥12 + 24𝑥13 + 23𝑥14 + 47𝑥15subject to 87𝑥1 + 34𝑥2 + 43𝑥5 + 52𝑥7 + 85𝑥8 + 36𝑥9 ≥ 0

39𝑥3 + 84𝑥5 + 88𝑥8 + 22𝑥15 ≥ 0
55𝑥1 + 63𝑥2 + 79𝑥3 + 71𝑥8 + 70𝑥13 + 79𝑥15 ≥ 0
73𝑥8 + 22𝑥12 ≥ 0
66𝑥4 + 34𝑥7 + 24𝑥10 + 61𝑥12 + 64𝑥15 ≥ 0
16𝑥3 + 19𝑥4 + 18𝑥15 ≥ 0
15𝑥1 + 70𝑥2 + 61𝑥3 ≥ 0
52𝑥9 + 14𝑥11 + 92𝑥14 ≥ 58
30𝑥8 + 98𝑥11 + 19𝑥13 ≥ 44
70𝑥2 + 37𝑥3 + 86𝑥12 + 93𝑥14 ≥ 0
90𝑥1 + 82𝑥3 + 66𝑥5 + 26𝑥10 ≥ 0
77𝑥1 + 30𝑥2 + 13𝑥7 + 10𝑥8 + 50𝑥12 ≥ 0
72𝑥2 + 79𝑥6 + 11𝑥12 + 90𝑥13 ≥ 0
32𝑥6 + 55𝑥7 + 23𝑥9 + 36𝑥15 ≥ 119
𝑥𝑗 ∈ 𝐍+ forall 𝑗 ∈ {1…15}

Modeling Steps: The formulation of the model in LPL modeling language is straightforward
and the notation is close to the mathematical notation using indices: First we define the two sets
i and j. Then we declare and assign the data as parameters A, c, and b. The variable vector
x is declared with the keyword integer (the only difference to the LP model), and finally the
constraints R and the minimizing objective function obj are written.

Note that the data matrices 𝐀, 𝐛, and 𝐜 are generated using LPL’s own random generator.
(To generate the same data each time, the code can also use the function SetRandomSeed(a)
where a is an integer.)

Listing 2: The Complete Model implemented in LPL [10]� �
model Ip15 "A I n t e g e r L i n e a r Program ";

set i := [1..15]; j := [1..15];
parameter A{i,j} := Trunc(if(Rnd(0,1)<0.25, Rnd(10,100)));

c{j} := Trunc(Rnd(10,100));
b{i} := Trunc(if(Rnd(0,1)<0.15, Rnd(0,120)));

integer variable x{j};
constraint R{i} : sum{j} A*x >= b;
minimize obj : sum{j} c*x;
Writep(obj,x);

end� �
Solution: The small model defined above has the following solution :

𝑥 =
(

0 0 0 0 0 0 0 2 4 0 0 0 0 0 1
)

The optimal value of the objective function is:
𝑜𝑏𝑗 = 201

15

If we compare this solution with the corresponding LP model in examp-lp, we notice that
the objective value is much larger (201 compared to 174.8096). Furthermore, the vector 𝑥 is not
simply the “round-down” of the LP solution, as one may expect. To understand why we cannot
simply round up or down to get an integer solution from a corresponding LP model, open the
model willi155 and read the modeling text to understand why.
Further Comments: IP problems are much more difficult to solve than LP problems in general.
However, there is a surprisingly rich application field for integer programs. Obvious applica-
tions are problems where we have indivisible objects, such as number of persons, machines, etc.
However, these are not typical applications. If we have the number of drivers in a small company
then we may model this as an integer quantity, however if we have the population in a country
then we may approximate it as a continuous variable. This obvious aspect, however, does not
reveal the real power of integer programming. We really need integer programming in the four
following contexts in this order of importance from a practical point of view:

1. To model problems with logical conditions. In this case, the integrality is even reduced
to variables that only take the value 0 or 1 (see the next model examp-ip01) for more
information about them and how to specify logical constraints).

2. To model combinatorial problems, such as sequencing problems, (job-shop) scheduling,
and many others. Many of them are again transformed to integer problems with 0 − 1
variables. A small example can be found here: knapsack.

3. To model non-linear problems. There exist techniques that translate a non-linear problem
into a integer (linear) problem. (For more information see, for example bill320).

4. To model problems where we need discrete (integer) numbers for various entities. An ex-
ample for this last category is given by the following problem: magics another is mobile1.

Various linear problems with a special structure (the matrix 𝐀 must be uni-modular) such as
the transportation problem have integer solutions without explicitly formulating them as integer
programs. They can be solved as LP progams.

Models with general integer variables with an upper bound can also be transformed into
models that only contain 0 − 1 integer variables. The transformation is as follows. Let 𝑥 ∈
{0, 1,… , 𝑢} be an general upper (and lower) bounded integer variable. Then substitute the vari-
able 0 ≤ 𝑥 ≤ 𝑢 by the expression:

𝛿0 + 2𝛿1 + 4𝛿2 +…+ 2𝑟𝛿𝑟
where 𝛿0,… , 𝛿𝑟 are 0 − 1 integer variables, and 𝑟 is the smallest number, such that 𝑢 ≤ 2𝑟.

Furthermore, problems which contain general integer variables when modelling them in a
straightforward way are sometimes preferably modeled with 0 − 1 variables. An example is the
Sudoku game (see my Puzzlebook that has plenty of such models).

16

https://matmod.ch/lpl/HTML/examp-lp.html
https://matmod.ch/lpl/HTML/willi155.html
https://matmod.ch/lpl/HTML/examp-ip01.html
https://matmod.ch/lpl/HTML/knapsack.html
https://matmod.ch/lpl/HTML/bill320.html
https://matmod.ch/lpl/HTML/magics.html
https://matmod.ch/lpl/HTML/mobile1.html

5 A 0-1 Integer Program (examp-ip01)
—- Run LPL Code , HTML Document –
Problem: The general linear 0-1 integer programming model – called 0-1-IP – consists of a
linear objective function 𝑓 (𝐱), 𝑚 linear constraints 𝑔𝑖(𝐱), and 𝑛 0− 1 integer variables. It can be
compactly formulated as follows (see [12]):

min
∑

𝑗∈𝐽
𝑐𝑗𝑥𝑗

subject to ∑

𝑗∈𝐽
𝑎𝑖,𝑗𝑥𝑗 ≥ 𝑏𝑖 forall 𝑖 ∈ 𝐼

𝑥𝑗 ∈ {0, 1} forall 𝑗 ∈ 𝐽
𝐼 = {1…𝑚}, 𝐽 = {1… 𝑛}, 𝑚, 𝑛 ≥ 0

A more compact formulation using matrix notation for the model is:
min 𝐜 ⋅ 𝐱
subject to 𝐀 ⋅ 𝐱 ≥ 𝐛

𝐱 ∈ {0, 1}
The objective function 𝑓 the constraints 𝑔𝑖, and 𝐗 (in the general model format) are as follows:

𝑓 (𝑥1,… , 𝑥𝑛) = 𝑐1𝑥1 +…+ 𝑐𝑛𝑥𝑛
𝑔𝑖(𝑥1,… , 𝑥𝑛) = 𝑏𝑖 − (𝑎𝑖,1𝑥1 +…+ 𝑎𝑖,𝑛𝑥𝑛) ≤ 0 forall 𝑖 = 1,… , 𝑚

𝐱 ∈ {0, 1}
The 0-1-IP model has the same notation as the LP (and the IP) model, the only difference is that
the variables are 0 − 1 integer values. The 0-1-IP model is also difficult to solve in general. (To
get an idea solve the following model: lp2000. Then try to solve ip01-2000.)

In the following a problem with random data is specified (with 𝑛 = 15 and 𝑚 = 15):
𝑐 =

(

16 73 39 81 68 60 90 11 33 89 71 12 24 23 47
)

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

87 34 0 0 43 0 52 85 36 0 0 0 0 0 0
0 0 39 0 84 0 0 88 0 0 0 0 0 0 22
55 63 79 0 0 0 0 71 0 0 0 0 70 0 79
0 0 0 0 0 0 0 73 0 0 0 22 0 0 0
0 0 0 66 0 0 34 0 0 24 0 61 0 0 64
0 0 16 19 0 0 0 0 0 0 0 0 0 0 18
15 70 61 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 52 0 14 0 0 92 0
0 0 0 0 0 0 0 30 0 0 98 0 19 0 0
0 70 37 0 0 0 0 0 0 0 0 86 0 93 0
90 0 82 0 66 0 0 0 0 26 0 0 0 0 0
77 30 0 0 0 0 13 10 0 0 0 50 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 72 0 0 0 79 0 0 0 0 0 11 90 0 0
0 0 0 0 0 32 55 0 23 0 0 0 0 0 36

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑏 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
0
0
0
58
44
0
0
0
0
0
119

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

17

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-ip01
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-ip01
https://matmod.ch/lpl/HTML/examp-ip01.html
https://matmod.ch/lpl/HTML/lp2000.html
https://matmod.ch/lpl/HTML/ip01-2000.html

The data given above specify the following explicit linear program:

min 16𝑥1 + 73𝑥2 + 39𝑥3 + 81𝑥4 + 68𝑥5 + 60𝑥6 + 90𝑥7 + 11𝑥8 + 33𝑥9
+89𝑥10 + 71𝑥11 + 12𝑥12 + 24𝑥13 + 23𝑥14 + 47𝑥15subject to 87𝑥1 + 34𝑥2 + 43𝑥5 + 52𝑥7 + 85𝑥8 + 36𝑥9 ≥ 0

39𝑥3 + 84𝑥5 + 88𝑥8 + 22𝑥15 ≥ 0
55𝑥1 + 63𝑥2 + 79𝑥3 + 71𝑥8 + 70𝑥13 + 79𝑥15 ≥ 0
73𝑥8 + 22𝑥12 ≥ 0
66𝑥4 + 34𝑥7 + 24𝑥10 + 61𝑥12 + 64𝑥15 ≥ 0
16𝑥3 + 19𝑥4 + 18𝑥15 ≥ 0
15𝑥1 + 70𝑥2 + 61𝑥3 ≥ 0
52𝑥9 + 14𝑥11 + 92𝑥14 ≥ 58
30𝑥8 + 98𝑥11 + 19𝑥13 ≥ 44
70𝑥2 + 37𝑥3 + 86𝑥12 + 93𝑥14 ≥ 0
90𝑥1 + 82𝑥3 + 66𝑥5 + 26𝑥10 ≥ 0
77𝑥1 + 30𝑥2 + 13𝑥7 + 10𝑥8 + 50𝑥12 ≥ 0
72𝑥2 + 79𝑥6 + 11𝑥12 + 90𝑥13 ≥ 0
32𝑥6 + 55𝑥7 + 23𝑥9 + 36𝑥15 ≥ 119
𝑥𝑗 ∈ [0, 1] forall 𝑗 ∈ {1…15}

Modeling Steps: The formulation of the model in LPL modeling language is straightforward
and the notation is close to the mathematical notation using indices: First we define the two sets
i and j. Then we declare and assign the data as parameters A, c, and b. The variable vector
x is declared with the keyword binary (the only difference to the LP model), and finally the
constraints R and the minimizing objective function obj.

Note that the data matrices 𝐀, 𝐛, and 𝐜 are generated using LPL’s own random generator.
(To generate each time the same data, the code can also use the function SetRandomSeed(a)
where a is an integer.) Note also that only difference in the LPL formulation compared with the
LP model is the word binary added to the variable declaration.

Listing 3: The Complete Model implemented in LPL [10]� �
model Ip1501 "A 0−1 I n t e g e r Program ";

set i := [1..15]; j := [1..15];
parameter A{i,j} := Trunc(if(Rnd(0,1)<0.25, Rnd(10,100)));

c{j} := Trunc(Rnd(10,100));
b{i} := Trunc(if(Rnd(0,1)<0.15, Rnd(0,120)));

binary variable x{j};
constraint R{i} : sum{j} A*x >= b;
minimize obj : sum{j} c*x;
Writep(obj,x);

end� �
Solution: The small model defined above has the following solution :

𝑥 =
(

0 0 0 0 0 1 1 1 0 0 0 0 1 1 1
)

The optimal value of the objective function is:
𝑜𝑏𝑗 = 255

18

Comparing the optimal solution of the three problems (1) examp-lp, (2) examp-ip, and (3)
this one, we have the following optimal values: 174.8096 for the LP, 201 for the IP and 255 for
the 0-1-IP model.

Do the increasing optimal values for LP, IP and 0-1-IP make sense? Of course, the IP model
is “more” restricted, it only can have integer values, hence the IP optimal value can never be
smaller than the LP optimal value. The same is true for the 0-1-IP optimum compared with the
IP optimum.
One may take the bait to solve the 0-1-IP problem using the following procedure :

1. Replace the requirement that the variables are 0 − 1 integer variables by the constraint
0 ≤ 𝐱 ≤ 1, then solve this LP problem. (This LP problem is called the LP relaxation of
the 0-1 integer problem.)

2. All solution values for 𝐱 are in the interval [0…1].
3. Finally, round their values up to 1 or down to 0, depending of whether the value is closer

to 1 or to 0.
Voilà! We can show with a tiny example (see willi155z), that this apparently reasonable

approach is completely erroneous: while the LP relaxation of this tiny example has a feasible
solution, the corresponding 0-1 problem is infeasible.

It seems difficult to derive the integer solution from the continuous LP problem. For a sys-
tematic procedure – called cutting plane method – that starts with the continuous LP problem
to find an integer solution of the 0-1-IP problem, see some explanation in the model example
examp-ip01r.
Further Comments: There is a surprisingly rich application field for 0-1-integer programming,
as there is for integer programming in general. 0-1 integer programming is used in the following
context:

1. To model problems with logical conditions, Boolean constraints or expressing some kind
of “dichotomy”.

2. To model combinatorial problems, such as sequencing problems and others.
3. To model non-linear problems. They can often be translated into 0-1 integer (linear) prob-

lems.
For a short guide to 0-1 integer model formulation and how logical conditions can be inte-

grated into a mathematical model see the paper [8].

19

https://matmod.ch/lpl/HTML/examp-lp.html
https://matmod.ch/lpl/HTML/examp-ip.html
https://matmod.ch/lpl/HTML/willi155z.html
https://matmod.ch/lpl/HTML/examp-ip01r.html

6 An LP-relaxation of the 0-1 Program (examp-ip01r)
—- Run LPL Code , HTML Document –
Problem: This model is the same as the model examp-ip01 with the important difference that
the variables are continuous and bounded by the interval [0..1]. Hence, this model is a LP
program with continuous variable. It is called the LP relaxation of the corresponding 0-1 integer
program.
A compact formulation using matrix notation for the model is:

min 𝑐 ⋅ 𝑥
subject to 𝐴 ⋅ 𝑥 ≥ 𝑏

0 ≤ 𝑥 ≤ 1

With the same data as in model examp-ip01, we get the following model:

min 16𝑥1 + 73𝑥2 + 39𝑥3 + 81𝑥4 + 68𝑥5 + 60𝑥6 + 90𝑥7 + 11𝑥8 + 33𝑥9
+89𝑥10 + 71𝑥11 + 12𝑥12 + 24𝑥13 + 23𝑥14 + 47𝑥15subject to 87𝑥1 + 34𝑥2 + 43𝑥5 + 52𝑥7 + 85𝑥8 + 36𝑥9 ≥ 0

39𝑥3 + 84𝑥5 + 88𝑥8 + 22𝑥15 ≥ 0
55𝑥1 + 63𝑥2 + 79𝑥3 + 71𝑥8 + 70𝑥13 + 79𝑥15 ≥ 0
73𝑥8 + 22𝑥12 ≥ 0
66𝑥4 + 34𝑥7 + 24𝑥10 + 61𝑥12 + 64𝑥15 ≥ 0
16𝑥3 + 19𝑥4 + 18𝑥15 ≥ 0
15𝑥1 + 70𝑥2 + 61𝑥3 ≥ 0
52𝑥9 + 14𝑥11 + 92𝑥14 ≥ 58
30𝑥8 + 98𝑥11 + 19𝑥13 ≥ 44
70𝑥2 + 37𝑥3 + 86𝑥12 + 93𝑥14 ≥ 0
90𝑥1 + 82𝑥3 + 66𝑥5 + 26𝑥10 ≥ 0
77𝑥1 + 30𝑥2 + 13𝑥7 + 10𝑥8 + 50𝑥12 ≥ 0
72𝑥2 + 79𝑥6 + 11𝑥12 + 90𝑥13 ≥ 0
32𝑥6 + 55𝑥7 + 23𝑥9 + 36𝑥15 ≥ 119
0 ≤ 𝑥𝑗 ≤ 1 forall 𝑗 ∈ {1…15}

Modeling Steps: The formulation of the model in LPL modeling language is straightforward
and the notation is close to the mathematical notation using indices: First we define the two sets
i and j. Then we declare and assign the data as parameters A, c, and b. The variable vector x
is declared, and finally the constraints R and the minimizing objective function obj. Note that
the only difference between this model and the model examp-ip01 is the variable declaration.
The keyword binary has been removed and a lower and upper bound value for the variable
[0..1] has been added.

Note that the data matrices 𝐀, 𝐛, and 𝐜 are generated using LPL’s own random generator.
(To generate each time the same data, the code can also use the function SetRandomSeed(a)
where a is an integer.)

Listing 4: The Complete Model implemented in LPL [10]� �
model Ip15_01r "An LP− r e l a x a t i o n o f t h e 0−1 Program ";

set i := [1..15]; j := [1..15];

20

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-ip01r
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-ip01r
https://matmod.ch/lpl/HTML/examp-ip01r.html
https://matmod.ch/lpl/HTML/examp-ip01.html
https://matmod.ch/lpl/HTML/examp-ip01.html
https://matmod.ch/lpl/HTML/examp-ip01.html

parameter A{i,j} := Trunc(if(Rnd(0,1)<0.25, Rnd(10,100)));
c{j} := Trunc(Rnd(10,100));
b{i} := Trunc(if(Rnd(0,1)<0.15, Rnd(0,120)));
X{j} := [0 0 0 0 0 1 1 1 0 0 0 0 1 1 1];

/ / X = 0−1 s o l u t i o n o f t h e examp−ip01 . l p l model
variable x{j} [0..1];
constraint R{i} : sum{j} A*x >= b;

−−ADDED_a1 : x [11]+ x [1 4] >= 1 ; / / add c o n s t r a i n t s
−−ADDED_a2 : x [9] +x [1 4] >= 1 ;
−−ADDED_b1 : x [13]+ x [1 1] >= 1 ;
−−ADDED_b2 : x [8] +x [1 1] >= 1 ;
−−ADDED_c : x [6] = 1 ;
−−ADDED_d: x [7] = 1 ;
−−ADDED_e : x [1 5] = 1 ;

minimize obj : sum{j} c*x;
Write('The optimal solution is as follows:\n

Obj value = %8.4f , %9d , %9d
rounded true 0-1 value\n',

obj, sum{j} c*Round(x), sum{j} c*X);
Write{j}(' x(%2s) = %8.4f %5d %10d\n', j,x,Round(x),X);

end� �
Solution: The model has the following solution:

𝑥 =
(

0 0 0 0 0 0.16 1 1 1 0
0.14 0 0 0.04 1

)

The optimal value of the objective function is:
𝑜𝑏𝑗 = 201.52

In the following listing, we compare the three solutions: (1) the LP relaxation, (2) the
rounded solution of the LP relaxation, and (3) the 0-1-IP solution. The LP relaxation has the
optimal solution of 201.5179, the rounded problem has a solution of 181, which is far away
from the true 0-1 solution which is 255. The rounded solution has no merit for the true integer
solution.

Obj value = 201.5179 , 181 , 255

rounded true 0-1 value
x(1) = 0.0000 0 0
x(2) = 0.0000 0 0
x(3) = 0.0000 0 0
x(4) = 0.0000 0 0
x(5) = 0.0000 0 0
x(6) = 0.1563 0 1
x(7) = 1.0000 1 1
x(8) = 1.0000 1 1
x(9) = 1.0000 1 0
x(10) = 0.0000 0 0
x(11) = 0.1429 0 0
x(12) = 0.0000 0 0
x(13) = 0.0000 0 1
x(14) = 0.0435 0 1
x(15) = 1.0000 1 1

21

In contrast to the rounded version, the LP relaxation has an important function for the integer
problem: The LP relaxation generates a lower bound for the integer solution. By solving the LP
relaxation, we know that the optimal value of the integer problem cannot be below the optimal
value of the LP relaxation. In our model, the optimal solution of the integer problem must be at
least 201.5179 (we know already that it is 255). This is an important fact.

But we may say more about the relation between the LP relaxation and the 0-1-IP problem.
For example, we can look at a particular inequality. Let’s choose just an arbitrary one, say:

52𝑥9 + 14𝑥11 + 92𝑥14 ≥ 58

What can we say about that particular inequality? If 𝑥14 is zero then both 𝑥9 and 𝑥11 must
be one. Why? Because if 𝑥14 = 0, then the inequality reduces to:

52𝑥9 + 14𝑥11 ≥ 58

However, this can only be the case if – in the 0-1 integer problem – both 𝑥9 and 𝑥11 are 1.
Hence, we can add the two following inequalities to the LP relaxation model:

𝑥14 + 𝑥9 ≥ 1 , 𝑥14 + 𝑥11 ≥ 1

Why? These two additional constraints do not violate the 0-1-IP solution: if 𝑥14 = 1 then
both inequalities are fulfilled, if 𝑥14 = 0 then both 𝑥9 and 𝑥11 must be 1. That is exactly what
the initial inequality claims if the values must be 0 or 1.

Now we solve the problem again without excluding a feasible solution of the 0-1 IP problem.
What is interesting now: After having added these two constraints to the LP relaxation and
solving it again, the optimal solution will be 220.2321. It has increased considerably, and again
we can say that this is a lower bound for the 0-1 integer problem.

In the same way we could now look at the inquality:
30𝑥8 + 98𝑥11 + 19𝑥13 ≥ 44

and we can repeat the same idea: If 𝑥11 = 0 then both 𝑥8 and 𝑥13 must be 1 in the integer
program. This gives rise to the additional inequalities:

𝑥11 + 𝑥8 ≥ 1 , 𝑥11 + 𝑥13 ≥ 1

Adding them too to the LP relaxation and solving the problem in𝐑𝟏𝟓, gives a optimal solution
of 237.3750. That again rises the lower bound for the integer program considerably.

Looking at the solution, the unique value that is not integer is 𝑥6 = 0.1563. In the integer
problem, 𝑥6 must be 0 or 1. So let try to set 𝑥6 = 0 and add this to the previous problem. Solving
the problem results in an infeasible problem. Hence, there is no integer solution where 𝑥6 = 0.
So let’s try 𝑥6 = 1 instead. We add this inequality to the previous problem. The new optimal
solution is 243.8182.

Again, in the new solution we see that 𝑥7 = 0.5091, the unique value that is not integer.
Hence, we try the same procedure again: setting first 𝑥7 = 0 and solving produces also an
infeasible solution, setting 𝑥7 = 1, gives an optimal solution of 249.7778.

There is still one variable that is not integer: 𝑥15 = 0.8889. Adding 𝑥15 = 0 gives an
infeasible solution, but setting 𝑥15 = 1 produces an integer solution with the optimum of 255.

22

This is identical to the 0-1-IP problem and we have found the optimal solution to the 0-1-IP
problem by adding appropriate inequalities (and equalities) to the LP relaxation. In our case,
we added 4 inequalities and three equalities (by setting three variables to 1) (see the commented
lines --ADDED... in the LPL code).

We conclude that the LP relaxation is important for the integer solution. It is the starting point
of an iterative procedure that adds “valid” inequalities for the integer problem, until eventually
we reach the optimal point of the integer problem. (Unfortunately, it is normally not so easy to
add valid inequalities.) At least we have sketched an interesting idea on how to attack the solution
of integer problems, that has great practical importance. For a more systematic approach to
integer programming, see the interesting book [6]. See also two other small example in this
context: alterna and unimodular.

23

https://matmod.ch/lpl/HTML/alterna.html
https://matmod.ch/lpl/HTML/unimodular.html

7 A Quadratic Convex Program (examp-qp)
—- Run LPL Code , HTML Document –
Problem: The general quadratic programming model – called QP – consists of 𝑚 linear con-
straints, 𝑛 variables and a quadratic convex objective function 𝑓 (𝐱). It can be compactly formu-
lated as follows:

min
∑

𝑗∈𝐽 ,𝑘∈𝐽
𝑥𝑗𝑄𝑗,𝑘𝑥𝑘 +

∑

𝑗∈𝐽
𝑐𝑗𝑥𝑗

subject to ∑

𝑗∈𝐽
𝑎𝑖,𝑗𝑥𝑗 ≥ 𝑏𝑖 forall 𝑖 ∈ 𝐼

𝑥𝑗 ≥ 0 forall 𝑗 ∈ 𝐽
𝐽 = {1…𝑚}, 𝐼 = {1… 𝑛}, 𝑚, 𝑛 ≥ 0

An more compact formulation using matrix notation for the model is as follows:
min 𝐱𝐐𝐱′ + 𝐜 ⋅ 𝐱
subject to 𝐀 ⋅ 𝐱 ≥ 𝐛

𝐱 ≥ 0

The objective function 𝑓 the constraints 𝑔𝑖, and 𝐗 (in the general format) are as follows:
𝑓 (𝑥1,… , 𝑥𝑛) = 𝑥1𝑄1,1𝑥1 + 𝑥1𝑄1,2𝑥2 +…+ 𝑥𝑛𝑄𝑛,𝑛−1𝑥𝑛−1 + 𝑥𝑛𝑄𝑛,𝑛𝑥𝑛
𝑔𝑖(𝑥1,… , 𝑥𝑛) = 𝑏𝑖 − (𝑎𝑖,1𝑥1 +…+ 𝑎𝑖,𝑛𝑥𝑛) ≤ 0 forall 𝑖 = 1,… , 𝑚

𝐱 ∈ 𝐑𝑛

Note that the matrix 𝐐 must be semi-definite positive (SDP), (that is: there exist a vector 𝐱 such
that 𝐱𝐐𝐱′ ≥ 0). In many applications the matrix 𝐐 is also symmetric (𝐐 = 𝐐𝐓).

If the matrix 𝐐 is not semi-definite positive then it cannot be solved as a convex problem and
it must be considered as an non-linear problem.

In the following, a concrete problem with random data for the two matrices 𝐀, 𝐐 and the
two vectors 𝐛 and 𝐜 is specified (with 𝑛 = 15 and 𝑚 = 15):

𝑐 =
(

16 73 39 81 68 60 90 11 33 89 71 12 24 23 47
)

24

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-qp
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-qp
https://matmod.ch/lpl/HTML/examp-qp.html

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

87 34 0 0 43 0 52 85 36 0 0 0 0 0 0
0 0 39 0 84 0 0 88 0 0 0 0 0 0 22
55 63 79 0 0 0 0 71 0 0 0 0 70 0 79
0 0 0 0 0 0 0 73 0 0 0 22 0 0 0
0 0 0 66 0 0 34 0 0 24 0 61 0 0 64
0 0 16 19 0 0 0 0 0 0 0 0 0 0 18
15 70 61 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 52 0 14 0 0 92 0
0 0 0 0 0 0 0 30 0 0 98 0 19 0 0
0 70 37 0 0 0 0 0 0 0 0 86 0 93 0
90 0 82 0 66 0 0 0 0 26 0 0 0 0 0
77 30 0 0 0 0 13 10 0 0 0 50 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 72 0 0 0 79 0 0 0 0 0 11 90 0 0
0 0 0 0 0 32 55 0 23 0 0 0 0 0 36

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑏 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
0
0
0
58
44
0
0
0
0
0
119

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑑𝑖𝑎𝑔(𝑄) =
(

7 5 5 6 17 19 6 8 16 19 12 5 13 17 18
)

Note that this matrix 𝐐 consisting of positive diagonal entries and zero otherwise is semidefinite
positive.

The data given above specify the following explicit linear program:
min 7𝑥2

1 + 5𝑥2
2 + 5𝑥2

3 + 6𝑥2
4 + 17𝑥2

5 + 19𝑥2
6 + 6𝑥2

7 + 8𝑥2
8

+16𝑥2
9 + 19𝑥2

10 + 12𝑥2
11 + 5𝑥2

12 + 13𝑥2
13 + 17𝑥2

14 + 18𝑥2
15

+16𝑥1 + 73𝑥2 + 39𝑥3 + 81𝑥4 + 68𝑥5 + 60𝑥6 + 90𝑥7 + 11𝑥8
+33𝑥9 + 89𝑥10 + 71𝑥11 + 12𝑥12 + 24𝑥13 + 23𝑥14 + 47𝑥15subject to 87𝑥1 + 34𝑥2 + 43𝑥5 + 52𝑥7 + 85𝑥8 + 36𝑥9 ≥ 0

39𝑥3 + 84𝑥5 + 88𝑥8 + 22𝑥15 ≥ 0
55𝑥1 + 63𝑥2 + 79𝑥3 + 71𝑥8 + 70𝑥13 + 79𝑥15 ≥ 0
73𝑥8 + 22𝑥12 ≥ 0
66𝑥4 + 34𝑥7 + 24𝑥10 + 61𝑥12 + 64𝑥15 ≥ 0
16𝑥3 + 19𝑥4 + 18𝑥15 ≥ 0
15𝑥1 + 70𝑥2 + 61𝑥3 ≥ 0
52𝑥9 + 14𝑥11 + 92𝑥14 ≥ 58
30𝑥8 + 98𝑥11 + 19𝑥13 ≥ 44
70𝑥2 + 37𝑥3 + 86𝑥12 + 93𝑥14 ≥ 0
90𝑥1 + 82𝑥3 + 66𝑥5 + 26𝑥10 ≥ 0
77𝑥1 + 30𝑥2 + 13𝑥7 + 10𝑥8 + 50𝑥12 ≥ 0
72𝑥2 + 79𝑥6 + 11𝑥12 + 90𝑥13 ≥ 0
32𝑥6 + 55𝑥7 + 23𝑥9 + 36𝑥15 ≥ 119
𝑥𝑗 ≥ 0 forall 𝑗 ∈ {1…15}

Modeling Steps: The formulation of the model in LPL modeling language is straightforward and
the notation is close to the mathematical notation using indices: First, the two sets i and j are

25

defined. Then the data are declare and assigned as parameters A, c, b, and a semidefinite positive
matrix Q. The variable vector x is declared, and finally the constraints R and the minimizing
objective function obj are written.

Note that the data matrices 𝐴, 𝑏, 𝑐, and 𝑄 are generated using LPL’s own random generator.
(To generate each time the same data, the code can also use the function SetRandomSeed(a)
where a is an integer.)

Listing 5: The Complete Model implemented in LPL [10]� �
model Qp15 "A Q u a d r a t i c Convex Program ";

set i := [1..15]; j,k := [1..15];
parameter A{i,j}:= Trunc(if(Rnd(0,1)<.25,Rnd(10,100)));

c{j} := Trunc(Rnd(10,100));
b{i} := Trunc(if(Rnd(0,1)<.15, Rnd(0,120)));
Q{j,k}:= Trunc(if(j=k, Rnd(5,20))); / / SDP

variable x{j};
constraint R{i} : sum{j} A*x >= b;
minimize obj : sum{j} c*x + sum{j,k} x[j]*Q*x[k];
Writep(obj,x);

end� �
Solution: The small model defined above has the following optimal solution:

𝑥 =
(

0 0 0 0 0 0.051 1.37 0.7 0.839 0 0.23 0 0 0.121 0.63
)

The optimal value of the objective function is:
𝑜𝑏𝑗 = 245.4168

Further Comments: There are interesting applications in Portfolio Theory for the quadratic
convex problems. Especially, the Markowitz approach in portfolio models can be formulated as a
QP model. For several implemented models see my book Casebook Studies I. Other applications
are robust optimization and chance constraint optimization, and much more.

Note that the constraints can also be quadratic, we then have a QPC model where the 𝑄
matrix must be semi-definite positive:

min
∑

𝑗∈𝐽
𝑐𝑗𝑥𝑗

subject to ∑

𝑗∈𝐽 ,𝑘∈𝐽
𝑥𝑗𝑄𝑗,𝑘𝑥𝑘 +

∑

𝑗∈𝐽
𝑎𝑖,𝑗𝑥𝑗 ≥ 𝑏𝑖 forall 𝑖 ∈ 𝐼

𝑥𝑗 ≥ 0 forall 𝑗 ∈ 𝐽
𝐽 = {1…𝑚}, 𝐼 = {1… 𝑛}, 𝑚, 𝑛 ≥ 0

26

8 A 0-1-Quadratic Program (examp-qp01)
—- Run LPL Code , HTML Document –
Problem: The general 0-1-quadratic (convex) programming model – called 0-1-QP – contains
𝑛 linear constraints and 𝑚 binary variables and a quadratic convex objective function. It can be
compactly formulated as follows (see [12]):

min
∑

𝑗∈𝐽 ,𝑘∈𝐽
𝑥𝑗𝑄𝑗,𝑘𝑥𝑘 +

∑

𝑗∈𝐽
𝑐𝑗𝑥𝑗

subject to ∑

𝑗∈𝐽
𝐴𝑖,𝑗 ⋅ 𝑥𝑗 ≥ 𝑏𝑖 forall 𝑖 ∈ 𝐼

𝑥𝑗 ∈ {0, 1} forall 𝑗 ∈ 𝐽
𝐽 = {1…𝑚}, 𝐼 = {1… 𝑛}, 𝑚, 𝑛 ≥ 0

An even more compact formulation using matrix notation for the model is :
min 𝑥 ⋅𝑄 ⋅ 𝑥′ + 𝑐 ⋅ 𝑥
subject to 𝐴 ⋅ 𝑥 ≥ 𝑏

𝑥 ∈ {0, 1}

Solve this problem – 𝑥 are unknowns, 𝐴, 𝑏, and 𝑐 are given – with 𝑛 = 15 and 𝑚 = 15 with the
following data:

𝐜 =
(

16 73 39 81 68 60 90 11 33 89 71 12 24 23 47
)

𝐀 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

87 34 0 0 43 0 52 85 36 0 0 0 0 0 0
0 0 39 0 84 0 0 88 0 0 0 0 0 0 22
55 63 79 0 0 0 0 71 0 0 0 0 70 0 79
0 0 0 0 0 0 0 73 0 0 0 22 0 0 0
0 0 0 66 0 0 34 0 0 24 0 61 0 0 64
0 0 16 19 0 0 0 0 0 0 0 0 0 0 18
15 70 61 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 52 0 14 0 0 92 0
0 0 0 0 0 0 0 30 0 0 98 0 19 0 0
0 70 37 0 0 0 0 0 0 0 0 86 0 93 0
90 0 82 0 66 0 0 0 0 26 0 0 0 0 0
77 30 0 0 0 0 13 10 0 0 0 50 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 72 0 0 0 79 0 0 0 0 0 11 90 0 0
0 0 0 0 0 32 55 0 23 0 0 0 0 0 36

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝐛 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0
0
0
0
0
58
44
0
0
0
0
0
119

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝑑𝑖𝑎𝑔(𝑄) =
(

7 5 5 6 17 19 6 8 16 19 12 5 13 17 18
)

The data given above specify the following explicit linear program:

27

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-qp01
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-qp01
https://matmod.ch/lpl/HTML/examp-qp01.html

min 7𝑥1𝑥1 + 5𝑥2𝑥2 + 5𝑥3𝑥3 + 6𝑥4𝑥4 + 17𝑥5𝑥5 + 19𝑥6𝑥6
+6𝑥7𝑥7 + 8𝑥8𝑥8 + 16𝑥9𝑥9 + 19𝑥10𝑥10 + 12𝑥11𝑥11
+5𝑥12𝑥12 + 13𝑥13𝑥13 + 17𝑥14𝑥14 + 18𝑥15𝑥15
+16𝑥1 + 73𝑥2 + 39𝑥3 + 81𝑥4 + 68𝑥5 + 60𝑥6 + 90𝑥7 + 11𝑥8
+33𝑥9 + 89𝑥10 + 71𝑥11 + 12𝑥12 + 24𝑥13 + 23𝑥14 + 47𝑥15subject to 87𝑥1 + 34𝑥2 + 43𝑥5 + 52𝑥7 + 85𝑥8 + 36𝑥9 ≥ 0

39𝑥3 + 84𝑥5 + 88𝑥8 + 22𝑥15 ≥ 0
55𝑥1 + 63𝑥2 + 79𝑥3 + 71𝑥8 + 70𝑥13 + 79𝑥15 ≥ 0
73𝑥8 + 22𝑥12 ≥ 0
66𝑥4 + 34𝑥7 + 24𝑥10 + 61𝑥12 + 64𝑥15 ≥ 0
16𝑥3 + 19𝑥4 + 18𝑥15 ≥ 0
15𝑥1 + 70𝑥2 + 61𝑥3 ≥ 0
52𝑥9 + 14𝑥11 + 92𝑥14 ≥ 58
30𝑥8 + 98𝑥11 + 19𝑥13 ≥ 44
70𝑥2 + 37𝑥3 + 86𝑥12 + 93𝑥14 ≥ 0
90𝑥1 + 82𝑥3 + 66𝑥5 + 26𝑥10 ≥ 0
77𝑥1 + 30𝑥2 + 13𝑥7 + 10𝑥8 + 50𝑥12 ≥ 0
72𝑥2 + 79𝑥6 + 11𝑥12 + 90𝑥13 ≥ 0
32𝑥6 + 55𝑥7 + 23𝑥9 + 36𝑥15 ≥ 119
𝑥𝑗 ∈ {0, 1} forall 𝑗 ∈ {1…15}

Modeling Steps: A 0-1-quadratic program (0-1-QP) is a mathematical model that consists of a
number (𝑛 ≥ 0) of linear inequalities in a number (𝑚 ≥ 0) of binary variables. Furthermore,
it defines an quadratic convex objective function that is to be minimized or maximized. The
0-1-QP model has many applications in quantitative decision making. The formulation of the
model in LPL modeling language is straightforward and the notation is close to the mathematical
notation using indices: First we define the two sets i and j. Then we declare and assign the
data as parameters A, c, b, and a semidefinite positive (SDP) matrix Q. The variable vector x is
declared, and finally the constraints R and the minimizing objective function obj.

Note that the data matrices 𝐴, 𝑏, 𝑐, and 𝑄 are generated using LPL’s own random generator.
(To generate each time the same data, the code can also use the function SetRandomSeed(a)
where a is an integer.) Note that the unique difference within this model and the QP model (see
examp-qp) consists of the word binary in declaration of the variables.

Listing 6: The Complete Model implemented in LPL [10]� �
model Qp15_01 "A 0−1− Q u a d r a t i c Program ";

set i := [1..15]; j,k := [1..15];
parameter A{i,j}:= Trunc(if(Rnd(0,1)<.25,Rnd(10,100)));

c{j} := Trunc(Rnd(10,100));
b{i} := Trunc(if(Rnd(0,1)<.15,Rnd(0,120)));
Q{j,k}:= Trunc(if(j=k, Rnd(5,20))); / / SDP

binary variable x{j};
constraint R{i} : sum{j} A*x >= b;
minimize obj : sum{j} c*x + sum{j,k} x[j]*Q*x[k];
Writep(obj,x);

end� �
28

https://matmod.ch/lpl/HTML/examp-qp.html

Solution: The model has the following solution:
𝑥 =

(

0 0 0 0 0 1 1 1 0 0 0 0 1 1 1
)

The optimal value of the objective function is:
𝑜𝑏𝑗 = 336

Further Comments: Interesting applications for the iQP model come from portfolio theory.
Especially, if we want to limit the number of assets in a portfolio we must use 0-1 variables. An
applications come from clustering problems. An example is bill035.

29

https://matmod.ch/lpl/HTML/bill035.html

9 Second-Order Cone (socp1)
—- Run LPL Code , HTML Document –
Problem: A second-order cone model contains quadratic constrainst of the form

∑

𝑖∈𝐼
𝑥2
𝑖 ≤ 𝑤2

where 𝑥𝑖 and𝑤 are variables. These constraints are convex and they are automatically recognized
and solved by Gurobi and Cplex, for example.

A small model example is given here.
Listing 7: The Complete Model implemented in LPL [10]� �

model socp1 " Second−Order Cone ";
set i:=[1..3]; j:=[1..5];
parameter a{i,j} :=
[19 0 -17 21 0 , 12 21 0 0 0 , 0 12 0 0 16];

variable w; x{j};
constraint
A{i}: sum{j} a*x = 1;
B: sum{j} x^2 <= w^2;

minimize obj: w;
Write(' w = %8.5f\n', w);
Write{j}(' x%1s = %8.5f \n',j,x);

end� �

30

https://lpl.matmod.ch/lpl/Solver.jsp?name=/socp1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/socp1
https://matmod.ch/lpl/HTML/socp1.html

10 Rotated second-order Cone (socp2)
—- Run LPL Code , HTML Document –
Problem: A rotated second-order cone model contains quadratic constrainst of the form

∑

𝑖∈𝐼
𝑥2
𝑖 ≤ 𝑤𝑣

where 𝑥𝑖, 𝑣, and 𝑤 are variables. These constraints are convex and they are automatically rec-
ognized and solved by Gurobi and Cplex, for example.

A small model example is given here.
Listing 8: The Complete Model implemented in LPL [10]� �

model socp2 " R o t a t e d second −o r d e r Cone ";
set i:=1..3;
parameter c{i} := [11 7 9];

b{i} := [5 6 8];
variable x{i} [0..100]; r{i} [0..100]; k{i};
constraint
A: sum{i} 2*r <= 1;
B{i}: k = Sqrt(b);
C{i}: k^2 <= 2*x*r;

minimize obj: sum{i} c*x;
Writep(obj,x,r,k);

end� �

31

https://lpl.matmod.ch/lpl/Solver.jsp?name=/socp2
https://lpl.matmod.ch/lpl/Solver.jsp?name=/socp2
https://matmod.ch/lpl/HTML/socp2.html

11 A NQCP model (bilinear)
—- Run LPL Code , HTML Document –
Problem: All models with quadratic constraints seen so far are convex: QP, QPC, SOCP.

Models with only linear and quadratic terms which are non-convex are called NQCP models
in LPL. They are much harder to solve, but Gurobi has a way to solve them (the parameter
“nonconvex” must be set to 2).

A small example is this model from the Gurobi model library
Listing 9: The Complete Model implemented in LPL [10]� �

model bilinear "A NQCP model ";
variable x; y; z;
maximize obj: x;
constraint
A: x + y + z <= 10;
B: x * y <= 2; −−(b i l i n e a r i n e q u a l i t y)
C: x * z + y * z = 1; −−(b i l i n e a r e q u a l i t y)
/ / x , y , z non−n e g a t i v e (x i n t e g r a l i n second v e r s i o n)

Writep(obj,x,y,z);
end� �

32

https://lpl.matmod.ch/lpl/Solver.jsp?name=/bilinear
https://lpl.matmod.ch/lpl/Solver.jsp?name=/bilinear
https://matmod.ch/lpl/HTML/bilinear.html
https://www.gurobi.com/documentation/9.5/examples/bilinear_py.html

12 Largest Empty Rectangle (iNCQP) (quadrect)
—- Run LPL Code , HTML Document –
Problem: Find the largest empty rectangle in a unit square filled with random points, see Figure
2. This problem is from Erwin Kalvelagen, see also the Blog of Hexaly.
The problem is interesting for checking the solvability of a non-convex quadratic problem using
the commercial solvers Gurobi , Cplex, and Hexaly.
A extension to higher dimension of this model is given in quadrect1.

Figure 2: Largest Empty Rectangle with 50 points

Modeling Steps: Let us generate 𝑛 points (𝑥𝑖, 𝑦𝑖) with 𝑖 ∈ {1,… , 𝑛}, that are uniformly dis-
tributed in a unit square. The unknown empty rectangle within the unit square can be defined
by two corner points (top/left – bottom/right) (𝑥𝑎, 𝑦𝑎) and (𝑥𝑏, 𝑦𝑏). These are the variables of our
problem.
The model then can be formulated as follows3 :

max (𝑥𝑏 − 𝑥𝑎) ⋅ (𝑦𝑏 − 𝑦𝑎)
s.t. 𝑥𝑎 ≤ 𝑥𝑏 ∧ 𝑦𝑎 ≤ 𝑦𝑏

𝑥𝑎 ≥ 𝑥𝑖 ∨ 𝑥𝑏 ≤ 𝑥𝑖 ∨ 𝑦𝑎 ≥ 𝑦𝑖 ∨ 𝑦𝑏 ≤ 𝑦𝑖 forall 𝑖 ∈ {1,… , 𝑛}
0 ≤ 𝑥𝑎, 𝑦𝑎, 𝑥𝑏, 𝑦𝑏 ≤ 1
𝑛 > 0

3Note that the two operators ∧ and ∨ are the Boolean operators “and” and “or”

33

https://lpl.matmod.ch/lpl/Solver.jsp?name=/quadrect
https://lpl.matmod.ch/lpl/Solver.jsp?name=/quadrect
https://matmod.ch/lpl/HTML/quadrect.html
https://yetanothermathprogrammingconsultant.blogspot.com/2020/02/non-convex-quadratic-models.html
https://www.Hexaly.com/tutorial/modeling-and-solving-non-convex-quadratic-problems
https://gurobi.com
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://Hexaly.com
https://matmod.ch/lpl/HTML/quadrect1.html

The objective function defines the size of the empty rectangle (width × height) and is a non-
convex quadratic function. The first constraint requires that the point (𝑥𝑎, 𝑦𝑎) is smaller than
point (𝑥𝑏, 𝑦𝑏). The second constraint requires that at least one of the four disjunctive terms must
be true for each 𝑖. Note, this model is a non-convex quadratic model. Recent versions of Gurobi
and Cplex allow to solve such problems.

Listing 10: The Complete Model implemented in LPL [10]� �
model quadrect " L a r g e s t Empty R e c t a n g l e (iNCQP) ";

−−S e t S o l v e r (Hexaly , ' TimeLimit =100 ') ;
−−S e t S o l v e r (c p l e x L S o l) ;
set i := 1..400 " a s e t o f p o i n t s ";
parameter x{i}:=Rnd(0,1); y{i}:=Rnd(0,1);
variable xa [0..1]; ya [0..1];

xb [0..1]; yb [0..1];
constraint
A: xa<=xb and ya<=yb;
B{i}: xa>=x or xb<=x or ya>=y or yb<=y;

maximize obj: (xb-xa)*(yb-ya);
Draw.Scale(300,300);
Draw.Rect(0,0,1,1,1,0);
Draw.Rect(xa,ya,xb-xa,yb-ya,1,2);
{i} Draw.Circle(x,y,.01);

end� �
Further Comments: If the problem is solved with Gurobi or Cplex, LPL translates the problem
automatically to the following model :

max (𝑥𝑏 − 𝑥𝑎) ⋅ (𝑦𝑏 − 𝑦𝑎)
s.t. 𝑥𝑎 ≤ 𝑥𝑏

𝑦𝑎 ≤ 𝑦𝑏

𝑥𝑎 ≥ 𝑥𝑖 ⋅ 𝛿
1
𝑖 forall 𝑖 ∈ {1,… , 𝑛}

𝑦𝑎 ≥ 𝑦𝑖 ⋅ 𝛿
3
𝑖 forall 𝑖 ∈ {1,… , 𝑛}

𝑥𝑏 ≤ 1 − (1 − 𝑥𝑖) ⋅ 𝛿2𝑖 forall 𝑖 ∈ {1,… , 𝑛}
𝑥𝑎 ≤ 1 − (1 − 𝑦𝑖) ⋅ 𝛿4𝑖 forall 𝑖 ∈ {1,… , 𝑛}
𝛿1𝑖 + 𝛿2𝑖 + 𝛿3𝑖 + 𝛿4𝑖 ≥ 1 forall 𝑖 ∈ {1,… , 𝑛}
0 ≤ 𝑥𝑎, 𝑦𝑎, 𝑥𝑏, 𝑦𝑏 ≤ 1
𝛿1𝑖 , 𝛿

2
𝑖 , 𝛿

3
𝑖 , 𝛿

4
𝑖 ∈ [0, 1] forall 𝑖 ∈ {1,… , 𝑛}

𝑛 > 0

Furthermore, LPL detects that this problem is an iNCQP (integer Non-Convex Quadratic Prob-
lem) and it adds automatically “NonConvex=2” (for the Gurobi solver) and “OptimalityTarget
3” (for the Cplex solver). If the solver Hexaly is used, none of these transformations are needed
and LPL can pass the model as is.

Solution: The solution for 𝑛 = 50 is shown in Figure 2 above.
With 𝑛 = 200 (200 points), Gurobi 11.0 solves the problem within 8secs optimally, Cplex 20.0
has still a gap of 40% after 10mins and seems no to advance substantially. The Hexaly takes less
than 2secs to solve it to optimality.
With 𝑛 = 400, Gurobi found the optimum after 10mins, and the proof of optimality was found
after 20mins. Hexaly found the optimum after 10secs and the proof of optimality after 20secs.
This result confirms the claim at the Hexaly Blog.

34

https://www.Hexaly.com/tutorial/modeling-and-solving-non-convex-quadratic-problems

Further Notes: In LPL, the second constraint could also be replaced by:
binary variable d1{i}; d2{i}; d3{i}; d4{i};
constraint
B1{i}: d1 -> x <= xa;
B2{i}: d2 -> y <= ya;
B3{i}: d3 -> x >= xb;
B4{i}: d4 -> y >= yb;
B5{i}: d1+d2+d3+d4 >= 1;

Still another formulation is the linearization as given above (this is also the version to which
LPL translates the model in order to solve it with Gurobi) :

binary variable d1{i}; d2{i}; d3{i}; d4{i};
constraint
D1{i}: xa >= x*d1;
D2{i}: ya >= y*d2;
D3{i}: xb <= 1-(1-x)*d3;
D4{i}: yb <= 1-(1-y)*d4;
D5{i}: d1+d2+d3+d4 >= 1;

Questions

1. Modify the model for any dimension
2. Find the 5 smallest non-overlapping rectangles.

Answers

1. The model is implemented in quadrect1.
2. An implementation is given in model quadrect2.

35

https://matmod.ch/lpl/HTML/quadrect1.html
https://matmod.ch/lpl/HTML/quadrect2.html

13 A NLP (non-linear) Model (chain)
—- Run LPL Code , HTML Document –

The class of non-linear models is too diverse to be covered, too diverse in the sense of solution
methods. Only one example is given here. Implemented in LPL, it is send to the solver Knitro
to be solved. The following is the problem of a hanging chain.
Problem: Find the function 𝑦 = 𝑓 (𝑥) of a hanging chain (of uniform density) of length 𝐿
suspended between the two points (𝑥𝑎, 𝑦𝑎) and (𝑥𝑏, 𝑦𝑏) where (𝑥𝑎 < 𝑥𝑏 and 𝐿 > 𝑥𝑏 − 𝑥𝑎) with
minimal potential energy. See [4] and [5].

In physics and geometry, the curve of an idealized hanging chain or cable under its own
weight when supported only at its ends is called a catenary. Galileo mistakenly conjectured that
the curve was a parabola. Later Bernoulli and others proved that it is a hyperbolic cosine. Cate-
naries are used in a variety of application: An inverse catenary is the ideal shape of a freestanding
arch of constant thickness. (See also in Wikipedia under “Catenary”.)
Modeling Steps: The formula for potential energy is 𝐸 = 𝑔ℎ𝑚 where ℎ is the height, 𝑚 is
the mass and 𝑔 is a gravitational constant. As a function the height ℎ is 𝑦 and the mass 𝑚 is
proportional to the arc length of the chain. Hence, the model is to minimize the potential energy
𝐸 under the condition of the chain length 𝐿:

min ∫

𝑥𝑏

𝑥𝑎

𝑦 ⋅
√

1 + 𝑦′ 2 𝑑𝑥

subject to ∫

𝑥𝑏

𝑥𝑎

√

1 + 𝑦′ 2 𝑑𝑥 = 𝐿

Explanation: It is easy to see that in a small horizontal interval Δ𝑥 of the function 𝑦 = 𝑓 (𝑥) and
the corresponding Δ𝑦 interval, the arc length of the function is:

√

Δ𝑥2 + Δ𝑦2 =
√

Δ𝑥2

Δ𝑥2
+

Δ𝑦2

Δ𝑥2
=
√

1 +
(Δ𝑦
Δ𝑥

)2
Δ𝑥

With Δ𝑥 → 0 the length of the arc of the function 𝑦 = 𝑓 (𝑥) between 𝑥𝑎 and 𝑥𝑏 is then given by:

∫

𝑥𝑏

𝑥𝑎

√

1 +
(𝑑𝑥
𝑑𝑦

)2
𝑑𝑥 = ∫

𝑥𝑏

𝑥𝑎

√

1 + 𝑦′ 2 𝑑𝑥

To implement the problem in LPL, we need to discretizise the problem in say 𝑛 vertical small
intervals of width Δ𝑥 = (𝑥𝑏 − 𝑥𝑎)∕𝑛. Let 𝐼 = {0,… , 𝑛} and let 𝑥𝑖 = 𝑥𝑎(1 − 𝑖)∕𝑛 + 𝑥𝑏 𝑖∕𝑛 be
the starting x-coordinate of the interval 𝑖, and let 𝑦𝑖 = 𝑓 (𝑥𝑖). Then the function 𝑦 = 𝑓 (𝑥) in an
interval 𝑖 can be approximated by the mid-point in that interval :

(𝑥𝑖 + 𝑥𝑖−1

2
,
𝑦𝑖 + 𝑦𝑖−1

2

)

forall 𝑖 ∈ {1,… , 𝑛}

The derivative 𝑦′ at interval 𝑖 can be approximated by :
𝑦𝑑𝑜𝑡𝑖 = (𝑦𝑖 − 𝑦𝑖−1)∕Δ𝑥 forall 𝑖 ∈ {1,… , 𝑛}

Finally the arc length is approximated by :
√

1 + 𝑦𝑑𝑜𝑡2𝑖 Δ𝑥 forall 𝑖 ∈ {1,… , 𝑛}

36

https://lpl.matmod.ch/lpl/Solver.jsp?name=/chain
https://lpl.matmod.ch/lpl/Solver.jsp?name=/chain
https://matmod.ch/lpl/HTML/chain.html
https://www.artelys.com/solvers/knitro/

Note that the mass 𝑚 is proportionl to the arc length (since the chain has uniform density),
and the gravitational constant does not influence the form of the function. So, it can be dropped.
With this hints the model can be easily constructed as follows:

Listing 11: The Complete Model implemented in LPL [10]� �
model chain "A NLP (non− l i n e a r) Model ";

parameter n := 50;
set i := 0..n " number o f i n t e r v a l s f o r t h e d i s c r e t i z a t i o n ";
parameter
L := 10 " l e n g t h o f t h e suspended c h a i n ";
xa := 0 " l e f t x c o o r d i n a t e ";
ya := 0 " h e i g h t (y) o f t h e c h a i n a t l e f t ";
xb := 5 " r i g h t x c o o r d i n a t e ";
yb := 1 " h e i g h t (y) o f t h e c h a i n a t r i g h t " ;
dx := (xb-xa)/n " i n t e r v a l ";
x{i} := xa+dx*i " x−coor o f c h a i n ";

variable
y{i} " hang ing h e i g h t ";
ydot{i} " d e r i v a t i v e o f y ";

constraint
YDOT{i|i>0}: y[i] - y[i-1] = dx*ydot[i];
LE: sum{i|i>0} Sqrt(1+ydot[i]^2)*dx = L;
ST: y[0]=ya and y[n]=yb;

minimize energy: sum{i|i>0} (y[i]+y[i-1])/2 * Sqrt(1+ydot[i]^2)*dx;
/ /
model output;
Draw.Scale(1,10);
Draw.DefFont('Verdana',8);
Draw.XY(x,y);

end
/ / o u t p u t t h e g raph
model output1;
set k:=0..10;
parameter X:=1; Y:=10; −− s c a l e

x1:=400/X; y1:=300/Y; −− draw r e c t (0 , 0) t o (x1 , y1)
xmin:=0; xmax:=xb; ymin:=-5; ymax:=0;
Xt{k}:=xmin+(xmax-xmin)/(#k-1)*k; Yt{k}:=ymin+(ymax-ymin)/(#k-1)*

k;;
x{i}:=x*x1/Abs(xmax-xmin); y{i}:=y*y1/-(ymax-ymin);
Draw.Scale(X,Y);
Draw.DefFont('Verdana',8);
Draw.Line(0,0,0,y1);
{k} Draw.Line(x1/10*k,y1,x1/10*k,y1+10/Y);
{k} Draw.Text(Round(Xt,-1)&'',x1/10*k-7/X,y1+20/Y);
Draw.Line(0,y1,x1,y1);
{k} Draw.Line(-10/X,y1-y1/10*k,0,y1-y1/10*k);
{k} Draw.Text(Round(Yt,-1)&'',-25/X,y1-y1/10*k+3/Y);
{i|i>0} Draw.Line(x[i-1],y[i-1],x[i],y[i]);

end
end� �

Solution: The hanging chain of length 𝐿 = 10 between the points (𝑥𝑎, 𝑦𝑎) = (0, 0) and (𝑥𝑏, 𝑦𝑏) =
(5, 0) is drawn in figure 3. This figure is generated by the model output.

37

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure 3: A Hanging Chain

38

14 Discrete Dynamic System (foxrabbit)
—- Run LPL Code , HTML Document –

The class of discrete and continuous model system is huge. In LPL it is not possible right
now to model differential systems, however an example of a discrete dynamic system is given
here. It is the famous predator-prey model.
Problem: “Consider a forest containing foxes and rabbits where the foxes eat the rabbits for
food. We want to examine whether the two species can survive in the long-term. A forest is a
very complex ecosystem. So to simplify the model, we will use the following assumptions:

1. The only source of food for the foxes is rabbits and the only predator of the rabbits is foxes.
2. Without rabbits present, foxes would die out.
3. Without foxes present, the population of rabbits would grow.
4. The presence of rabbits increases the rate at which the population of foxes grows.
5. The presence of foxes decreases the rate at which the population of rabbits grows.”

(This problem is from [1] p. 132ff).
Modeling Steps: The populations are modeled using a discrete dynamical system, that is, at
each point in time – let’s say each month – the size of the two populations is calculated and then
mapped on a graph (for more information see [1]). We calculate the populations over a period of
500 months. Hence, let 𝑖 ∈ 𝐼 = {0,… , 500} a set of time points (first of month). Furthermore,
let 𝑅𝑖 and 𝐹𝑖 be the population at time 𝑖. In the absense of the other specie, the populations
would grow/shrink proportionally to the actual size, so (with 0 ≤ 𝛼, 𝛿 ≤ 1) (The foxes would
die out, while the population of rabbits grows infinitely.):

Δ𝐹𝑖 = 𝐹𝑖+1 − 𝐹𝑖 = −𝛼𝐹𝑖
Δ𝑅𝑖 = 𝑅𝑖+1 − 𝑅𝑖 = 𝛿𝐹𝑖

Now, The presence of the other specie either increases (the foxes) its population by a rate of 𝛽,
or decreases (the rabbits) its population by a rate of 𝛾 . Therefore we have:

Δ𝐹𝑖 = 𝐹𝑖+1 − 𝐹𝑖 = −𝛼𝐹𝑖 + 𝛽𝑅𝑖
Δ𝑅𝑖 = 𝑅𝑖+1 − 𝑅𝑖 = −𝛾𝐹𝑖 + 𝛿𝑅𝑖

Reassigning the terms gives:
𝐹𝑖+1 = (1 − 𝛼)𝐹𝑖 + 𝛽𝑅𝑖
𝑅𝑖+1 = −𝛾𝐹𝑖 + (1 + 𝛿)𝑅𝑖

Given an initial population of 𝐹0 = 110 and 𝑅0 = 900, and the rates 𝛼 = 0.12, 𝛽 = 0.0001,
𝛾 = −0.0003, and 𝛿 = 0.039, it is easy to calculate the population at each time point using the
simple LPL model :

Listing 12: The Complete Model implemented in LPL [10]� �
model foxrabbit " D i s c r e t e Dynamic System ";

parameter n:=500;
set i:= 0..n;
parameter x{i}:=i; F{i}; R{i};;

39

https://lpl.matmod.ch/lpl/Solver.jsp?name=/foxrabbit
https://lpl.matmod.ch/lpl/Solver.jsp?name=/foxrabbit
https://matmod.ch/lpl/HTML/foxrabbit.html

F[0]:= 110, R[0]:=900,
{i|i<#i-1} (F[i+1]:=0.88*F[i] + 0.0001*F[i]*R[i],

R[i+1]:=-0.0003*F[i]*R[i] + 1.039*R[i]);
Draw.Scale(1,1);
Draw.DefFont('Verdana',8);
Draw.XY(x,F,R);

end� �
Solution: With the rates given, the populations ocillate as can be seen in Figure 4 (Black the
population of foxes, red the population of rabbits.)

0

-3

50

236

100

475

150

714

200

953

250

1193

300

1432

350

1671

400

1910

450

2150

500

2389

Figure 4: Fox-Rabbit Population over time

40

15 A Simple Permutation Model (examp-tsp)
—- Run LPL Code , HTML Document –

An interesting model class are the permutation problems (PERM). There is a separate paper
about permutation problems (see [9]), that explains in-depth what I mean by this problem class.
Many of these problems can be formulated in linear (MIP) or non-linear discrete models too, but
are inefficient in solving so. In simple permutation problem we are looking for a permuation out
of all permutations that minimizes an expression. A typical example is the TSP problem (see
also model tsp): The cities to be visited are numbered from 1 to 𝑛. Then any permutation of
these numbers can be interpreted as “round trip” – visiting all cities in the order of the sequence
of these numbers. The goal is now to find a particular permutation that minimizes the total
distance. (In my book Casebook Studies I, several formulations of the TSP problem are given,
for example.) In practice such problems are often solved using (meta)-heuristics. There are
many problems that fall into this class: quadratic assignment (QAP), flowshop scheduling, linear
ordering problem (LOP), etc. As an example, the traveling salsman problem (TSP) is an used
here.
Problem: Given a complete graph 𝐺 = (𝑉 ,𝐸, 𝑐), with a set of nodes 𝑖, 𝑗 ∈ 𝑉 = {1,… , 𝑛} and
edge list 𝐸 = 𝑉 ×𝑉 and an edge length 𝑐𝑖,𝑗 for each edge (𝑖, 𝑗) ∈ 𝐸, find a Hamilton cycle of the
graph, that is, a “round trip” in the graph that visits all nodes exactly once with minimal length
(the sum of its edge lengths).

In a complete graph it is easy to get a Hamilton cycle: Every permutation of the nodes
determines a Hamilton cycle. The difficulty arises when we ask for the shortest cycle. At the
present time, we do not known a better method (in the worst case) to get the shortest one, then to
enumerate all Hamilton cycles and pick the shortest, that means to check all (𝑛−1)! permutations
and check each time its length. For a small graph with 𝑛 = 30, we already have the gigantic
number of permutations of 29! = 8.84⋅1030, far to big to be enumerated even by supercomputers
in reasonable time. Nevertheless clever methods and mathematical models have been invented
that can solve larger problems most of the time.
Modeling Steps: A mathematical formulation can be derived directly from the definition: Out
of all permutation, find the one that minimizes the cycle.

1. Let Π be the set of all permutations, and let 𝜋 be a single permutation (𝜋 ∈ Π). For
example, 𝜋 = [1, 2, 3,… , 𝑛] is a single permutation. Let 𝜋𝑖 be the 𝑖-th element in 𝜋.

2. Then the distance of a roundtrip of the permutation 𝜋 = [𝜋1, 𝜋2,… , 𝜋𝑛, 𝜋1] can be formu-
lated as :

𝑛
∑

𝑖=1
𝑐𝜋𝑖,𝜋𝑗 , with 𝑗 = 𝑖 mod 𝑛 + 1

or
𝑛−1
∑

𝑖=1
𝑐𝜋𝑖,𝜋𝑖+1 + 𝑐𝜋𝑛,𝜋1

(𝑗 is the next element of 𝑖 in the permutation 𝜋, and the next to the last is the first element
in 𝜋). That is:

𝑗 =
{

𝑖 + 1 ∶ 𝑖 < 𝑛
1 ∶ 𝑖 = 𝑛

41

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-tsp
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-tsp
https://matmod.ch/lpl/HTML/examp-tsp.html
https://matmod.ch/lpl/HTML/tsp.html

3. In other words: Let 𝜋 be a permutation 𝜋1𝜋2𝜋3 …𝜋𝑛−1𝜋𝑛. Then 𝑐𝜋𝑖,𝜋𝑗 with 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is
the cost from the node 𝜋𝑖 to node 𝜋𝑗 . The summation, therefore, expresses the costs of a
round trip: 𝑐𝜋1,𝜋2+𝑐𝜋2,𝜋3+…+𝑐𝜋𝑛−1,𝜋𝑛+𝑐𝜋𝑛,𝜋1 . Each possible round trip can be generated by
a permutation. Minimizing this sum over all permutations means to look for the shortest
round trip. Hence, the traveling salesman problem can be formulated as following:

min
𝑛
∑

𝑖=2
𝑐𝜋𝑖−1,𝜋𝑖 + 𝑐𝜋𝑛,𝜋1

subject to 𝜋 ∈ Π

Note the syntax characteristic for this kind of models is, that (integer) variable are used as
indexes: 𝜋𝑖 is a variable. For example, 𝜋2 = 7 means that 7 is at the second position (from
left to right) in the permutation. And 𝑐𝜋𝑖,𝜋𝑗 is the distance value of 𝑐ℎ,𝑘 where ℎ = 𝜋𝑖 and
𝑘 = 𝜋𝑗 . This notation extension allows the modeler to formulated the problem directly in
the modeling language LPL:

Listing 13: The Main Model implemented in LPL [10]� �
model tsp "A Simple P e r m u t a t i o n Model ";

set i,j " t h e node s e t ";
parameter c{i,j} " d i s t a n c e m a t r i x ";
alldiff variable z{i} [1..#i] " a p e r m u t a t i o n ";
minimize obj: sum{i} c[z[if(i=1,#i,i-1)],z[i]];

end� �
Further Comments: The LPL code is an one-to-one formulation of the model above. The vari-
able definition alldiff defines a permutation of numbers starting with 1. The minimization
function is also close to the mathematical notation: in LPL, the construct with if is used in-
stead of the modulo operation. One could also use the modulo operation to specify the objective
function as follows:

minimize obj: sum{i} c[z[i],z[i%#i+1]];

This is a very compact formulation, but how is the problem solved? A model in LPL con-
sisting of only a permutation variable and an objective function is identified by LPL as a special
model type, called here as Simple Permutation Problem (PERM). These problems are sent to an
special solver integrated in LPL which is based on an Tabu-Search metaheuristic method4. A
much more powerful solver is the commercial Hexaly.
Solution: A random instance with 30 locations (nodes) is generated in the data model. So,
𝑛 = 30 coordinates are generated for the nodes in a rectangle and calculate the distances as
Euclidean distances:

Listing 14: The Data Model
model data;
parameter n:=[30] " problem s i z e ";
parameter X{i}; Y{i}; m:=Trunc(Sqrt(n));;
i:=1..n;

4The solver is quite primitive an its neighborhood structure is based on a 2-opt exchange. It was implemented
only to demonstrate the feasibility of connecting LPL to that kind of solver – also heuristics. For a deeper insight
into Metaheuristics etc. consult the Internet.

42

https:/Hexaly.com

X{i}:=(i%m+1)*2+Trunc(Rnd(0,2));
Y{i}:=(i/m+1)*2+Trunc(Rnd(0,2));
c{i,j}:= Sqrt((X[j]-X[i])^2+(Y[j]-Y[i])^2);

end

With the problem size 𝑛 = 30, the Tabu-Search method normally finds the optimal solution
in a few seconds, which is 51.8052 in this case (see Figure 5).

1

2

3

4
5

6

7
8

9
10

11

12

13

14

15

16
17

18
19

20

21

22
23

24
25

26

27

28

29
30

Length=51.8052

Figure 5: The Optimal Solution of a 30 Location Problem

43

16 Capacitated Vehicle Routing Problem (examp-cvrp)
—- Run LPL Code , HTML Document –

Another example of a permutation problem is the capacitated vehicle routing problem (cvrp).
In this problem, we are looking for a “partitioned permutation”. A partitioned permutation is a
permutation partitioned into subsequences. For example, the permutation {2, 3, 4, 1, 9, 8, 5, 6, 7, 10}
could be partitioned into 3 subsequences as follows:

{{2, 3, 4}, {1, 9, 8, 5}, {6, 7, 10}}

The first subsequence is {2, 3, 4}, the second is {1, 9, 8, 5}, etc. this is exactly what is needed
for the capacitated vehicle routing problem.
Problem: A fixed fleet of delivery vehicles of uniform capacity must service known customer
demands for a single commodity from a common depot at minimum transit cost. An concrete
application is given in cvrp. The models cvrp-1, cvrp-2, and cvrp-3 give MIP-formulations of
the problem. These formulations are explained in my book Case Studies I.

To interpret this problem as a “partitioned permutation” problem is easy: Starting at a depot,
the first vehicle visits the customers in the first subsequence and returns to the depot, the second
vehicle, also starting from the depot, visits the customers in the second subsequence and returns
to the depot, etc. Note that the depot is not part of the sequences itself.
Modeling Steps: Let 𝑖, 𝑗 ∈ 𝐼 = {1,… , 𝑛−1} be a set of customer locations (𝑛 is the number of
locations including the warehouse (or the depot) and let 𝑘 ∈ 𝐾 = {1,… , 𝑚} be a set of trucks.
Let the capacity of each truck be 𝐶𝐴, and let the demand quantity to deliver to a customer 𝑖 be
𝑑𝑒𝑚𝑖. Furthermore, the distance between two customer 𝑖 and 𝑗 is 𝑑𝑖,𝑗 . Finally, the distance from
the warehouse – the depot from where the trucks start – to each customer 𝑖 is 𝑑𝑤𝑖.The customers are enumerated with integers from 1 to 𝑛 − 1. If there were one single truck
(that must visits all customers), every permutation sequence of the numbers 1 to 𝑛 − 1 would
define a legal tour. Since we have 𝑚 trucks, to each truck a sequence of a subset of 1 to 𝑛 − 1
must be assigned. Hence, each truck starts at the depot, visiting a (disjoint) subset of customers
in a given order and returns to the depot.

The variables can now be formulated as a “partitioned permutation”. In LPL, we can declare
these partitioned permutation with a (sparse) permutation variable 𝑥𝑘,𝑖 ∈ [1… 𝑛 − 1]. For
example, for the example above we have :

𝑥 =
⎛

⎜

⎜

⎝

2 3 4 − − − − − − −
1 9 8 5 − − − − − −
6 7 10 − − − − − − −

⎞

⎟

⎟

⎠

Note that the two-dimensional table is sparse – it only contains 𝑛 − 1 entries. The symbol
“-“ (dash) means: no entry. Hence, 𝑥1,1 = 2 means that the customer 2 is visited by the truck 1
right after the depot, 𝑥1,2 = 3 means that the next customer (after 2) is 3, etc.

The unique constraint that must hold for the partitioned permutation is the capacity of the
trucks: each subset sequence must be chosen in such a way that the capacity of the truck is larger
than the cumulated demand of the customers that it visits – note, the variables 𝑥𝑘,𝑖 are used as
indexes as well as in the condition of the summation:

∑

𝑖|𝑥𝑘,𝑖

𝑑𝑒𝑚𝑥𝑘,𝑖 ≤ 𝐶𝐴 forall 𝑘 ∈ 𝐾

44

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-cvrp
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-cvrp
https://matmod.ch/lpl/HTML/examp-cvrp.html
https://matmod.ch/lpl/HTML/cvrp.html
https://matmod.ch/lpl/HTML/cvrp-1.html
https://matmod.ch/lpl/HTML/cvrp-2.html
https://matmod.ch/lpl/HTML/cvrp-3.html

We want to minimize the total travel distance of the trucks. Let 𝑐𝑐𝑘 be the size of the subset
𝑘 (the numbers of customers that the truck 𝑘 visits). (In the example above 𝑐𝑘 = {3, 4, 3}.)
Of course, these numbers is variable and cannot be given in advance! Let 𝑟𝑜𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑘 be the
(unknown) travel distance of truck 𝑘, then we want to minimize the total distances:

min
∑

𝑘
𝑟𝑜𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑘

where5

𝑟𝑜𝑢𝑡𝑒𝐷𝑖𝑠𝑡𝑘 =
∑

𝑖∈2..𝑐𝑐𝑘

𝑑𝑥𝑘,𝑖−1,𝑥𝑘,𝑖 + 𝑖𝑓 (𝑐𝑐𝑘 > 0, 𝑑𝑤𝑥𝑘,1 + 𝑑𝑤𝑥𝑘,𝑐𝑐𝑘
forall 𝑘 ∈ 𝐾

The term 𝑑𝑤𝑥𝑘,1 denotes the distance of the truck 𝑘 from the depot to the first customer, and
𝑑𝑤𝑥𝑘,𝑐𝑐𝑘

is the distance of the truck tour 𝑘 from the last customer to the depot, 𝑑𝑥𝑘,𝑖−1,𝑥𝑘,𝑖 is the
distance from a customer to the next, and ∑

𝑖∈2..𝑐𝑐𝑘
… sums that distances of a tour 𝑘.

As a variant we may also minimize, in a first round, the number of trucks used – this is added
as a comment in the code:

Listing 15: The Main Model implemented in LPL [10]� �
model cvrp " C a p a c i t a t e d V e h i c l e Rou t ing Problem ";

set i,j " c u s t o m e r s ";
k " t r u c k s ";

parameter
d{i,j} " d i s t a n c e s ";
dw{i} " d i s t a n c e from / t o t h e warehouse ";
dem{i} " demand ";
CA " t r u c k c a p a c i t y ";

alldiff x{k,i} 'partition';
expression
cc{k}: count{i} x;
trucksUsed{k}: cc[k] > 0;
routeDist{k}: sum{i in 2..cc} d[x[k,i-1],x[k,i]]

+ if(cc[k]>0, dw[x[k,1]] + dw[x[k,cc[k]]]);
nbTrucksUsed: sum{k} trucksUsed[k];
totalDistance: sum{k} routeDist[k];

constraint CAP{k}: sum{i|x} dem[x[k,i]] <= CA;
−−minimize ob j1 : nbTrucksUsed ;
minimize obj2: totalDistance;

end� �
Further Comments: The question is now what solver can solve this kind of model! I developed
a simple Tabu-search solver that can deliver near optimal solution for small simple permutation
problems, but not for partitioned permutation problems. However, there is a powerful commer-
cial solver called Hexaly that can find near optimal solutions to large problems. LPL contains
an (experimental) interface to that solver.
Solution: The LPL data code reads the “A-n32-k5.vrp” file from the Augerat et al. Set A in-
stances.

5The expression 𝑖𝑓 (𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟, 𝐸𝑥𝑝𝑟) returns 𝐸𝑥𝑝𝑟 if 𝑏𝑜𝑜𝑙𝐸𝑥𝑝𝑟 is true else it returns 0 (zero).

45

https://Hexaly.com

Listing 16: The Data Model
model data;
set h; / / h i s i p l u s 1 , 1 i s d e p o t (warehouse)
parameter de{h}; n; m; X{h}; Y{h}; string typ; dum;
Read('A-n32-k5.vrp,%1;-1:DIMENSION',dum,dum,n);
−−Read (' A−n45−k6 . vrp ,%1; −1:DIMENSION ' , dum , dum , n) ;
Read('%1;-1:EDGE_WEIGHT_TYPE',dum,dum,typ);
if typ<>'EUC_2D' then Write('Only EUC_2D is supported\n'); return

0; end;
Read('%1;-1:CAPACITY',dum,dum,CA);
Read{h}('%1:NODE_COORD_SECTION:DEMAND_SECTION', dum,X,Y);
Read{h}('%1:DEMAND_SECTION:DEPOT_SECTION', dum,de);
m:=Ceil(sum{h} de/CA);
k:=1..m;
i:=1..n-1;
d{i,j}:=Round(Sqrt((X[i+1]-X[j+1])^2+(Y[i+1]-Y[j+1])^2));
dem{i}:=de[i+1];
dw{i}:=Round(Sqrt((X[i+1]-X[1])^2+(Y[i+1]-Y[1])^2));

end

The Hexaly finds the optimal solution (see 6) after 25secs6

1

25

28

11

27

8

14

1820
32

22

11

7

3
424

5
12

29

15

11

13

2

17

31

11

21

6

26

11

16

23
10

9

19

30

1

Figure 6: Optimal Solution to the “A-n32-k5.vrp” Instance

6Note that Hexaly is not simply a heuristic solver that finds hopefully near optimal solution. It integrates appar-
ently many lower-bound checks that can guarantee the quality of the solution.

46

17 Binpacking (examp-binpack)
—- Run LPL Code , HTML Document –
Problem: Another example, that can be formulated as a permutation problem is the Bin-Packing
problem. In contrast the the CVRP problem (see examp-cvrp), the order of the subsets is not
important: a bin just contains a subset of items, the order is not important.

The bin packing problem (BPP) is a classical model from the operations research (see also
binpack for another formulation of the problem). Different items of given weights must be
packed into a number of bins of given capacity. How many bins are needed to pack all items?
A MIP implementation of the binpacking problem can be found in binpack.
Modeling Steps: Given a set of items 𝑖 ∈ 𝐼 with a weight 𝑤𝑖 and a set of bins 𝑘 ∈ 𝐾 with
capacity 𝐶𝐴 (we suppose that 𝑤𝑖 ≤ 𝐶𝐴 for all 𝑖 ∈ 𝐼), that is all items can be packed in a bin.
We need at most 𝑚𝑎𝑥𝐵𝑖𝑛𝑠 bins :

𝑚𝑎𝑥𝐵𝑖𝑛𝑠 = min(|𝐼|,
∑

𝑖
𝑤𝑖∕𝐶𝐴)

So let 𝐾 = {1,… , 𝑚𝑎𝑥𝐵𝑖𝑛𝑠}.
Let’s enumerate all items from 1 to |𝐼|. Then we are asked to partition these numbers into
maximally |𝐾| subsets (but as few as possible), such that the cumulated weight of the items
in a subset do not exceed the capacity 𝐶𝐴. The item numbers form a permutation, that must
be partitioned into subsets. We can formulated this by introducing a variable 𝑥𝑘,𝑖 ∈ [0… |𝐼|]
with 𝑘 ∈ 𝐾 and 𝑖 ∈ 𝐼 . For example: 𝑥1,1 = 16 means that the first item in bin 1 is the item
with number 16, 𝑥1,2 = 19 means that the second item in bin 1 is the item with number 19, etc.
𝑥𝑖,𝑘 = 0 means that there is no 𝑘-th item in bin 𝑖.
The model then can be formulated as follows:

let 𝑏𝑊𝑘 =
∑

𝑖|𝑥𝑘,𝑖≠0
𝑤𝑥𝑘,𝑖 forall 𝑘 ∈ 𝐾

let 𝑏𝑈𝑘 = count
𝑖

𝑥𝑘,𝑖 > 0 forall 𝑘 ∈ 𝐾
s.t. 𝑏𝑊𝑘 <= 𝐶𝐴 forall 𝑘 ∈ 𝐾
min

∑

𝑘
𝑏𝑈𝑘

set partition 𝑥𝑘,𝑖 ∈ [1… |𝐼|] forall 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼

𝑏𝑊𝑘 is the (unknown) weight of a bin 𝑘. 𝑏𝑈𝑘 is true (1) if the bin 𝑘 is not empty (it counts the
items in a bin 𝑘 and if there is at least 1 then it is true). The unique constraint makes sure that
the capacity of a bin is not exceeded, and the objective function minimizes the number of bins
used.

Listing 17: The Complete Model implemented in LPL [10]� �
model binpacking " B i n p a c k i n g ";

set i,j " i t e m s ";
k " b i n s ";

parameter CA " c a p a c i t y o f b i n ";
weight{i} " w e i gh t o f i t em i ";

alldiff x{k,i} 'set partition';
expression bWeight{k}: sum{i|x} weight[x];
expression bUsed{k}: count{i} x > 0;
constraint bCapa{k}: bWeight <= CA;

47

https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-binpack
https://lpl.matmod.ch/lpl/Solver.jsp?name=/examp-binpack
https://matmod.ch/lpl/HTML/examp-binpack.html
https://matmod.ch/lpl/HTML/examp-cvrp.html
https://matmod.ch/lpl/HTML/binpack.html
https://matmod.ch/lpl/HTML/binpack.html

minimize nrBins: sum{k} bUsed;
/ / −−−
model data;
parameter n; m;
Read('bin-t60-00.txt',n);
i:=1..n;
Read('%1;1',CA);
Read{i}('%1;2',weight);
parameter minBins:=Ceil(sum{i} weight/CA);

maxBins:= min(#i, 2*minBins);;
k:=1..maxBins;

end
/ / −−−
model output;
Write{k|bUsed}('Bin weight: %4d \

| Items: %3d\n',bWeight,{i|x} x);
end

end� �
Further Comments: In LPL, the permutation variables is declared as a alldiff variable with
two dimensions and the attribute ’set partition’ in this case.

17.1 Permutation Problems as Implemented in LPL
There are various kinds of permutation problems, all are declared with an alldiff variable in
LPL. The unique commercial solver (I know) that can solve this kind of problems is the Hexaly.

1. The variable is one-dimensional then we are looking for a simple permutation (the key-
word variable can be omitted):

alldiff variable x{i};

Example problems are TSP, LOP (linear ordering problem), QAP, etc. If a single objective
function is requested – without constraints (as in the TSP) then the small problems can be
solved with the internal Tabu-Search solver of LPL.

2. A variant of the one-dimensional permutation is the subset variant:
alldiff variable x{i} 'notall';

In this case we are looking only for a subset of the permutation. An example is the price
collecting TSP, a round-trip where not all location are visited.

3. The variable is 2-dimensional without any additional attribute then are looking for a parti-
tioned permutation. The set 𝑖 defines the permutation itself and the set 𝑘 is the partitioning.
The permutation is repeated over 𝑘.

alldiff x{k,i};

Example with defines a permutation of 4 items repeated over 3 sets.

𝑥𝑘,𝑖 =
⎛

⎜

⎜

⎝

2 3 4 1
1 3 2 4
4 1 2 3

⎞

⎟

⎟

⎠

An example is the jobshop problem, where the job sequence (permutation) is repeated
over all machines (see jobshop1).

48

https://hexaly.com
https://matmod.ch/lpl/HTML/jobshop1.html

4. The variable is 2-dimensional with the additional attribute ’patition’ means that the
unique permutation is partitioned over the set 𝑘.

alldiff x{k,i} 'partition';

This is the case for the exam-cvrp model: the set of locations defines a permutation, which
is partitioned into subtours. Note that the order in the subsets (subtours) matters.

5. The variable is 2-dimensional with the additional attribute ’set patition’ means
that the unique permutation is partitioned over the set 𝑘, but the order of the items in the
subsets does not matter.

alldiff x{k,i} 'set partition';

An example ist the bin-packing problem: the items to place into the bins define a permu-
tation, which is partitioned into the bins, but the order within the bins does not matter.

6. The variable is 2-dimensional with the additional attribute ’cover’ means that the
unique permutation is distributed over the set 𝑘, the items in the permutation can be re-
peated in the different subsets.

alldiff x{k,i} 'cover';

A example is the Split Delivery Vehicle Routing (SDVRP) problem, the same customer
(location) can be visited by more than one vehicle (can be in more then one subtour) (see
sdvrp).

49

https://matmod.ch/lpl/HTML/exam-cvrp.html
https://matmod.ch/lpl/HTML/sdvrp.html

18 Additional Variable Types
Variables – as seen – can be in the domain real, integer, or binary. An additional type of variables
are special integer variables: the permutation variables. Another type of variables are interval
variables. LPL defines them for the Hexaly solver, a model examples is rcpsp1.

Three further variables types are semi-continuous, semi-integer, or multiple-choice vari-
ables. There is no need to introduce extra syntax for them, one can just extend the lower/upper
bound specifications of the variable definitions. In LPL, the lower/upper bound are defined as
[lo..up].

18.1 Semi-continuous Variable (semi-1)
—- Run LPL Code , HTML Document –

A semi-continuous variable is defined as a real variable that can be zero or between a (posi-
tive) lower and upper bound.

A semi-continuous variable 𝑥 can be modeled by introducing a binary variable 𝑧 and an
addition constraint (where 𝑙𝑜 and 𝑢𝑝 are the (positive) lower and upper bounds) defined as :

𝑙𝑜 ⋅ 𝑧 ≤ 𝑥 ≤ 𝑢𝑝 ⋅ 𝑧

This constraint models the two alternatives: if 𝑧 = 0 then 𝑥 = 0, otherwise if 𝑧 = 1 then 𝑥
must be between the lower and upper bound: 𝑙𝑜 ≤ 𝑥 ≤ 𝑢𝑝.
In LPL, a semi-continuous variable can simply be defined as:

variable x [0,lo..up];

The transformations, adding a binary variable and the constraint as defined above, are done
automatically by LPL

Listing 18: The Complete Model implemented in LPL [10]� �
model semi1 " Semi−c o n t i n u o u s V a r i a b l e ";

parameter lo:=5; up:=7;
variable x [0,lo..up];
minimize obj: x;
−−maximize o b j : x ;
Writep(x);

end� �
This model will be translated into the following model by LPL (the names may be different):

model semi1 " Semi−c o n t i n u o u s v a r i a b l e ";
parameter lo:=5; up:=7;
variable x;
binary variable z;
constraint A: 5*z <= x <= 7*z;
solve;

end

18.2 Semi-integer Variable (semi-2)
—- Run LPL Code , HTML Document –

A semi-integer variable is defined as an integer variable that can be zero or between a (pos-
itive) lower and upper integer bound.

50

https://matmod.ch/lpl/HTML/rcpsp1.html
https://lpl.matmod.ch/lpl/Solver.jsp?name=/semi-1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/semi-1
https://matmod.ch/lpl/HTML/semi-1.html
https://lpl.matmod.ch/lpl/Solver.jsp?name=/semi-2
https://lpl.matmod.ch/lpl/Solver.jsp?name=/semi-2
https://matmod.ch/lpl/HTML/semi-2.html

A semi-integer variable 𝑥 can be modeled by introducing a binary variable 𝑧 and an addition
constraint (where 𝑙𝑜 and 𝑢𝑝 are the (positive) lower and upper bounds) defined as :

𝑙𝑜 ⋅ 𝑧 ≤ 𝑥 ≤ 𝑢𝑝 ⋅ 𝑧

This constraint models the two alternatives: if 𝑧 = 0 then 𝑥 = 0, otherwise if 𝑧 = 1 then 𝑥
must be between the lower and upper bound: 𝑙𝑜 ≤ 𝑥 ≤ 𝑢𝑝.
In LPL, a semi-integer variable can simply be defined as:

integer variable x [0,lo..up];

The transformations, adding a binary variable and the constraint as defined above, are done
automatically by LPL

Listing 19: The Complete Model implemented in LPL [10]� �
model semi2 " Semi− i n t e g e r V a r i a b l e ";

parameter lo:=5; up:=7;
integer variable x [0,lo..up];
minimize obj: x;
−−maximize o b j : x ;
Writep(x);

end� �
This model will be translated into the following model in LPL (the names may be different):
model semi1 " Semi− i n t e g e r v a r i a b l e ";
parameter lo:=5; up:=7;
integer variable x;
binary variable z;
constraint A: 5*z <= x <= 7*z;
solve;

end

18.3 A Multiple Choice Variable (mchoice-3)
—- Run LPL Code , HTML Document –

A multiple choice variable is a real or integer variable, that can be assigned to values of
multiple intervals. For example, a variable 𝑥 is restricted to the values 2, 4, between 6 and 8,
and 11, that is :

𝑥 ∈ {2, 4, 6…8, 11}

Note that a multiple-choice variable is a generalization of a semi-continuous/integer variable. It
can be modeled as follows:

1. Introduce a set and two parameters as follows:
𝑖 ∈ 𝐼 = {1…4} 𝑎𝑖 = {2, 4, 6, 11} 𝑏𝑖 = {2, 4, 8, 11}

2. Add a binary variable
𝑧𝑖 ∈ {0, 1} 𝑖 ∈ 𝐼

51

https://lpl.matmod.ch/lpl/Solver.jsp?name=/mchoice-3
https://lpl.matmod.ch/lpl/Solver.jsp?name=/mchoice-3
https://matmod.ch/lpl/HTML/mchoice-3.html

3. Add the two constraints:
∑

𝑖∈𝐼
𝑎𝑖𝑧𝑖 ≤ 𝑥 ≤

∑

𝑖∈𝐼
𝑏𝑖𝑧𝑖

∑

𝑖∈𝐼
𝑧𝑖 = 1

In LPL, the multiple-choice variable can simply be defined as (the variable may also be of type
integer):

variable x [2,4,6..8,11];

Listing 20: The Complete Model implemented in LPL [10]� �
model mchoice "A M u l t i p l e Choice V a r i a b l e ";

integer variable x [2,4,6..8,11];
minimize obj: x;
−−maximize o b j : x ;
Writep(x);

end� �
This model will be translated into the following model by LPL (the names may be different):

model mchoice "A m u l t i p l e c h o i c e v a r i a b l e ";
variable x;
set i:=1..4;
parameter a{i}:=[2,4,6,11];

b{i}:=[2,4,8,11];
binary variable z{i};
constraint A: sum{i} a*z <= x <= sum{i} b*z;

B: sum{i} z = 1;
solve;

end

An alternative way to formulate a multiple-choice variable is by using the logical or operation.
Although correct, this is not recommended in general, because it will generate more binary
variables. For the example above one may formulate the model as follows:

model mchoice "A m u l t i p l e c h o i c e v a r i a b l e ";
variable x [2..11];
constraint A: x=2 or x=4 or 6<=x<=8 or x=11;
solve;

end

19 Additional Constraint Types
Besides of linear and non-linear constraints7, there are many other classes in practice. Some can
be transformed and formulated as linear or non-linear constraints: the SOS1, the SOS2, and the
complementarity constraints, as explained below.

7 Since a constraint expression can include Boolean operand and Boolean operator, constraints with logical
connectors are included in this definition

52

19.1 Sos1 Constraint (sos-1)
—- Run LPL Code , HTML Document –

A SOS1 (special order set of type 1) constraint is a set of variables where at most one variable
in the set can take a value different from zero.

Given a set of variables 𝑥𝑖 with 𝑖 ∈ 𝐼 = {1,… , 𝑛}. If the variable are binary then a SOS1
constraint can be formulated simply as :

∑

𝑖
𝑥𝑖 ≤ 1

If the variables are real (or integer) then an additional binary variable 𝑦𝑖 has to be introduced
together with the constraints (where 𝑢𝑝𝑖 is an upper bound on the variable 𝑥𝑖) :

∑

𝑖
𝑦𝑖 ≤ 1

𝑥𝑖 ≤ 𝑢𝑝𝑖 ⋅ 𝑦𝑖 forall 𝑖 ∈ 𝐼

In LPL, we can use the function Sos1 to specify a SOS1 constraint. For example, to specify
that 𝑣 = 0 or 𝑤 = 0 (at most one can be non-zero) we write:

constraint C: Sos1(v,w)

To specify that only in a indexed list of variable must be non-zero, one specifies:
constraint D: Sos1({i} x[i]);

Listing 21: The Complete Model implemented in LPL [10]� �
model sos1 " Sos1 C o n s t r a i n t ";

set i:=1..10;
parameter up:=10.2;
variable x{i} [0..up];
constraint A: Sos1({i} x);
maximize obj: sum{i} i*x;
Writep(obj,x);

end� �
Note only Gurobi understands this syntax, otherwise the explicit formulation must be used

as follows:
model sos1;
set i:=1..10;
parameter up:=10.2;
variable x{i} [0..up];
binary variable y{i};
constraint A: sum{i} y <= 1;
constraint B{i}: x <= up*y;
maximize obj: sum{i} i*x;
Writep(obj,x);

end

19.2 Sos2 Constraint (sos-2)
—- Run LPL Code , HTML Document –

A SOS2 (special order set of type 2) constraint is a set of variables where at most two adjacent
variable in the set can take a value different from zero.

53

https://lpl.matmod.ch/lpl/Solver.jsp?name=/sos-1
https://lpl.matmod.ch/lpl/Solver.jsp?name=/sos-1
https://matmod.ch/lpl/HTML/sos-1.html
https://lpl.matmod.ch/lpl/Solver.jsp?name=/sos-2
https://lpl.matmod.ch/lpl/Solver.jsp?name=/sos-2
https://matmod.ch/lpl/HTML/sos-2.html

Given a set of variables 𝑥𝑖 with 𝑖 ∈ 𝐼 = {1,… , 𝑛}. If the variables are real (or integer) then
an additional binary variable 𝑦𝑖 has to be introduced together with the constraints (where 𝑢𝑝𝑖 is
an upper bound on the variable 𝑥𝑖) :

∑

𝑖
𝑦𝑖 ≤ 2

𝑥𝑖 ≤ 𝑢𝑝𝑖 ⋅ 𝑦𝑖 forall 𝑖 ∈ 𝐼
𝑦𝑖 + 𝑦𝑗 <= 1 forall 𝑖 ∈ 𝐼, 𝑗 ∈ {𝑖 + 2,… , 𝑛}

In LPL, we can use the function Sos2 to specify a SOS2 constraint. For example, to specify
that only in a indexed list of variable must be non-zero, one specifies:

constraint D: Sos2({i} x[i]);

Listing 22: The Complete Model implemented in LPL [10]� �
model sos2 " Sos2 C o n s t r a i n t ";

set i:=1..10;
parameter up:=10.2;
variable x{i} [0..up];
constraint A: Sos2({i} x);
maximize obj: sum{i} i*x;
Writep(obj,x);

end� �
Note only Gurobi (and Cplex) understand this syntax from LPL, otherwise the explicit for-

mulation must be used as follows:
model sos2;
set i,j:=1..10;
parameter up:=10.2;
variable x{i} [0..up];
binary y{i};
constraint B: sum{i} y <= 2;
constraint C{i}: x <= up*y;
constraint D{i,j| j>=i+2}: y[i] + y[j] <= 1;
maximize obj: sum{i} i*x;
Writep(obj,x);

end

19.3 MPEC Model Type (compl-3)
—- Run LPL Code , HTML Document –

A complementarity constraint enforces that two variables are complementary to each other,
that is, the following conditions hold for scalar variables 𝑥 and 𝑦:

𝑥 ⋅ 𝑦 = 0 , 𝑥 ≥ 0 , 𝑦 ≥ 0

In LPL, this condition can be formulated by a constraint as follows:
constraint A: Complements(x,y);

A more general version can also be implemented in LPL, where the two scalar variables can
be replaced by arbitrary expressions. LPL reformualtes this version. Hence, for example, the
constraint

constraint A1: Complements(2*x-1,4*y-1);

54

https://lpl.matmod.ch/lpl/Solver.jsp?name=/compl-3
https://lpl.matmod.ch/lpl/Solver.jsp?name=/compl-3
https://matmod.ch/lpl/HTML/compl-3.html

will be replaced by (where 𝑣 and 𝑤 are two new variables):
variable v; w;
constraint A1: v*w = 0;
constraint X: v = 2*x-1;
constraint Y: w = 4*y-1;

Note that Gurobi can solve these constraints if the expressions within the complementarity
are linear or quadratic, otherwise a non-linear solver (such as Knitro) will do the job.

Listing 23: The Complete Model implemented in LPL [10]� �
model complement "MPEC Model Type ";

variable x [0..10]; y [0..10];
constraint
A1: Complements(2*x-1,4*y-1);

maximize obj: x + y;
Writep(obj,x,y);

end� �
20 Global Constraints
Global constraints are constraints representing a specific relation on a number of variables. Some
of them can be rewritten as a conjunction of algebraic constraints. Other global constraints
extend the expressivity of the constraint framework. In this case, they usually capture a typical
structure of combinatorial problems. Global constraints are used to simplify the modeling of
constraint satisfaction problems (CSP), to extend the expressivity of constraint languages, and
also to improve the constraint resolution. Many of the global constraints are referenced into an
The Online Catalog, a catalog that presents a list of 423 global constraints.
Actually, LPL implements only a few to illustrate the use and the power in modeling. Depending
on the solver used, these constraint must be transformed.

20.1 Alldiff and alldiff
One of the most famous global constraint is the alldifferent constraint. It requires that a certain
number of (integer) variables must all be different from each other. A important special case are
permutations. (Permutation problems have been defined and presented in the paper [9].)
In LPL, the alldifferent constraint come in two versions:

1. A variable vector can be declared with the keyword alldiff. A typical application is the
TSP problem, as formulated in tsp, in which the variables are formulated as a permutation.

2. A global constraint Alldiff() defines lists of variables that must be different from each
other. Typical models are the model sudokuM and the model vier.

The first version can be used for most permutation problems, as explained in the paper [9]: for
the TSP-PC (price collecting TSP), for CVRP (Capacitated Vehicle Routing Problem), Jobshop,
and many others, as explained in the paper. The syntax for a simple permutation is:

alldiff variable x{i} [1..#i];

The second version in a constraint has two forms:

55

https://sofdem.github.io/gccat/
https://matmod.ch/lpl/HTML/tsp.html
https://matmod.ch/lpl/HTML/sudokuM.html
https://matmod.ch/lpl/HTML/vier.html

constraint A: Alldiff(y,z,w,v); / / e x p l i c i t l i s t o f v a r i a b l e s
constraint B: Alldiff({i} x[i]); / / i n d e x e d l i s t o f v a r i a b l e s

When using a MIP solver, LPL transforms both versions into linear constraints. There are several
methods:
The first method (used by LPL) is as follows :

1. Add the binary variables: 𝑦𝑖,𝑗 with 𝑖, 𝑗 ∈ 𝐼 .
2. Add the constraints:

1 ≤ 𝑥𝑗 − 𝑥𝑖 + 𝑛𝑦𝑖,𝑗 ≤ 𝑛 − 1 forall 𝑖, 𝑗 ∈ 𝐼, 𝑖 < 𝑗

The second Method (avoiding big-M) is as follows :
1. Add the binary variables: 𝑦𝑖,𝑗 with 𝑖, 𝑗 ∈ 𝐼 .
2. Add constraints:

∑

𝑗
𝑦𝑖,𝑗 = 1 forall 𝑖 ∈ 𝐼

∑

𝑖
𝑦𝑖,𝑗 = 1 forall 𝑗 ∈ 𝐼

𝑥𝑖 =
∑

𝑗
𝑗𝑦𝑖,𝑗 forall 𝑖 ∈ 𝐼

Note the second method can be extended. The case 𝑥𝑖 ∈ {1,… , 𝑛} where 𝑖 ∈ {1,… , 𝑛} is a
very special case of the more general problem where 𝑥𝑖 ∈ {𝑎1,… , 𝑎𝑛} with 𝑎𝑖+1 > 𝑎𝑖. This
problem can be handled by the constraints:

∑

𝑗
𝑦𝑖,𝑗 = 1 forall 𝑖 ∈ 𝐼

∑

𝑖
𝑦𝑖,𝑗 = 1 forall 𝑗 ∈ 𝐼

𝑥𝑖 =
∑

𝑗
𝑎𝑗𝑦𝑖,𝑗 forall 𝑖 ∈ 𝐼

Even the case with duplicates in 𝑎 (𝑎𝑖+1 ≥ 𝑎𝑖 (example: 𝑎 = {1, 2, 2, 3, 3, 3}) can be handled
with the previous constraints.
Another extension is to define a subset: consider 𝑥𝑗 ∈ {𝑎1,… , 𝑎𝑛} where 𝑗 ∈ {1,… , 𝑚} and
𝑚 < 𝑛, for example, choose two values 𝑥𝑗 from the set {1,… , 3}.

∑

𝑗
𝑦𝑖,𝑗 ≤ 1 forall 𝑖 ∈ 𝐼

∑

𝑖
𝑦𝑖,𝑗 = 1 forall 𝑗 ∈ 𝐼

𝑥𝑖 =
∑

𝑗
𝑎𝑗𝑦𝑖,𝑗 forall 𝑖 ∈ 𝐼

For more information see Erwin Kalvelagen, see also [11].

56

https://yetanothermathprogrammingconsultant.blogspot.com/2016/05/all-different-and-mixed-integer.html

20.2 Element
The element constraint requires that the (unknown) 𝑥-th entry of a data vector 𝑐𝑖 with 𝑖 ∈
{1,… , 𝑘} is exactly 𝑣.

𝐸𝑙𝑒𝑚𝑒𝑛𝑡(𝑥, 𝑐𝑖|𝑖∈{1,…,𝑘}, 𝑣)

In an explicitly mathematical version this could be formulated as :
𝑣 = 𝑐𝑥

Note that 𝑥 is an (integer) variable and it is at an index position. 𝑣 may or may not bo a variable.
In LPL, the constraint can be written as follows :

constraint A: Element((x, {i}c, v);

When using a MIP solver the constraint is translated to :
𝑣 =

∑

𝑖
𝑐𝑖𝑦𝑖

𝑦𝑖 ↔ (𝑥𝑖 = 𝑖) forall 𝑖 ∈ 𝐼
𝑦𝑖 ∈ {0, 1} forall 𝑖 ∈ 𝐼

A real application model is given in model assignCP another example is guer05-6a.

20.3 Occurrence
The occurrence constraint requires that between 𝑚 and 𝑛 (𝑚 <= 𝑛) elements of an variable
vector 𝑥𝑖 with 𝑖 ∈ {1,… , 𝑘} must be assigned the value 𝑣.

𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒(𝑥𝑖|𝑖∈{1,…,𝑘}, 𝑣, 𝑚, 𝑛)

In an explicitly mathematical version this could be formulated as :
𝑚 ≤

∑

𝑖
(𝑥𝑖 = 𝑣) ≤ 𝑛

Note that the term (𝑥𝑖 = 𝑣) is a Boolean expression that returns 0 or 1, and hence, the 𝑠𝑢𝑚 counts
the number of occurrences that 𝑥𝑖 is exactly 𝑣. This number must be between 𝑚 and 𝑛.
For example, let 𝑥 be a variable vector of 10 elements (𝑥𝑖 with 𝑖 ∈ {1,… , 10}), and let 𝑣 = 30
and 𝑚 = 3, 𝑛 = 5. Then the constraint is fulfilled if 𝑥 = (1, 2, 5, 4, 30, 7, 30, 6, 30, 8) because the
value 30 occurs 3 times.
In LPL, the constraint is not yet explicitly implemented. It can be formulated in the mathematical
way as follows:

constraint A: m <= sum{i} (x[i] = v) <= n ;

When calling a MIP solver, then LPL automatically translates this into linear constraints. In the
following real models this constraint is used: model Kalis and model car2. In both models, the
special case where 𝑚 = 𝑛 is used, which reduces the formulation into

constraint A: sum{i} (x[i] = v) = n ;

57

https://matmod.ch/lpl/HTML/assignCP.html
https://matmod.ch/lpl/HTML/guer05-6a.html
https://matmod.ch/lpl/HTML/Kalis.html
https://matmod.ch/lpl/HTML/car2.html

20.4 Sequence_total
The sequence_total constraint requires that in each sequence of length 𝑠 > 0 of a variable vector
𝑥𝑖 with 𝑖 ∈ {1,… , 𝑘} between 𝑚 and 𝑛 (𝑚 ≤ 𝑛) elements must be assigned to 𝑣.

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑡𝑜𝑡𝑎𝑙(𝑥𝑖|𝑖∈{1,…,𝑘}, 𝑣, 𝑚, 𝑛, 𝑠)

In an explicitly mathematical version this could be formulated as :
𝑚 ≤

∑

ℎ|𝑖≤ℎ≤𝑖+𝑠−1
(𝑥𝑖 = 𝑣) ≤ 𝑛 forall 𝑖 ∈ {1,… , 𝑘 − 𝑠 + 1}

Note that the term (𝑥𝑖 = 𝑣) is a Boolean expression that returns 0 or 1, and hence, the 𝑠𝑢𝑚 counts
the number of occurrences that 𝑥𝑖 is exactly 𝑣. This number must be between 𝑚 and 𝑛.
For example, let 𝑥 be a variable vector of 10 elements (𝑥𝑖 with 𝑖 ∈ {1,… , 10}), and let 𝑣 = 30
and 𝑚 = 1, 𝑛 = 2, 𝑠 = 4. Then the constraint is fulfilled if 𝑥 = (1, 30, 5, 4, 30, 7, 30, 6, 30, 8)
because the value 30 occurs in each sub-sequence of 4 elements 1 or 2 times.
In LPL, the constraint is not yet explicitly implemented. It can be formulated in the mathematical
way as follows:

constraint A{i|#i-s+1}: m <= sum{h|i<=h<=i+s-1} (x[i] = v) <= n ;

When calling a MIP solver, then LPL automatically translates this into linear constraints. The
constraint is used in the following real model of “car assembly line sequence”, see car2.

21 Conclusion
This paper gave a limited overview of some model classes. It shows a unified implementation
into the LPL modeling language. LPL can analyze the model and selects automatically the right
solver, based on a classification, to solve it. The actual LPL language is far from complete, it
is thought as a research vision to formulate all kind of models in a unified modeling language.
That language should also contain most concepts of a modern programming language – which
LPL doesn’t right now.

As said, LPL is a small subset of that unified modeling language, but a special model class,
namely large linear MIP models, are efficiently formulated and are used in a commercial context.

References
[1] Fox W.P. Albright B. Mathematical Modeling with Excel. CRC Press, NewYork, 2020,

second edition.
[2] Shetty C.M. Bazaraa M.S., Sherali H.D. Nonlinear Programming, Theory and Algorithms.

Wiley, 2006, third edition.
[3] Pedregal P. García R. Alguacil N. Castillo E., Conejo A.J. Building and Solving Mathe-

matical Programming Models in Engineering and Science. Wiley, 2002.
[4] More J.J. Dolan E.D. Benchmarking Optimization Software with COPS., Tech. Report.

Mathematics and Computer Science Division,, 2000.
[5] Cesari L. Optimization – Theory and Applications. Springer Verlag, 1983.

58

https://matmod.ch/lpl/HTML/car2.html

[6] Wolsey L.A. Integer Programming. Wiley, 1998.
[7] MatMod. Homepage for Learning Mathematical Modeling : https://matmod.ch.
[8] Hürlimann T. Logical modeling. https://matmod.ch/lpl/doc/logical.pdf.
[9] Hürlimann T. Permutation Problems. https://matmod.ch/lpl/doc/

permutation.pdf.
[10] Hürlimann T. Reference Manual for the LPL Modeling Language, most recent version.

https://matmod.ch/lpl/doc/manual.pdf.
[11] Hong Y. Williams H.P. Representations of the all-different Predicate of Constraint Satis-

faction in Integer Programming. INFORMS Journal on Computing, 13:96–103, 2001.
[12] Winston W.L. Operations Research, Applications and Algorithms. Duxbury, 3rd ed.,

1998.

59

https://matmod.ch
https://matmod.ch/lpl/doc/logical.pdf
https://matmod.ch/lpl/doc/permutation.pdf
https://matmod.ch/lpl/doc/permutation.pdf
https://matmod.ch/lpl/doc/manual.pdf

	Introduction
	Variations
	A Linear Program (examp-lp)
	A Integer Linear Program (examp-ip)
	A 0-1 Integer Program (examp-ip01)
	An LP-relaxation of the 0-1 Program (examp-ip01r)
	A Quadratic Convex Program (examp-qp)
	A 0-1-Quadratic Program (examp-qp01)
	Second-Order Cone (socp1)
	Rotated second-order Cone (socp2)
	A NQCP model (bilinear)
	Largest Empty Rectangle (iNCQP) (quadrect)
	A NLP (non-linear) Model (chain)
	Discrete Dynamic System (foxrabbit)
	A Simple Permutation Model (examp-tsp)
	Capacitated Vehicle Routing Problem (examp-cvrp)
	Binpacking (examp-binpack)
	Permutation Problems as Implemented in LPL

	Additional Variable Types
	Semi-continuous Variable (semi-1)
	Semi-integer Variable (semi-2)
	A Multiple Choice Variable (mchoice-3)

	Additional Constraint Types
	Sos1 Constraint (sos-1)
	Sos2 Constraint (sos-2)
	MPEC Model Type (compl-3)

	Global Constraints
	Alldiff and alldiff
	Element
	Occurrence
	Sequence_total

	Conclusion

