Open Shop Scheduling Problem (OSSP)
Problem
In the Open Shop Scheduling Problem (OSSP), a set of jobs has to be processed on every machine in the shop. Each job consists in an unordered sequence of tasks (called activities). An activity represents the processing of the job on one of the machines and has a given processing time. Each job has one activity per machine, and cannot start an activity while another activity of the job is still running. Each machine can only process one activity at a time. The goal is to find a sequence of jobs that minimizes the makespan: the time when all jobs have been processed.
Principles learned
- Add interval decision variables to model the activities
- Add list decision variables to model the order of the activities in each job and on each machine
- Define lambda functions to link the interval and list variables together
Data
The instances provided are from Taillard. The format of the data files is as follows:
- First line: number of jobs, number of machines, seed used to generate the instance, upper and lower bound previously found
- For each job: the processing time of each activity on its assigned machine
- For each job: the machine ID assigned to each activity.
Program
The Hexaly model for the Open Shop Scheduling Problem (OSSP) uses interval decision variables to represent the time ranges of the activities. The length of the interval is constrained by each activity’s processing time.
In addition to intervals, we also use list decision variables. As in the Job Shop example, a list models the ordering of activities on a machine or within a job. Using the ‘count’ operator to constrain the size of the lists, we ensure that each job is processed on each machine.
The disjunctive resource constraints — each machine can only process one activity at a time — can be reformulated as follows. For all i, the activity processed in position i+1 must start after the end of the activity processed in position i. To model these constraints, we pair up the interval decisions (the time ranges) with the list decisions (the job orderings). We write a lambda function expressing the relationship between two consecutive activities. This function is used within a variadic ‘and’ operator over all activities processed by each machine.
We use the same strategy to model the disjunctive activity constraints. For all jobs and all i, the activity in position i+1 for a job must start after the end of the activity in position i for this job. Similarly to the disjunctive resource constraints, we model these constraints with a lambda function used within a variadic ‘and’ operator over all activities constituting each job.
The objective consists in minimizing the makespan, which is the time when all the activities have been processed.
- Execution
-
hexaly openshop.hxm inFileName=instances/tai2020_5.txt [hxTimeLimit=] [solFileName=]
/********** Openshop **********/
use io;
/* Read instance data. The input files follow the "Taillard" format */
function input() {
local usage = "Usage: hexaly openshop.hxm inFileName=instanceFile "
+ "[outFileName=outputFile] [hxTimeLimit=timeLimit]";
if (inFileName == nil) throw usage;
inFile = io.openRead(inFileName);
inFile.readln();
nbJobs = inFile.readInt();
nbMachines = inFile.readInt();
inFile.readln();
inFile.readln();
// Processing times for each job on each machine
// (given in the task order, the processing order is a decision variable)
processingTimesActivityOrder[j in 0...nbJobs][m in 0...nbMachines] = inFile.readInt();
inFile.readln();
// Reorder processing times: processingTime[j][m] is the processing time of the
// task of job j that is processed on machine m
for [j in 0...nbJobs][k in 0...nbMachines] {
local m = inFile.readInt() - 1;
processingTimes[j][m] = processingTimesActivityOrder[j][k];
}
inFile.close();
maxStart = sum[j in 0...nbJobs][m in 0...nbMachines](processingTimes[j][m]);
}
/* Declare the optimization model */
function model() {
// Interval decisions: time range of jobs on each machine
// tasks[j][m] is the interval of time of the task of job j
// which is processed on machine m
tasks[j in 0...nbJobs][m in 0...nbMachines] <- interval(0, maxStart);
// Task duration constraints
for [j in 0...nbJobs][m in 0...nbMachines]
constraint length(tasks[j][m]) == processingTimes[j][m];
// List of the jobs on each machine
jobsOrder[m in 0...nbMachines] <- list(nbJobs);
for [m in 0...nbMachines] {
// Each job is scheduled on every machine
constraint count(jobsOrder[m]) == nbJobs;
// Every machine executes a single task at a time
constraint and(0...nbJobs - 1, i => tasks[jobsOrder[m][i]][m] < tasks[jobsOrder[m][i + 1]][m]);
}
// List of the machines for each job task
machinesOrder[j in 0...nbJobs] <- list(nbMachines);
for [j in 0...nbJobs] {
// Every task is scheduled on its corresponding machine
constraint count(machinesOrder[j]) == nbMachines;
// A job has a single task at a time
constraint and(0...nbMachines - 1, k => tasks[j][machinesOrder[j][k]] < tasks[j][machinesOrder[j][k + 1]]);
}
// Minimize the makespan: the end of the last task
makespan <- max[m in 0...nbMachines][j in 0...nbJobs](end(tasks[j][m]));
minimize makespan;
}
// Parametrize the solver
function param() {
if (hxTimeLimit == nil) hxTimeLimit = 5;
}
/* Write the solution in a file with the following format:
* - for each machine, the job sequence */
function output() {
if (outFileName == nil) return;
outFile = io.openWrite(outFileName);
for [m in 0...nbMachines] {
outFile.println[i in 0...nbJobs](jobsOrder[m].value[i] + " ");
}
println("Solution written in " + outFileName);
outFile.close();
}
- Execution (Windows)
-
set PYTHONPATH=%HX_HOME%\bin\pythonpython openshop.py instances\tai2020_5.txt
- Execution (Linux)
-
export PYTHONPATH=/opt/hexaly_13_0/bin/pythonpython openshop.py instances/tai2020_5.txt
import hexaly.optimizer
import sys
def read_instance(filename):
# The input files follow the "Taillard" format
with open(filename, 'r') as f:
lines = f.readlines()
first_line = lines[1].split()
nb_jobs = int(first_line[0])
nb_machines = int(first_line[1])
# Processing times for each job on each machine
# (given in the task order, the processing order is a decision variable)
processing_times_task_order = [[int(proc_time) for proc_time in line.split()]
for line in lines[3:3 + nb_jobs]]
# Index of machines for each task
machine_index = [[int(machine_i) - 1 for machine_i in line.split()]
for line in lines[4 + nb_jobs:4 + 2 * nb_jobs]]
# Reorder processing times: processingTime[j][m] is the processing time of the
# task of job j that is processed on machine m
processing_times = [[processing_times_task_order[j][machine_index[j].index(m)]
for m in range(nb_machines)] for j in range(nb_jobs)]
# Trivial upper bound for the start time of tasks
max_start = sum(map(lambda processing_times_job: sum(processing_times_job), processing_times))
return nb_jobs, nb_machines, processing_times, max_start
def main(instance_file, output_file, time_limit):
nb_jobs, nb_machines, processing_times, max_start = read_instance(instance_file)
with hexaly.optimizer.HexalyOptimizer() as optimizer:
#
# Declare the optimization model
#
model = optimizer.model
# Interval decisions: time range of each task
# tasks[j][m] is the interval of time of the task of job j
# which is processed on machine m
tasks = [[model.interval(0, max_start) for _ in range(nb_machines)] for _ in range(nb_jobs)]
# Task duration constraints
for j in range(nb_jobs):
for m in range(0, nb_machines):
model.constraint(model.length(tasks[j][m]) == processing_times[j][m])
# Create an Hexaly array in order to be able to access it with "at" operators
task_array = model.array(tasks)
# List of the jobs on each machine
jobs_order = [model.list(nb_jobs) for _ in range(nb_machines)]
for m in range(nb_machines):
# Each job is scheduled on every machine
model.constraint(model.eq(model.count(jobs_order[m]), nb_jobs))
# Every machine executes a single task at a time
sequence_lambda = model.lambda_function(lambda i:
model.at(task_array, jobs_order[m][i], m) < model.at(task_array, jobs_order[m][i + 1], m))
model.constraint(model.and_(model.range(0, nb_jobs - 1), sequence_lambda))
# List of the machines for each job
machines_order = [model.list(nb_machines) for _ in range(nb_jobs)]
for j in range(nb_jobs):
# Every task is scheduled on its corresponding machine
model.constraint(model.eq(model.count(machines_order[j]), nb_machines))
# A job has a single task at a time
sequence_lambda = model.lambda_function(lambda k:
model.at(task_array, j, machines_order[j][k]) < model.at(task_array, j, machines_order[j][k + 1]))
model.constraint(model.and_(model.range(0, nb_machines - 1), sequence_lambda))
# Minimize the makespan: the end of the last task
makespan = model.max([model.end(model.at(task_array, j, m))
for j in range(nb_jobs) for m in range(nb_machines)])
model.minimize(makespan)
model.close()
# Parametrize the optimizer
optimizer.param.time_limit = time_limit
optimizer.solve()
#
# Write the solution in a file with the following format:
# - for each machine, the job sequence
#
if output_file is not None:
with open(output_file, 'w') as f:
for m in range(nb_machines):
line = ""
for j in range(nb_jobs):
line += str(jobs_order[m].value[j]) + " "
f.write(line + "\n")
print("Solution written in file ", output_file)
if __name__ == '__main__':
if len(sys.argv) < 2:
print(
"Usage: python openshop.py instance_file [output_file] [time_limit]")
sys.exit(1)
instance_file = sys.argv[1]
output_file = sys.argv[2] if len(sys.argv) >= 3 else None
time_limit = int(sys.argv[3]) if len(sys.argv) >= 4 else 60
main(instance_file, output_file, time_limit)
- Compilation / Execution (Windows)
-
cl /EHsc openshop.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.libopenshop instances\tai2020_5.txt
- Compilation / Execution (Linux)
-
g++ openshop.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o openshop./openshop instances/tai2020_5.txt
#include "optimizer/hexalyoptimizer.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>
using namespace hexaly;
class Openshop {
private:
// Number of jobs
int nbJobs;
// Number of machines
int nbMachines;
// Processing time on each machine for each job task
std::vector<std::vector<int>> processingTime;
// Trivial upper bound for the start time of tasks
int maxStart;
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Decision variables : time range of each task
std::vector<std::vector<HxExpression>> tasks;
// Decision variables : processing order of jobs for each machine
std::vector<HxExpression> jobsOrder;
// Decision variables : processing order of machines for each job
std::vector<HxExpression> machinesOrder;
// Objective = minimize the makespan: end of the last task of the last job
HxExpression makespan;
public:
Openshop() : optimizer() {}
// The input files follow the "Taillard" format
void readInstance(const std::string& instanceFile) {
std::ifstream infile;
infile.exceptions(std::ifstream::failbit | std::ifstream::badbit);
infile.open(instanceFile.c_str());
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
infile >> nbJobs;
infile >> nbMachines;
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
// Processing times for each job on each machine
// (given in the task order, the processing order is a decision variable)
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
std::vector<std::vector<int>> processingTimesActivityOrder =
std::vector<std::vector<int>>(nbJobs, std::vector<int>(nbMachines));
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
infile >> processingTimesActivityOrder[j][m];
}
}
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
// Index of machines for each task
infile.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
std::vector<std::vector<int>> machineIndex =
std::vector<std::vector<int>>(nbJobs, std::vector<int>(nbMachines));
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
int x;
infile >> x;
machineIndex[j][m] = x - 1;
}
}
infile.close();
// Reorder processing times: processingTime[j][m] is the processing time of the
// task of job j that is processed on machine m
processingTime.resize(nbJobs);
for (int j = 0; j < nbJobs; ++j) {
processingTime[j].resize(nbMachines);
for (int m = 0; m < nbMachines; ++m) {
std::vector<int>::iterator findM = std::find(machineIndex[j].begin(), machineIndex[j].end(), m);
int k = std::distance(machineIndex[j].begin(), findM);
processingTime[j][m] = processingTimesActivityOrder[j][k];
}
}
// Trivial upper bound for the start time of tasks
maxStart = 0;
for (int j = 0; j < nbJobs; ++j) {
maxStart += std::accumulate(processingTime[j].begin(), processingTime[j].end(), 0);
}
}
void solve(int timeLimit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Interval decisions: time range of jobs on each machine
// tasks[j][m] is the interval of time of the task of job j
// which is processed on machine m
tasks.resize(nbJobs);
for (int j = 0; j < nbJobs; ++j) {
tasks[j].resize(nbMachines);
for (int m = 0; m < nbMachines; ++m) {
tasks[j][m] = model.intervalVar(0, maxStart);
// Task duration constraints
model.constraint(model.length(tasks[j][m]) == processingTime[j][m]);
}
}
// Create an Hexaly array in order to be able to access it with "at" operators
HxExpression taskArray = model.array();
for (int j = 0; j < nbJobs; ++j) {
taskArray.addOperand(model.array(tasks[j].begin(), tasks[j].end()));
}
// Sequence of tasks on each machine
jobsOrder.resize(nbMachines);
for (int m = 0; m < nbMachines; ++m) {
jobsOrder[m] = model.listVar(nbJobs);
// Each job is scheduled on every machine
model.constraint(model.eq(model.count(jobsOrder[m]), nbJobs));
// Every machine executes a single task at a time
HxExpression sequenceLambda = model.createLambdaFunction([&](HxExpression i) {
return model.at(taskArray, jobsOrder[m][i], m) < model.at(taskArray, jobsOrder[m][i + 1], m);
});
model.constraint(model.and_(model.range(0, nbJobs - 1), sequenceLambda));
}
// Sequence of machines for each job
machinesOrder.resize(nbJobs);
for (int j = 0; j < nbJobs; ++j) {
machinesOrder[j] = model.listVar(nbMachines);
// Every task is scheduled on its corresponding machine
model.constraint(model.eq(model.count(machinesOrder[j]), nbMachines));
// A job has a single task at a time
HxExpression sequenceLambda = model.createLambdaFunction([&](HxExpression k) {
return model.at(taskArray, j, machinesOrder[j][k]) < model.at(taskArray, j, machinesOrder[j][k + 1]);
});
model.constraint(model.and_(model.range(0, nbMachines - 1), sequenceLambda));
}
// Minimize the makespan: the end of the last task
makespan = model.max();
for (int m = 0; m < nbMachines; ++m) {
for (int j = 0; j < nbJobs; ++j) {
makespan.addOperand(model.end(model.at(taskArray, j, m)));
}
}
model.minimize(makespan);
model.close();
// Parametrize the optimizer
optimizer.getParam().setTimeLimit(timeLimit);
optimizer.solve();
}
/* Write the solution in a file with the following format:
* - for each machine, the job sequence */
void writeSolution(const std::string& fileName) {
std::ofstream outfile(fileName.c_str());
if (!outfile.is_open()) {
std::cerr << "File " << fileName << " cannot be opened." << std::endl;
exit(1);
}
for (int m = 0; m < nbMachines; ++m) {
HxCollection finalJobsOrder = jobsOrder[m].getCollectionValue();
for (int j = 0; j < nbJobs; ++j) {
outfile << finalJobsOrder.get(j) << " ";
}
outfile << std::endl;
}
outfile.close();
std::cout << "Solution written in file " << fileName << std::endl;
}
};
int main(int argc, char** argv) {
if (argc < 2) {
std::cout << "Usage: openshop instanceFile [outputFile] [timeLimit]" << std::endl;
exit(1);
}
const char* instanceFile = argv[1];
const char* outputFile = argc > 2 ? argv[2] : nullptr;
const char* strTimeLimit = argc > 3 ? argv[3] : "60";
Openshop model;
try {
model.readInstance(instanceFile);
const int timeLimit = atoi(strTimeLimit);
model.solve(timeLimit);
if (outputFile != nullptr)
model.writeSolution(outputFile);
return 0;
} catch (const std::exception& e) {
std::cerr << "An error occured: " << e.what() << std::endl;
return 1;
}
}
- Compilation / Execution (Windows)
-
copy %HX_HOME%\bin\Hexaly.NET.dll .csc Openshop.cs /reference:Hexaly.NET.dllOpenshop instances\tai2020_5.txt
using System;
using System.IO;
using Hexaly.Optimizer;
public class Openshop : IDisposable
{
// Number of jobs
private int nbJobs;
// Number of machines
private int nbMachines;
// Processing time on each machine for each job task
private long[,] processingTime;
// Trivial upper bound for the start times of the tasks
private long maxStart;
// Hexaly Optimizer
private HexalyOptimizer optimizer;
// Decision variables: time range of each task
private HxExpression[,] tasks;
// Decision variables : processing order of jobs for each machine
private HxExpression[] jobsOrder;
// Decision variables : processing order of machines for each jobs
private HxExpression[] machinesOrder;
// Objective = minimize the makespan: end of the last task of the last job
private HxExpression makespan;
public Openshop()
{
optimizer = new HexalyOptimizer();
}
// The input files follow the "Taillard" format
public void ReadInstance(string fileName)
{
using (StreamReader input = new StreamReader(fileName))
{
input.ReadLine();
string[] splitted = input.ReadLine().Split(' ');
nbJobs = int.Parse(splitted[0]);
nbMachines = int.Parse(splitted[1]);
// Processing times for each job on each machine
// (given in the task order, the processing order is a decision variable)
input.ReadLine();
long[,] processingTimesActivityOrder = new long[nbJobs, nbMachines];
for (int j = 0; j < nbJobs; ++j)
{
splitted = input.ReadLine().Trim().Split(' ');
for (int m = 0; m < nbMachines; ++m)
processingTimesActivityOrder[j, m] = long.Parse(splitted[m]);
}
// Index of machines for each task
input.ReadLine();
int[,] machineIndexes = new int[nbJobs, nbMachines];
for (int j = 0; j < nbJobs; ++j)
{
splitted = input.ReadLine().Trim().Split(' ');
for (int m = 0; m < nbMachines; ++m)
machineIndexes[j, m] = int.Parse(splitted[m]) - 1;
}
// Reorder processing times: processingTime[j, m] is the processing time of the
// task of job j that is processed on machine m
processingTime = new long[nbJobs, nbMachines];
// Trivial upper bound for the start times of the tasks
maxStart = 0;
for (int j = 0; j < nbJobs; ++j)
{
for (int m = 0; m < nbMachines; ++m)
{
int machineIndex = nbMachines;
for (int k = 0; k < nbMachines; ++k)
{
if (machineIndexes[j, k] == m)
{
machineIndex = k;
break;
}
}
processingTime[j, m] = processingTimesActivityOrder[j, machineIndex];
maxStart += processingTime[j, m];
}
}
}
}
public void Dispose()
{
optimizer.Dispose();
}
public void Solve(int timeLimit)
{
// Declare the optimization model
HxModel model = optimizer.GetModel();
// Interval decisions: time range of jobs on each machine
// tasks[j][m] is the interval of time of the task of job j
// which is processed on machine m
tasks = new HxExpression[nbJobs, nbMachines];
for (int j = 0; j < nbJobs; ++j)
{
for (int m = 0; m < nbMachines; ++m)
{
tasks[j, m] = model.Interval(0, maxStart);
// Task duration constraints
model.Constraint(model.Length(tasks[j, m]) == processingTime[j, m]);
}
}
// Create a HexalyOptimizer array in order to be able to access it with "at" operators
HxExpression taskArray = model.Array(tasks);
// Sequence of tasks on each machine
jobsOrder = new HxExpression[nbMachines];
for (int m = 0; m < nbMachines; ++m)
{
jobsOrder[m] = model.List(nbJobs);
// Each job has a task scheduled on each machine
HxExpression sequence = jobsOrder[m];
model.Constraint(model.Count(sequence) == nbJobs);
// Every machine executes a single task at a time
HxExpression sequenceLambda = model.LambdaFunction(
i => taskArray[sequence[i], m] < taskArray[sequence[i + 1], m]
);
model.Constraint(model.And(model.Range(0, nbJobs - 1), sequenceLambda));
}
// Sequence of tasks on each machine
machinesOrder = new HxExpression[nbJobs];
for (int j = 0; j < nbJobs; ++j)
{
machinesOrder[j] = model.List(nbMachines);
HxExpression sequence = machinesOrder[j];
// Every task is scheduled on its corresponding machine
model.Constraint(model.Count(sequence) == nbMachines);
// A job has a single task at a time
HxExpression sequenceLambda = model.LambdaFunction(
k => taskArray[j, sequence[k]] < taskArray[j, sequence[k + 1]]
);
model.Constraint(model.And(model.Range(0, nbMachines - 1), sequenceLambda));
}
// Minimize the makespan: end of the last task of the last job
makespan = model.Max();
for (int j = 0; j < nbJobs; ++j)
{
for (int m = 0; m < nbMachines; ++m)
{
makespan.AddOperand(model.End(tasks[j, m]));
}
}
model.Minimize(makespan);
model.Close();
// Parameterize the optimizer
optimizer.GetParam().SetTimeLimit(timeLimit);
optimizer.Solve();
}
/* Write the solution in a file with the following format:
* - for each machine, the job sequence */
public void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
for (int m = 0; m < nbMachines; ++m)
{
HxCollection finalJobsOrder = jobsOrder[m].GetCollectionValue();
for (int i = 0; i < nbJobs; ++i)
{
int j = (int)finalJobsOrder.Get(i);
output.Write(j + " ");
}
output.WriteLine();
}
}
Console.WriteLine("Solution written in file " + fileName);
}
public static void Main(string[] args)
{
if (args.Length < 1)
{
Console.WriteLine("Usage: Openshop instanceFile [outputFile] [timeLimit]");
System.Environment.Exit(1);
}
string instanceFile = args[0];
string outputFile = args.Length > 1 ? args[1] : null;
string strTimeLimit = args.Length > 2 ? args[2] : "60";
using (Openshop model = new Openshop())
{
model.ReadInstance(instanceFile);
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
-
javac Openshop.java -cp %HX_HOME%\bin\hexaly.jarjava -cp %HX_HOME%\bin\hexaly.jar;. Openshop instances\tai2020_5.txt
- Compilation / Execution (Linux)
-
javac Openshop.java -cp /opt/hexaly_13_0/bin/hexaly.jarjava -cp /opt/hexaly_13_0/bin/hexaly.jar:. Openshop instances/tai2020_5.txt
import java.util.*;
import java.io.*;
import com.hexaly.optimizer.*;
public class Openshop {
// Number of jobs
private int nbJobs;
// Number of machines
private int nbMachines;
// Processing time on each machine for each job task
private long[][] processingTime;
// Trivial upper bound for the start times of the tasks
private long maxStart;
// Hexaly Optimizer
final HexalyOptimizer optimizer;
// Decision variables: time range of each task
private HxExpression[][] tasks;
// Decision variables : processing order of jobs for each machine
private HxExpression[] jobsOrder;
// Decision variables : processing order of machines for each job
private HxExpression[] machinesOrder;
// Objective = minimize the makespan: end of the last task of the last job
private HxExpression makespan;
public Openshop(HexalyOptimizer optimizer) throws IOException {
this.optimizer = optimizer;
}
// The input files follow the "Taillard" format
public void readInstance(String fileName) throws IOException {
try (Scanner input = new Scanner(new File(fileName))) {
input.nextLine();
nbJobs = input.nextInt();
nbMachines = input.nextInt();
input.nextLine();
input.nextLine();
// Processing times for each job on each machine
// (given in the task order, the processing order is a decision variable)
long[][] processingTimesActivityOrder = new long[nbJobs][nbMachines];
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
processingTimesActivityOrder[j][m] = input.nextInt();
}
}
// Index of machines for each task
input.nextLine();
input.nextLine();
int[][] machineIndexes = new int[nbJobs][nbMachines];
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
machineIndexes[j][m] = input.nextInt() - 1;
}
}
// Reorder processing times: processingTime[j][m] is the processing time of the
// task of job j that is processed on machine m
processingTime = new long[nbJobs][nbMachines];
// Trivial upper bound for the start times of the tasks
maxStart = 0;
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
int machineIndex = nbMachines;
for (int k = 0; k < nbMachines; ++k) {
if (machineIndexes[j][k] == m) {
machineIndex = k;
break;
}
}
processingTime[j][m] = processingTimesActivityOrder[j][machineIndex];
maxStart += processingTime[j][m];
}
}
}
}
public void solve(int timeLimit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Interval decisions: time range of jobs on each machine
// tasks[j][m] is the interval of time of the task of job j
// which is processed on machine m
tasks = new HxExpression[nbJobs][nbMachines];
for (int j = 0; j < nbJobs; ++j) {
for (int m = 0; m < nbMachines; ++m) {
tasks[j][m] = model.intervalVar(0, maxStart);
// Task duration constraints
model.constraint(model.eq(model.length(tasks[j][m]), processingTime[j][m]));
}
}
// Create a HexalyOptimizer array in order to be able to access it with "at"
// operators
HxExpression taskArray = model.array(tasks);
// Sequence of tasks on each machine
jobsOrder = new HxExpression[nbMachines];
for (int m = 0; m < nbMachines; ++m) {
jobsOrder[m] = model.listVar(nbJobs);
HxExpression sequence = jobsOrder[m];
// Each job has a task scheduled on each machine
model.constraint(model.eq(model.count(sequence), nbJobs));
// Every machine executes a single task at a time
HxExpression mExpr = model.createConstant(m);
HxExpression sequenceLambda = model
.lambdaFunction(i -> model.lt(model.at(taskArray, model.at(sequence, i), mExpr),
model.at(taskArray, model.at(sequence, model.sum(i, 1)), mExpr)));
model.constraint(model.and(model.range(0, nbJobs - 1), sequenceLambda));
}
// Sequence of machines for each job
machinesOrder = new HxExpression[nbJobs];
for (int j = 0; j < nbJobs; ++j) {
machinesOrder[j] = model.listVar(nbMachines);
HxExpression sequence = machinesOrder[j];
// Every task is scheduled on its corresponding machine
model.constraint(model.eq(model.count(sequence), nbMachines));
// A job has a single task at a time
HxExpression jExpr = model.createConstant(j);
HxExpression sequenceLambda = model
.lambdaFunction(k -> model.lt(model.at(taskArray, jExpr, model.at(sequence, k)),
model.at(taskArray, jExpr, model.at(sequence, model.sum(k, 1)))));
model.constraint(model.and(model.range(0, nbMachines - 1), sequenceLambda));
}
// Minimize the makespan: end of the last task
makespan = model.max();
for (int m = 0; m < nbMachines; ++m) {
HxExpression mExpr = model.createConstant(m);
for (int j = 0; j < nbJobs; ++j) {
HxExpression jExpr = model.createConstant(j);
makespan.addOperand(model.end(model.at(taskArray, jExpr, mExpr)));
}
}
model.minimize(makespan);
model.close();
// Parameterize the optimizer
optimizer.getParam().setTimeLimit(timeLimit);
optimizer.solve();
}
/*
* Write the solution in a file with the following format:
* - for each machine, the job sequence
*/
public void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
for (int m = 0; m < nbMachines; ++m) {
HxCollection finalJobsOrder = jobsOrder[m].getCollectionValue();
for (int i = 0; i < nbJobs; ++i) {
int j = Math.toIntExact(finalJobsOrder.get(i));
output.write(j + " ");
}
output.write("\n");
}
}
System.out.println("Solution written in file " + fileName);
}
public static void main(String[] args) {
if (args.length < 1) {
System.out.println("Usage: java Openshop instanceFile [outputFile] [timeLimit]");
System.exit(1);
}
String instanceFile = args[0];
String outputFile = args.length > 1 ? args[1] : null;
String strTimeLimit = args.length > 2 ? args[2] : "60";
try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
Openshop model = new Openshop(optimizer);
model.readInstance(instanceFile);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}