Branin Function
Problem
The Branin function is a two-dimensional function defined by the following equation:
The recommended values of a, b, c, r, s, and t are: a = 1
, b = 5.1 ⁄ (4π2)
, c = 5 ⁄ π
, r = 6
, s = 10
, and t = 1 ⁄ (8π)
. This function is usually evaluated on the square x1 ∈ [-5, 10]
, x2 ∈ [0, 15]
.
The it has three global minima, and the goal of the problem is to find one of them. For more details, see Virtual Library of Simulation Experiments.
Principles learned
- Add float decision variables
- Create a nonlinear expression using the ‘cos’ and ‘pow’ operators
- Learn about Hexaly Optimizer’s modeling style: distinguish decision variables from intermediate expressions
Program
Constants are fixed to the recommended values: a = 1
, b = 5.1 ⁄ (4π2)
, c = 5 ⁄ π
, r = 6
, s = 10
, and t = 1 ⁄ (8π)
. The domains of x1
and x2
are respectively [-5,10]
and [0,15]
.
The Hexaly model for the Branin Function Problem is very straightforward. It uses two float decision variables, representing x1 and x2, respectively. Thanks to Hexaly’s large collection of nonlinear mathematical operators, we can then compute the value of the function. Using the ‘cos’ and ‘pow’ operators, we evaluate the Branin function for x1 and x2. The function evaluation is stored within a new expression. Since its value was deduced from those of the decisions, this expression is not another decision variable, but an intermediate expression. See the documentation to learn about the distinction between decision variables and intermediate expressions. Finally, we minimize this expression, which is the objective function.
- Execution
-
hexaly branin.hxm [hxTimeLimit=] [solFileName=]
use io;
/* Declare the optimization model */
function model() {
PI = 3.14159265359;
a = 1;
b = 5.1 / (4 * pow(PI, 2));
c = 5 / PI;
r = 6;
s = 10;
t = 1 / (8 * PI);
x1 <- float(-5, 10);
x2 <- float(0, 15);
// f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
f <- a * pow(x2 - b * pow(x1, 2) + c * x1 - r, 2) + s * (1 - t) * cos(x1) + s;
minimize f;
}
/* Parametrize the solver */
function param() {
if (hxTimeLimit == nil) hxTimeLimit = 6;
}
/* Write the solution in a file */
function output() {
if (solFileName != nil)
{
local solFile = io.openWrite(solFileName);
solFile.println("x1=", x1.value);
solFile.println("x2=", x2.value);
}
}
- Execution (Windows)
-
set PYTHONPATH=%HX_HOME%\bin\pythonpython branin.py
- Execution (Linux)
-
export PYTHONPATH=/opt/hexaly_13_0/bin/pythonpython branin.py
import hexaly.optimizer
import sys
with hexaly.optimizer.HexalyOptimizer() as optimizer:
# Parameters of the function
PI = 3.14159265359
a = 1
b = 5.1 / (4 * pow(PI, 2))
c = 5 / PI
r = 6
s = 10
t = 1 / (8 * PI)
#
# Declare the optimization model
#
model = optimizer.model
# Numerical decisions
x1 = model.float(-5.0, 10.0)
x2 = model.float(0.0, 15.0)
# f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
f = a * (x2 - b * x1 ** 2 + c * x1 - r) ** 2 + s * (1 - t) * model.cos(x1) + s
# Minimize f
model.minimize(f)
model.close()
# Parameterize the optimizer
if len(sys.argv) >= 3:
optimizer.param.time_limit = int(sys.argv[2])
else:
optimizer.param.time_limit = 6
optimizer.solve()
#
# Write the solution in a file
#
if len(sys.argv) >= 2:
with open(sys.argv[1], 'w') as f:
f.write("x1=%f\n" % x1.value)
f.write("x2=%f\n" % x2.value)
- Compilation / Execution (Windows)
-
cl /EHsc branin.cpp -I%HX_HOME%\include /link %HX_HOME%\bin\hexaly130.libbranin
- Compilation / Execution (Linux)
-
g++ branin.cpp -I/opt/hexaly_13_0/include -lhexaly130 -lpthread -o branin
./branin
#include "optimizer/hexalyoptimizer.h"
#include <fstream>
#include <iostream>
#include <vector>
using namespace hexaly;
using namespace std;
class Branin {
public:
// Hexaly Optimizer
HexalyOptimizer optimizer;
// Hexaly Program variables
HxExpression x1;
HxExpression x2;
void solve(int limit) {
// Parameters of the function
hxdouble PI = 3.14159265359;
hxdouble a = 1;
hxdouble b = 5.1 / (4 * pow(PI, 2.0));
hxdouble c = 5 / PI;
hxdouble r = 6;
hxdouble s = 10;
hxdouble t = 1 / (8 * PI);
// Declare the optimization model
HxModel model = optimizer.getModel();
// Numerical decisions
x1 = model.floatVar(-5.0, 10.0);
x2 = model.floatVar(0.0, 15.0);
// f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
HxExpression f = a * model.pow(x2 - b * model.pow(x1, 2) + c * x1 - r, 2) + s * (1 - t) * model.cos(x1) + s;
// Minimize f
model.minimize(f);
model.close();
// Parametrize the optimizer
optimizer.getParam().setTimeLimit(limit);
optimizer.solve();
}
/* Write the solution in a file */
void writeSolution(const string& fileName) {
ofstream outfile;
outfile.exceptions(ofstream::failbit | ofstream::badbit);
outfile.open(fileName.c_str());
outfile << "x1=" << x1.getDoubleValue() << endl;
outfile << "x2=" << x2.getDoubleValue() << endl;
}
};
int main(int argc, char** argv) {
const char* solFile = argc > 1 ? argv[1] : NULL;
const char* strTimeLimit = argc > 2 ? argv[2] : "6";
try {
Branin model;
model.solve(atoi(strTimeLimit));
if (solFile != NULL)
model.writeSolution(solFile);
} catch (const exception& e) {
cerr << "An error occurred: " << e.what() << endl;
return 1;
}
return 0;
}
- Compilation / Execution (Windows)
-
copy %HX_HOME%\bin\Hexaly.NET.dll .csc Branin.cs /reference:Hexaly.NET.dllBranin
using System;
using System.IO;
using Hexaly.Optimizer;
public class Branin : IDisposable
{
// Hexaly Optimizer
private HexalyOptimizer optimizer;
// Hexaly Program variables
private HxExpression x1;
private HxExpression x2;
public Branin()
{
optimizer = new HexalyOptimizer();
}
public void Dispose()
{
if (optimizer != null)
optimizer.Dispose();
}
public void Solve(int limit)
{
// Parameters of the function
double PI = 3.14159265359;
double a = 1;
double b = 5.1 / (4 * Math.Pow(PI, 2.0));
double c = 5 / PI;
double r = 6;
double s = 10;
double t = 1 / (8 * PI);
// Declare the optimization model
HxModel model = optimizer.GetModel();
// Numerical decisions
x1 = model.Float(-5, 10);
x2 = model.Float(0, 15);
// f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
HxExpression f =
a * model.Pow(x2 - b * model.Pow(x1, 2) + c * x1 - r, 2)
+ s * (1 - t) * model.Cos(x1)
+ s;
// Minimize f
model.Minimize(f);
model.Close();
// Parametrize the optimizer
optimizer.GetParam().SetTimeLimit(limit);
optimizer.Solve();
}
/* Write the solution in a file */
public void WriteSolution(string fileName)
{
using (StreamWriter output = new StreamWriter(fileName))
{
output.WriteLine("x1=" + x1.GetDoubleValue());
output.WriteLine("x2=" + x2.GetDoubleValue());
}
}
public static void Main(string[] args)
{
string outputFile = args.Length > 0 ? args[0] : null;
string strTimeLimit = args.Length > 1 ? args[1] : "6";
using (Branin model = new Branin())
{
model.Solve(int.Parse(strTimeLimit));
if (outputFile != null)
model.WriteSolution(outputFile);
}
}
}
- Compilation / Execution (Windows)
-
javac Branin.java -cp %HX_HOME%\bin\hexaly.jarjava -cp %HX_HOME%\bin\hexaly.jar;. Branin
- Compilation / Execution (Linux)
-
javac Branin.java -cp /opt/hexaly_13_0/bin/hexaly.jarjava -cp /opt/hexaly_13_0/bin/hexaly.jar:. Branin
import java.io.*;
import com.hexaly.optimizer.*;
public class Branin {
// Parameters of the function
private static final double PI = 3.14159265359;
private static final int a = 1;
private static final double b = 5.1 / (4 * Math.pow(PI, 2));
private static final double c = 5 / PI;
private static final int r = 6;
private static final int s = 10;
private static final double t = 1 / (8 * PI);
// Hexaly Optimizer
private final HexalyOptimizer optimizer;
// Hexaly Program variables
private HxExpression x1;
private HxExpression x2;
private Branin(HexalyOptimizer optimizer) {
this.optimizer = optimizer;
}
private void solve(int limit) {
// Declare the optimization model
HxModel model = optimizer.getModel();
// Numerical decisions
x1 = model.floatVar(-5, 10);
x2 = model.floatVar(0, 15);
// f = a(x2 - b*x1^2 + c*x1 - r)^2 + s(1-t)cos(x1) + s
HxExpression f = model.sum();
// f1 = x2 - b*x1^2 + c*x1 - r
HxExpression f1 = model.sum();
f1.addOperand(x2);
f1.addOperand(model.prod(-b, model.pow(x1, 2)));
f1.addOperand(model.prod(c, x1));
f1.addOperand(-r);
// f = a*f1^2 + s(1-t)cos(x1) + s
f.addOperand(model.prod(a, model.pow(f1, 2)));
f.addOperand(model.prod(s * (1 - t), model.cos(x1)));
f.addOperand(s);
// minimize f
model.minimize(f);
// close model, then solve
model.close();
// Parametrize the optimizer
optimizer.getParam().setTimeLimit(limit);
optimizer.solve();
}
/* Write the solution in a file */
private void writeSolution(String fileName) throws IOException {
try (PrintWriter output = new PrintWriter(fileName)) {
output.println("x1=" + x1.getDoubleValue());
output.println("x2=" + x2.getDoubleValue());
}
}
public static void main(String[] args) {
String outputFile = args.length > 0 ? args[0] : null;
String strTimeLimit = args.length > 1 ? args[1] : "6";
try (HexalyOptimizer optimizer = new HexalyOptimizer()) {
Branin model = new Branin(optimizer);
model.solve(Integer.parseInt(strTimeLimit));
if (outputFile != null) {
model.writeSolution(outputFile);
}
} catch (Exception ex) {
System.err.println(ex);
ex.printStackTrace();
System.exit(1);
}
}
}